Abstract Linear Algebra, Fall 2011 - Solutions to Problems I

- 1. Determine in each case whether the given subset of \mathbb{R}^3 defines a subspace:
 - a. the set of all (x, y, z) such that x + y + z = 0;
 - b. the set of all (x, y, z) such that xyz = 0;
 - c. the set of all (x, y, z) such that z = x + y;
 - d. the set of all (x, y, z) such that xy = 1.

a and c define subspaces, b and d do not. For example, for b, the vectors (0,1,1) and (1,0,0) belong to the given set but their sum (1,1,1) clearly does not. Similarly, for d, (1,1) and (2,1/2) are in the set but again their sum (3,3/2) is not. Alternatively, the zero vector (0,0) is not in d, so d cannot define a subspace. For a and c, check that the given sets are closed under addition and scalar multiplication. Further it is clear that they are non-empty and thus define subspaces.

- 2. Let U and W be subspaces of a vector space V.
 - a. Show that $U \cap W$ and U + W are subspaces of V.
 - b. Is $U \cup W$ always a subspace of V?
 - a. Let v_1 and v_2 be vectors in $U \cap W$. In particular, $v_1 \in U$ and $v_2 \in U$. Since U is a subspace, $v_1 + v_2 \in U$. Similarly, $v_1 \in W$ and $v_2 \in W$, and so $v_1 + v_2 \in W$. Thus $v_1 + v_2 \in U \cap W$. Now let α be a scalar. Then αv_1 is in U and in W, i.e., $\alpha v_1 \in U \cap W$. Thus $U \cap W$ is closed under addition and scalar multiplication. It is also non-empty (since the zero vector is in U and in W) and so is a subspace.

Let v_1 and v_2 be vectors in U+W so that $v_1=u_1+w_1$ and $v_2=u_2+w_2$ for vectors $u_1,u_2\in U$ and vectors $w_1,w_2\in W$. We have

$$v_1 + v_2 = u_1 + w_1 + u_2 + w_2$$

= $(u_1 + u_2) + (w_1 + w_2)$.

Since $u_1 + u_2 \in U$ and $w_1 + w_2 \in W$, this shows that $v_1 + v_2 \in U + W$, i.e., U + W is closed under addition. Similarly, if α is a scalar, then

$$\alpha v_1 = \alpha (u_1 + w_1)$$
$$= \alpha u_1 + \alpha w_1.$$

Since $\alpha u_1 \in U$ and $\alpha w_1 \in W$, it follows that $\alpha v_1 \in U + W$, i.e., U + W is closed under scalar multiplication. Finally, U + W is clearly non-empty (for example, it contains U) and so U + W is a subspace.

b. It is not true in general that $U \cup W$ is a subspace of V. For instance, take $V = \mathbb{R}^2$ and let

$$U = \{(x,0)|x \in \mathbb{R}\}, \ W = \{(0,y)|y \in \mathbb{R}\}.$$

So U is the x-axis and W is the y-axis in the plane. Then (1,0) is in U and (0,1) is in W but their sum (1,1) is not in U and not in W, i.e., is not in $U \cup W$. Thus $U \cup W$ is not closed under addition.

In fact, given subspaces U and W of a vector space V, the set $U \cup W$ is a subspace of V if and only if $U \subset W$ or $W \subset U$. Can you prove this?

- 3. Consider the real vector space of all real functions of a real variable t. Determine in each case whether the given functions are linearly independent:
 - a. $\cos t$, $\sin t$;
 - b. $\cos^2 t$, $\sin^2 t$;
 - c. $1, \cos 2t, \cos^2 t;$
 - $d. 1, t, e^t.$
 - a. Let $\alpha, \beta \in \mathbb{R}$ such that $\alpha \cos t + \beta \sin t = 0$, for all $t \in \mathbb{R}$. Setting t = 0, we see $\alpha = 0$ (as $\cos 0 = 1$ and $\sin 0 = 0$). Thus the relation becomes $\beta \sin t = 0$, for all $t \in \mathbb{R}$. This clearly implies $\beta = 0$ (as $\sin t$ is not the zero function). Thus $\cos t$, $\sin t$ are linearly independent.
 - b. $\cos^2 t, \sin^2 t$ are also linearly independent (exactly as in a).
 - c. From the dim past (at least for me), we recall the trig. identity $\cos 2t = 2\cos^2 t 1$. Equivalently,

$$1 + \cos 2t - 2\cos^2 t = 0$$
.

for all real numbers t, and so the given functions are linearly dependent.

- d. Let $\alpha, \beta, \gamma \in \mathbb{R}$ such that $\alpha + \beta t + \gamma e^t = 0$, for all $t \in \mathbb{R}$. Differentiating this relation gives (i) $\beta + \gamma e^t = 0$ (for all t). Differentiating again gives (ii) $\gamma e^t = 0$ (for all t). Since e^t is not identically zero, (ii) implies that $\gamma = 0$ and then (i) implies $\beta = 0$. Substituting $\beta = 0$ and $\gamma = 0$ in the original relation, we see also that $\alpha = 0$, and so the given functions are linearly dependent.
- 4. Let \mathcal{P}_n denote the real vector space of all real polynomials of degree $\leq n$ (for n a nonnegative integer) and write \mathcal{P}_n^+ for the subspace of even polynomials in \mathcal{P}_n , i.e., $\mathcal{P}_n^+ = \{p(t) \in \mathcal{P}_n : p(t) = p(-t)\}$. Find the dimensions of \mathcal{P}_n and \mathcal{P}_n^+ .

The space \mathcal{P}_n is generated by $1, t, \ldots, t^n$. Further these elements are linearly independent. Thus $1, t, \ldots, t^n$ is a basis of \mathcal{P}_n and $\dim \mathcal{P}_n = n + 1$.

Let $p(t) = \sum_{i=0}^{n} a_i t^i \in \mathcal{P}_n$. Then

$$p(-t) = \sum_{i=0}^{n} a_i (-t)^i$$
$$= \sum_{i=0}^{n} (-1)^i a_i t^i.$$

Thus p(t) = p(-t) if and only if $a_i = (-1)^i a_i$, for i = 0, 1, ..., n. Now $(-1)^i = \pm 1$ according as i is even or odd. It follows that p(t) = p(-t) if and only if $a_i = -a_i$, or equivalently $a_i = 0$, for all odd indices i. Hence \mathcal{P}_n^+ is generated by the even powers of t in \mathcal{P}_n . Since the powers of t are linearly independent, we see that \mathcal{P}_n^+ has as a basis the elements $1, t^2, ..., t^{2k}$ where k is the largest integer such that $2k \leq n$. Thus $k = \lfloor n/2 \rfloor$, the greatest integer $\leq n/2$, and so dim $\mathcal{P}_n^+ = \lfloor n/2 \rfloor + 1$.

5. Let v_1, \ldots, v_m be linearly independent vectors in a vector space V. Suppose w is a vector in V such that $v_1 + w, \ldots, v_m + w$ are linearly dependent. Show that w is a linear combination of v_1, \ldots, v_m .

There exist scalars β_1, \ldots, β_m , not all zero, such that

$$\beta_1(v_1+w)+\cdots+\beta_m(v_m+w)=0.$$

Rearranging, this gives

$$\beta_1 v_1 + \dots + \beta_m v_m = -(\beta_1 + \dots + \beta_m) w. \tag{*}$$

Note $\beta_1 + \cdots + \beta_m \neq 0$. [Indeed, if $\beta_1 + \cdots + \beta_m = 0$, then (*) becomes

$$\beta_1 v_1 + \dots + \beta_m v_m = 0.$$

Linear independence of v_1, \ldots, v_m then forces $\beta_1 = 0, \ldots, \beta_m = 0$ which contradicts our hypothesis that $v_1 + w, \ldots, v_m + w$ are linearly dependent.] Since $\beta_1 + \cdots + \beta_m \neq 0$, we can rewrite (*) as

$$-(\beta_1 + \dots + \beta_m)^{-1}\beta_1 v_1 - \dots - (\beta_1 + \dots + \beta_m)^{-1}\beta_m v_m = w,$$

and so w is a linear combination of v_1, \ldots, v_m .

6. Show that \mathbb{R} has infinite dimension as a vector space over \mathbb{Q} . (One way to to do this is via the existence of real transcendental numbers.)

Let α be a real transcendental number (for example, π or e). This means that α is not a root of any non-zero polynomial with rational coefficients. Explicitly, for any positive integer n and any rational numbers a_0, a_1, \ldots, a_n , with $a_i \neq 0$ for some i, we have

$$a_0 + a_1 \alpha + \ldots + a_n \alpha^n \neq 0.$$

Equivalently, the n+1 vectors $1, \alpha, \ldots, \alpha^n$ are linearly independent in \mathbb{R} viewed as a vector space over \mathbb{O} .

Now recall from class that in a vector space of dimension N any set of linearly independent vectors has at most N elements. We've just noted that \mathbb{R} as a vector space over \mathbb{Q} contains a set of linearly independent vectors of size n+1, for any positive integer n. Hence \mathbb{R} cannot have finite dimension as a vector space over \mathbb{Q} . That is, \mathbb{R} has infinite dimension as a vector space over \mathbb{Q} .

Alternative Solution. Here's another approach using the concept of countability which you may have seen in Math 2513. The key point is that \mathbb{R} is uncountable whereas \mathbb{Q}^n is countable (for any positive integer n). Suppose \mathbb{R} has finite dimension as a vector space over \mathbb{Q} and let r_1, \ldots, r_n be a basis for this vector space. Thus, given $r \in \mathbb{R}$, there exist unique rational numbers q_1, \ldots, q_n such that $r = q_1r_1 + \cdots + q_nr_n$. In other words, the map

$$(q_1,\ldots,q_n)\mapsto q_1r_1+\cdots+q_nr_n:\mathbb{Q}^n\to\mathbb{R}$$

is a bijection. But this is impossible: \mathbb{Q}^n is countable and \mathbb{R} is uncountable and so there cannot be a bijection between these sets. We conclude that \mathbb{R} must have infinite dimension as a vector space over \mathbb{Q} .