Abstract Linear Algebra, Fall 2011 - Solutions to Problems |

1. Determine in each case whether the given subset of R® defines a subspace:

a.

b
c.
d

. the set of all (x,y,

. the set of all (x,y,

the set of all (z,y,z) such that x +y+ 2z =0;
( z) such that ryz = 0;

the set of all (x,y,z) such that z = x + y;
( z) such that xy = 1.

a and c define subspaces, b and d do not. For example, for b, the vectors (0,1,1) and
(1,0,0) belong to the given set but their sum (1,1, 1) clearly does not. Similarly, for d,
(1,1) and (2,1/2) are in the set but again their sum (3,3/2) is not. Alternatively, the
zero vector (0,0) is not in d, so d cannot define a subspace. For a and c, check that the
given sets are closed under addition and scalar multiplication. Further it is clear that
they are non-empty and thus define subspaces.

Q.

b.

a.

Let U and W be subspaces of a vector space V.

Show that UNW and U + W are subspaces of V.
Is UUW always a subspace of V' ?

Let vy and vy be vectors in U N W. In particular, v; € U and vy € U. Since U is a
subspace, v1 + vo € U. Similarly, v1 € W and vy € W, and so v; + vo € W. Thus
v1+ve € UNW. Now let a be a scalar. Then awv; isin U and in W, i.e., avy € UNW.
Thus U N W is closed under addition and scalar multiplication. It is also non-empty
(since the zero vector is in U and in W) and so is a subspace.

Let v; and vy be vectors in U + W so that v1 = u; +w; and vy = ug + wo for vectors
uy,us € U and vectors wy,ws € W. We have

v1 +v2 = U +wr +ug + wa
= (u1 + u2) + (w1 + wa).
Since uy + ug € U and wy + wo € W, this shows that v; +ve € U+ W, ie., U+ W is
closed under addition. Similarly, if « is a scalar, then
avy = au +wq)
= qu1 + aw.
Since auy € U and aw; € W, it follows that avy € U+ W, i.e., U+ W is closed under

scalar multiplication. Finally, U + W is clearly non-empty (for example, it contains
U) and so U + W is a subspace.

It is not true in general that U U W is a subspace of V. For instance, take V = R?
and let

U={(z,0)]z eR}, W={(0,y)ly € R}.
So U is the z-axis and W is the y-axis in the plane. Then (1,0) is in U and (0, 1) is in
W but their sum (1,1) is not in U and not in W, i.e., is not in U UW. Thus U U W
is not closed under addition.

In fact, given subspaces U and W of a vector space V', the set U UW is a subspace of
V if and only if U C W or W C U. Can you prove this?



3. Consider the real vector space of all real functions of a real variable t. Determine in each
case whether the given functions are linearly independent:

a. cost, sint;

b. cos?t, sin®¢;

c. 1,cos2t, cos?t;
d. 1,t, et

a. Let a, 8 € R such that acost + Bsint = 0, for all t € R. Setting ¢t = 0, we see &« = 0
(as cos0 =1 and sin0 = 0). Thus the relation becomes Ssint = 0, for all t € R. This
clearly implies 8 = 0 (as sint is not the zero function). Thus cost,sint are linearly
independent.

b. cos?t,sin? ¢ are also linearly independent (exactly as in a).

c. From the dim past (at least for me), we recall the trig. identity cos2t = 2cos?t — 1.
Equivalently,

1+ cos2t — 2cos’t = 0,
for all real numbers ¢, and so the given functions are linearly dependent.

d. Let o, 3,7 € R such that a + Bt + vet = 0, for all ¢t € R. Differentiating this relation
gives (i) B+ ve' = 0 (for all ¢). Differentiating again gives (ii) ve! = 0 (for all ¢).
Since e’ is not identically zero, (ii) implies that v = 0 and then (i) implies 8 = 0.
Substituting § = 0 and v = 0 in the original relation, we see also that a = 0, and so
the given functions are linearly dependent.

4. Let P, denote the real vector space of all real polynomials of degree < n (for n a non-
negative integer) and write P, for the subspace of even polynomials in Py, i.e., P;f =
{p(t) € Py, : p(t) = p(—t)}. Find the dimensions of P, and P, .

The space P, is generated by 1,t,...,t". Further these elements are linearly indepeden-
dent. Thus 1,¢,...,t" is a basis of P,, and dim P, =n + 1.

Let p(t) = Y1, a;t" € P,. Then

p(-t) =3 a1y

= i(—l)iaiti.
=0

Thus p(t) = p(—t) if and only if a; = (—1)%a;, for i = 0,1,...,n. Now (—1)" = +1
according as ¢ is even or odd. It follows that p(t) = p(—t) if and only if a; = —ay, or
equivalently a; = 0, for all odd indices i. Hence P, is generated by the even powers of ¢
in P,. Since the powers of ¢ are linearly independent, we see that P has as a basis the
elements 1,t2,...,t?* where k is the largest integer such that 2k < n. Thus k = [n/2],
the greatest integer < n/2, and so dim P\ = [n/2] + 1.

5. Let vy,...,v, be linearly independent vectors in a vector space V. Suppose w is a vector
in V. such that v1 + w, ..., v, + w are linearly dependent. Show that w is a linear
combination of vi,...,Un,.



There exist scalars (i, ..., Bm, not all zero, such that
Bi(v1 +w) + -+ + B (v +w) =0.
Rearranging, this gives

Bivi + -+ + BnVm = —(B1 + -+ + Bm)w. (¥)
Note 81 + -+ B # 0. [Indeed, if 81 + - - - + B, = 0, then (x) becomes
Brvr + - + Bmvm = 0.
Linear independence of vy, ..., v,, then forces g1 =0,..., 3, = 0 which contradicts our

hypothesis that v; + w, ..., v, + w are linearly dependent.] Since 81 + - - + B,, # 0, we
can rewrite (x) as

_(51 + -+ Bm)_lﬁlvl — (Bl + -+ Bm)_lﬂmvm =w,

and so w is a linear combination of vy,...,vm,.

. Show that R has infinite dimension as a vector space over Q. (One way to to do this is
via the existence of real transcendental numbers.)

Let « be a real transcendental number (for example, 7 or €). This means that « is not
a root of any non-zero polynomial with rational coefficients. Explicitly, for any positive
integer n and any rational numbers ag, a1, . .., a,, with a; # 0 for some 4, we have

ag+ara+ ...+ aza™ #0.

Equivalently, the n + 1 vectors 1,a,...,a" are linearly independent in R viewed as a
vector space over Q.

Now recall from class that in a vector space of dimension N any set of linearly independent
vectors has at most N elements. We've just noted that R as a vector space over QQ contains
a set of linearly independent vectors of size n + 1, for any positive integer n. Hence R
cannot have finite dimension as a vector space over Q. That is, R has infinite dimension
as a vector space over Q.

Alternative Solution. Here’s another approach using the concept of countability which
you may have seen in Math 2513. The key point is that R is uncountable whereas Q" is
countable (for any positive integer n). Suppose R has finite dimension as a vector space

over Q and let rq,...,r, be a basis for this vector space. Thus, given r € R, there exist
unique rational numbers ¢q,...,q, such that »r = ¢171 + - - 4+ ¢,7r. In other words, the
map

(q17"'5Q7’L) HQ1T1+"'+QTLT7L:Q” HR
is a bijection. But this is impossible: Q™ is countable and R is uncountable and so
there cannot be a bijection between these sets. We conclude that R must have infinite
dimension as a vector space over Q.



