
The atomic fetch-and-set x, y instruction unconditionally sets the memory location

x to 1 and fetches the old value of x in y without allowing any intervening access

to the memory location x. Consider the following implementation of P and V

functions on a binary semaphore S.

void P (binary_semaphore *S)

{

unsigned y;

unsigned *x = & (S -> value); // Stores the value of s in x

do

{

fetch-and-set x, y;

} while (y);

}

void V (binary_semaphore *S) {

s - > value = 0;

}

Which one of the following is true?

A. The implementation may not work, if context switching is disabled in P

B. Instead of using fetch-and-set, a pair of normal load/ store can be used

C. The implementation of V is wrong

D. The code does not implement a binary semaphore

 The implementation may not work, if context switching is disabled in P

Explanation :-

void P (binary_semaphore *S)

{

unsigned y;

unsigned *x = & (S -> value); // Stores the value of s in x

do

{

fetch-and-set x, y; // fetches the old value of x, stores it in y

} while (y);

}

void V (binary_semaphore *S)

{

 s - > value = 0; // Sets the value of s as 0

}

In the above implementation, binary_semaphore S is used which may have value 0

or 1.

Consider the two cases -

Case 1 : Where S=0

y

 S

1100 x

8050

 9800

 Critical Section

0

8050

Then the atomic fetch-and-set x, y instruction unconditionally sets the memory

location x to 1 and fetches the old value of x in y without allowing any intervening

access to the memory location x.

It means value of x i.e. S=1 will be set and previous (or old) value of x will be

store in y i.e. y=0.

y

 S

1100 x

8050

 9800

 Critical Section

And when we execute while loop, it gets the value of y=0 and then it come out of

while loop. After that we can execute V() and make S=0 and can enter in C.S. (

critical section). Hence, code is properly implementing.

Case 2 : Where S=1

y

 S

1100 x

8050

 9800

 Critical Section

Then the atomic fetch-and-set x, y instruction unconditionally sets the memory

location x to 1 and fetches the old value of x in y without allowing any intervening

access to the memory location x.

It means value of x i.e. S=1 will be set and previous (or old) value of x will be

store in y i.e. y=1

1

8050

0

1

8050

1

y

 S

1100 x

8050

 9800

And when we execute while loop, it gets the value of y=1 and then it continues the

while loop. After that we can not execute V() and can not enter in C.S. (critical

section). Hence, the code will not work properly if context switching is disabled

in P.

Option A is correct - It means, here, context switching is happened properly, if it

execute V ().

If some other process doesn’t execute V(), then the while loop of a process will

continue forever. Or we can say, if the context switching is disabled in P, the while

loop will run forever as no other process will be able to execute V().

It means in that case, context switching is not working and implementation may

not work properly because P() never give control to the other process and while

loop perform repeatedly. And hence context switching is must.

In option B - If we use normal load & Store instead of Fetch & Set there is good

chance that more than one Process sees S value as 0 & then mutual exclusion wont

be satisfied. So this option is wrong.

In option C - Here we are setting S→ value to 0, which is correct. (As in fetch &

Set we wait if value of S→ value is 1. So implementation is correct. This option is

wrong.

In option D – Here, only one process can be in critical section here at a time. So

this is binary semaphore & Option (D) is wrong.

1

8050

1

