Chemical Bonding

Assignment-3

Q1. Arrange the following in the increasing order of bond angle

NH_3 NF_3 $^+OH_3$ N_2	H_4 ⁺
Q2. The shape and geometry of	[XeF ₃] ⁺ respectively is
a) TBP and T-shape b)	T-shape and TBP
c) TBP and see- saw d)	see-saw and TBP
Q3. Place the following molecul	es in the increasing order of P-F bond
length.	
PF ₅ PF ₄ (CH ₃) PF ₃ (C	$H_3)_2$ $PF_2(CH_3)_3$ $PF(CH_3)_4$
Q4. What will be the basicity of	the acid formed by the hydrolysis of
AsX ₃ and P ₂ X ₄ ?	
a) 3 and 2	a) 2 and 3

d) 2 and 4

Q5. Which one of the following is more stable?

a) OH-CH₂⁺ HS-CH₂⁺

b): CF_2 : CCl_2 : CBr_2 : CI_2

c) 3 and 4

Q6.	The	number	of	vertices,	faces	and	edges	in	the	pentagonal
bipy	ramid	lal are								

a) 7, 15, 10

b) 7, 10, 15

c) 7, 14, 10

d) 5, 10, 15

Q7. Which angle θ_1 or θ_2 is greater in magnitude?

$$H_3C-N \neq C=O$$

$$H_3Si-N=C=O$$

Q8. Among SF₄, BF₄⁻, XeF₄ and ICl₄⁻ the number of species having two lone pairs of electrons on the central atom according to VSEPR theory is:

[NET June 2011]

a)2

b) 3

c) 4

d) 0

Q9. In the molecules H₂O, NH₃ and CH₄

[NET June 2011]

- a) The bond angles are same
- b) The bond distances are same
- c) The hybridizations are same
- d) The shapes are same

Q10. According to VSEPR theory, the molecule/ion having ideal tetrahedral shape is [NET June 2011]

- a) SF₄
- b) SO₄²-

- c) S₂Cl₂
- d) SO₂Cl₂

Q11. Among the following pairs, those in which both species have similar structures are [NET Dec 2011]

 $(A) N_3$, XeF_2

(B) [ICl₄]⁻, [PtCl₄]²⁻

(C) [ClF₂]⁺, [ICl₂]⁻

(D) XeO_3 , SO_3

- a) A and B only
- b) A and C only
- c) A, B and C only
- d) B, C and D only

Q12. Match list I (compounds) with list II (structures) and select the correct answer using the codes given below. [NET Dec 2011]

List I

List II

A XeO₄

I) square planar

B BrF₄

II) tetrahedral

C SeCl₄

- III) distorted tetrahedral
- a) (A-II) (B-III) (C-I)
- b) (A-III) (B-I) (C-II)
- c) (A-II) (B-I) (C-III)
- d) (A-I) (B-II) (C-III)

Q13. The total number of lone pairs of electrons in I_3^- is [NET June 2012]

- a) zero
- b) Three

c) Six

d) Nine

Q14. Which ones among CO₃²⁻, SO₃, XeO₃ and NO₃⁻ have planar structure? [NET Dec 2012]

a) CO₃²-, SO₃ and XeO₃

b) SO₃, XeO₃ and NO₃

c) CO₃²⁻, XeO₃ and NO₃⁻

d) CO_3^{2-} , SO_3 and NO_3^{-}

Q15. The number of lone pairs are identical in the pairs [NET June 2013]

a) XeF₄, ClF₃

b) XeO₄, ICl₄

c) XeO₂F₂, ICl₄

d) XeO₄, ClF₃

Q16. According to VSEPR theory, the geometry (with lone pair) around the central iodine in I_3^+ and I_3^- ions respectively are [NET Dec 2013]

- a) tetrahedral and tetrahedral
- b) trigonal bipyramidal and trigonal bipyramidal
- c) tetrahedral and trigonal bipyramidal
- d) tetrahedral and octahedral

Q17. The geometries of $[Br_3]^+$ and $[I_5]^+$ respectively are [NET June 2015]

- a) trigonal and tetrahedral
- b) tetrahedral and trigonal bipyramidal
- c) tetrahedral and tetrahedral
- d) linear and trigonal pyramidal

Q18. The number of lone pair(s) of electrons on the central atom in $[BrF_4]^-$, XeF_6 and $[SbCl_6]^{3-}$ are respectively [NET Dec 2015]

a) 2, 0 and 1

b) 1, 0 and 0

c) 2, 1 and 1

d) 2, 1 and 0

Q19. The correct shape of $[TeF_5]^-$ ion on the basis of VSEPR theory is [NET June 2016]

- a) Trigonal bipyramidal
- b) square pyramidal

c) Pentagonal planar

d) See-saw

Q20. The numbers of triangular faces in square antiprism, icosahedron and tricapped trigonal prism (capped on square faces) respectively are [NET Dec 2016]

- a) 8, 20 and 14
- b) 8, 20 and 12
- c) 10, 12 and 14
- d) 10, 12 and 12

