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Answers to discussion questions

The correspondence principle states that in the limit of very large quantum numbers quantum mechanics
merges with classical mechanics. An example is a molecule of a gas in a box. At room temperature, the
particle-in-a-box quantum numbers corresponding to the average energy of the gas molecules (% kT per
degree of freedom) are extremnely large; consequently the separation between the levels is relatively so
small (n is always small compared to n%, compare eqn 9.7 to eqn 9.4a) that the energy of the particle
is effectively continuous, just as in classical mechanics. We may also look at these equations from the
point of view of the mass of the particle. As the mass of the particle increases to macroscopic values, the
separation between the energy levels approaches zero. The quantization disappears as we know it must.
Tennis balls do not show quantum mechanical effects. (Except those served by Pete Sampras.) We can
also see the correspondence principle operating when we examine the wavefunctions for large values of
the quantum numbers. The probability density becomes uniform over the path of motion, which is again
the classical result. This aspect is discussed in more detail in Section 9.1(c).

The harmonic oscillator provides another example of the correspondence principle. The same effects
mentioned above are observed. We see from Figure 9.26 of the text that probability distributions for
large values on n approach the classical picture of the motion. (Look at the graph for v = 20.)

The physical origin of tunnelling is related to the probability density of the particle, which according to
the Born interpretation is the square of the wavefunction that represents the particle. This interpretation
requires that the wavefunction of the system be everywhere continuous, even at barriers. Thercfore, if
the wavefunction is non-zerc on one side of a barrier it must be non-zero on the other side of the barrier
and this implies that the particle has tunnelled through the barrier. The transmission probability depends
upon the mass of the particle (specifically m!/2, through eqns 9.16 and 9.20): the greater the mass the
smaller the probability of tuanelling. Electrons and protons have small masses, molecular groups large
masses; therefore, tunnelling effects are more observable in process involving electrons and protons.

Macroscopic synthesis and material development always contains elements of molecular randomness.
Crystal structures are never perfect. A product of organic synthesis is never absolutely free of impurities,
although impurities may be at a level that is lower than measurement techniques make possible. Alloys are
grainy and slightly non-homogeneous within any particular grain. Furthermore, the random distribution
of atomic/molecular positions and orientations within, and between, macroscopic objects causes the
conversion of energy to non-useful heat during manufacturing processes. Production efficiencies are
difficult to improve. Nanometer technology on the | nm to 100 nm scale may resolve many of these
problems. Self-organization and production processes by nanoparticles and nanomachines may be able
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to exclude impurities and greatly improve homogeneity by effective examination and selection of each
atom/molecule during nanosynthesis and nanoproduction processes. Higher efficiencies of energy usage
may be achievable as nanomachines produce idealized materials at the smaller sizes and pass their
products to larger nanomachines for production of larger scale materials.

The directed, non-random, use of atoms and molecules by nanotechniques holds the promise for the
production of smaller transistors and wires for the electronics and computer industries. Unusual material
strengths, optical properties, magnetic properties, and catalytic properties may be achievable. Higher
efficiencies of photo-electronic conversion would be a boon to mankind. There is hope that science will
devise nanoparticles that destroy pathogens and repair tissues. See Impact 9.1 for discussion of SPM
examination of atom positions on a macroscopic surface and for the current nanctechnological method
for positioning atoms on a surface. See Impact 9.2 for discussion of nano-quantum dots that have unusual
optical and magnetic properties.

Solutions to exercises

2.2
n-h
E=——[94
Bml? [9-42]
X 6.626 x 1073 Js)? _
= (6626 x 2 = 2678 x 10723
Bmel?  8(9.109 % 10—3 kg) x (1.50 x 10~ m)2

The conversion factors required are

leV=1602%x10""9); lecm ! =1986x 107231, 1eV = 96.485%J mol™!

h'.!
Es—E =(9—1 = 8(2.678 x 10727
@ By —Ei == g —5 =8(678 x )
—[214x 10795 =[134eV]=[1.08 x 10?em1 | =[ 129 kI mol~! |
2
(b) E7 — Eg = (49 — 36) —— = 13(2.678 x 1072])
8me L2

=[3.48 x 109y =[2.17eV] = 175 x 10*em~! | =| 2104 mol~! |

The probability is

2 nwx 2Ax nTx
_ * _ = o Bidaded Sy 2 P Binided
P_fu'fz,bdx—Lfsm(L)dJL Lsm(L)
where Ax = 0.02L and the function is evaluated at x = (.66 L.
2(0.02L -
(@) Forn=1 P= (—L-—)sin2(0.66x) =|0.031

2(0.02L —
() Forn=2 P= (T) sin*[2(0.667)] =
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The expectation value is
b= [ v as
but first we need pyr
. d 2 1/2 . /RmX 2 Y2 n nIx
plff = —lﬁa;(z) sin (T) = —lﬁ,(z) T COos (T)
—2iks L
so () = %fo sin(%)cos(i?)m:@

ﬂ, - Wn?
and {p~} = 2m{H} = 2mkE, = el
foralln.Soforn =2
N n?
" =| 1z
The zero-point energy is the ground-state energy, that is, with ny, =y = 0. = I:
(n_% + n",} % Hg)h?‘ 12

[9.12b with equal lengths] =

8ml? 8mlL2

Set this equal to the rest energy mc* and solve for L:

2 12 12
me? = i soL = E i = E Ac
8ml2 8 e 8

where Ac is the Compton wavelength of a particle of mass m.

172
e (2) e (5)

Srx

P(x) o ¥ o sin’ (T)

dP(x) -0

d dyr? Smx Smx 10
PO o %  sin (%) cos (%) o sin (%) [2sina cosa = sin 2a]

sin@ =0when® =0,7,2x,....0'ms (W =0,1,2,...)

Maxima and minima in P(x) correspond to

107 x 'L
2 =n'n forn <10 so x="10
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x = 0,x = L are minima. Maxima and minima alternate, so maxima comrespond to

s d

L[] [7e] oL
! = 7 | =—[1=[]|Z2]1Z]|Z=
m=13319 x=1gr 20| 0[] 10

E9.6(b)  The energy levels are

(n% + n% + n%)h2

g =E\(n} +n5+nd)

Em saan =

where E; combines all constants besides quantum numbers. The minimum value for all the quantum
numbers is 1, so the lowest energy is

Ey11 =3E

The question asks about an energy 14/3 times this amount, namely 14E}. This energy level can be
obtained by any combination of altowed quantum numbers such that

Mg+l =14=32 422412
The degeneracy, then, is IE, corresponding to (my,mz,n3) = (1, 2, 3), (1, 3,2), (2, 1, 3), (2,3, D),
(3.1,2),0r (3,2, 1).
E9.7(b)  E = 3T is the average translational energy of a gaseous molecule (see Chapter 17).

PO PP i ki Ui
2 8&mlL? 8mni?

E= G) % (1381 x 1072 7K1 x (300K) = 6214 x 1072'}]

3 8mi?
n=—
h2

If L3 = 1.00m>, then L2 = 1.00 m?.

B2 (6.626 x 10734 J5)?2

ke : =1.180 x 107%%)
m 0.02802 kg mol~
8) x ( £ 1Mo ) x 100 m?

6.022 x 1023 mol~!

6.214 x 10721} -

2 21, 10
=27 _~ —5265x 10%: = _-7.26 10
" 1.180 x 10-42] X " X

AE = Epyy — Ey = Eqa610041 — E726x1010

2

AE = 21+ 1) h K2 14.52 x 101942
- H x =
8mL? 8mlL? 8mi?

= (1452 x 10'%) % (1.180 x 1071y =| 1.71 x 103"

) =[(2) x (7.26 x 109 + 1] x (
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The de Broglie wavelength is obtained from

h h
A=-=—1[8.12]
p nw

The velocity is obtained from

Ex = %mv?' = %kT =6.214 x 1072

6.214 % 10721 -
W= * =267 x 10°m?s™2; v=517ms™!

( 1 ) 0.02802 kg mol ™"
— |
2 6.022 x 10?3 mol ™!
6.626 x 10734 J 5 |
A= =275%x 107" m=(275
(465 x 100 kg) x (517 ms—1) % m

The conclusion to be drawn from all of these calculations is that the translational motion of the nitrogen
molecule can be described classically. The energy of the molecule is essentially continuous,

oF < |
£ .

E2.8(b) The zero-point energy is

1 WA .y 72
Eop=-ho=-h{—) =-(1.0546x 1073]
0= 3 2 (m) 2( x ) x (

={392 x 1072}

E9.9(b)  The difference in adjacent energy levels is

285 Nm™! )
5.16 x 10~26kg

N2
AE=E,f1 ~E, =lhw[9206] =k (E) [9.25]

m(AEY (288 x 107 P kg) x (3.17 x 10721 12 -
50 h2 (1.0546 x 10—34 JS)2

E9.10(b) The difference in adjacent energy levels, which is equal to the energy of the photon, is

1/2
AE = hw = hv so ii(—) = —
n

and

(15.9949 u) x (1.66 x 10-27 kgu")) 2

=2n(2. 108 ms™!
(2998 x 10° ms )x( SaA N =]

A=132x 10-5m=
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The difference in adjacent energy levels, which is equal to the energy of the photon, is

KN'Y? ke
AFE = fiw = fiv 50 h(—) = —
m

he { kN2 ny 12
di=—|— =2 —
o k (m) Hc(k)

Doubling the mass, then, increases the wavelength by a factor of 2'/2. So taking the result from Exercise
9.10(b), the new wavelength is

A =2"2(132um) =

AE = hw=hv

(a) AE =hv=(6.626x 10" JHz™") x (33 x 10°Hz) =22 x 1072

12 1 1 I
(b) AE=hw= ﬁ,(—) l:— = — + — withm = mg]

My Moy 11 M

For a two-particle oscillator miegr, replaces m in the expression for w. (See Chapter 13 for a more complete
discussion of the vibration of a diatomic molecule.)

5

172 . 12
AE:h(Zk) =(1.055x|0‘34Js)x( (2) x (LI77Nm™ ") )

" (16.00) x {1.6605 x 10-27kg)
=[3.14 % 10729]

The first excited-state wavefunction has the form

¥ = 2N yexp (—%y:")

where M| is a collection of constants and y = x(me/M)'?. To see if it satisfies Schrodinger’s equation,
we see what happens when we apply the energy operator to this function
. a1

”
Hyr = RE T + Ema)".\'zy'f

We need derivatives of

dyr  dyrdy may 1/2 5 I 5
—_ = — 2N — e ——y
dr  dy dr (F) " emxa— )xe"p( 2 )

2 2 N2
and v = d—l'-{{(d—)) = (@) x (2N1) x (=3y + %) x exp (_1),2) = (%ﬂi) x (y2 — 3y

de?  dy? \dx ki 2
N "2 nw 9 L5y
So HYr = —— x (—) x (¥ =3+ —mwxy
2m h 2

1 5 I, 3
=—§Fw)x(y —3)><1,L'r+5iuuy!jr=§ﬁw1,lf
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Thus, ¥ is a solution of the Schridinger equation with energy eigenvalue

E=

hew

[SLF)

The harmonic oscillator wavefunctions have the form
1/4

1, : #i2
P () = NLH, (y) exp (——y“) with y = ul and o = (—) [9.28]
2 o mk

The exponential function approaches zero only as x approaches 00, so the nodes of the wavefunction
are the nodes of the Hermite polynomials.

Hs(y) = 32)° — 160y + 120y = 0 [Table 9.1] = 8y(4y* — 20y* + 15)

So one solution is y = 0, which leads to x = 0. The other factor can be made into a quadratic equation
by letting z = y2

422 =20z +15=0

_ —b £+ Vb — dac _ 20+ V207 —4 x4 x 15 _5x+/10

s0 2
2a 2x4d 2

Evaluating the result numerically yields z=092 or 4.08, so y=+x096 or £2.02. Therefore
x=|0,£0.96w, or + 202

COMMENT. Numerical values coutd also be obtained graphically by plotting Hs (y)-

The zero-point energy is

1 1 (kM2
Fog=-lew = =h
0 2 e 2 1(mcrr)

For a homonuclear diatomic molecule, the effective mass is half the mass of an atom, so

1
Ep = =(1.0546 x 1073 Js) x (

172
22938 Nm~! )
2

1(14.0031u) x (1.66054 x 10~ kgu~')

Eo = 23421 x 10721

Orthogonality requires that

fy'f:,w,, dv =0
it &£ n.

Performing the integration

2

f Pin dr = j; Ne " Ne dg = N* f

0

2

T
ei(rr—m)qb d@b
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If m # n, then

n Nz
ei(n—m}gﬁ — (l _ 1) =0
i(n —n) o i{rn — m)

f YoV dr =
Therefore, they are orthogonal.

E9.17(b) The magnitude of angular mementum is

Y
(2" = ¢+ 101120 19,5401 = 2)2(1.0546 x 107435) =

Possible projections onto an arbitrary axis are

(LZ) = myh [9.54b]

where my = 0 or £1 or £2. So possible projections include

|0, £1.0546 x 10-3 J's and £2.1109 x 10#J

E9.18(b} The cones are constructed as described in Section 9.7(d) and Figure 9.40(b) of the text; their edges are
of length {6(6 + 1)}!/? = 6.48 and their projections are m; = +6, +5, ..., —6. See Figure 9.1(a).

The vectors follow, in units of k. From the highest-pointing to the lowest-pointing vectors (Figure 9.1(b)),
the values of my; are 6, 5,4,3,2,1,0,—1,-2, -3, —4, —5, and —6.

m=+6
+5
+4

Figure 9.1(a)

Figure 9.1(b)
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Solutions to problems

Solutions to numerical problems

K\ 12
W= (—) [9.25 with p in place of m]
7

e
Also, w = 2wy = B =2wcy

. 472202 m m
Therefore k = a)zu = 43"!'2621)2[.1. = —I2

m) + mz
We draw up the following table using information from the Data Section, p. 991.

IH35CI IHSIBr IHIZTI ]2C160 I4N160
p/m~! 299 000 265000 231000 217000 190400
105 m, /kg 1.6735 1.6735 1.6735 19.926 23.253
107 ma/kg 58.066 134.36 210.72 26.560 26.560
k(N m™1) 516 412 314 1902 1595

Therefore, the order of stiffness, is rHI < HBr <« HCl < NO < CO |

e 2 I+ DK
E= T 953 = %;%2— [ = megsR?, megy in place of m]
el
e {0+ 1) x (1.055 x 10734 5)? y 1 N 1
T \(2) % (1.6605 x 10-27 kg) x (160 x 10-12 m)2 1.008 = 126.90

[ 1 1 1 ]
—_— =4 —
Mg my M
Therefore,
E=1(+1)x (131 x 10722])
The energies may be expressed in terms of equivalent frequencies with
E 33 =1 =1
D=E=(1'509x 1077 sTH)E.

Hence, the energies and equivalent frequencies are

{ 0 1 2 3

102E/] [0] 2.62 7.86 15.72
0

v/GHz 396 1188 2376

169
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Treat the gravitational potential energy as a perturbation in the energy operator:
HY = MEx.

The first-order correction to the ground-state energy, Ej, is:

L Lysa 172 2 172
it [ vt L) (D) en (D)o

2m L TX
(ny _ =Mg ein2
E, xsin (_L )dx

L Jo
£ 2mg (il (m\f) . (J'rx) L2 cos? (er) £
=—|——~—cos{—}sin| —) — —cos” [ — .
! L \4 2xm L L 472 L/]s
E:l) = %mgL

Not surprisingly, this amounts to the energy perturbation evaluated at the midpoint of the box.
For m = me, EV /L = 447 x 1070Im~".

Solutions to theoretical problems

The energy of any given molecule is

_ nip?
T 8mlL?

[9.12b with n? = i? + n} + n2 and equal lengths)

{The lowest energy levelisny = ny =n; = [, s0 n% = 3; however, what follows applies to any allowed
energy level.) So the internal energy of a sample of N molecules is
Nn*h?  Nnth?

U=s=NE=—"F=—"+—
&mlL? 8my2/3

In the last step we used V = L3, because we are interested in how the energy changes with volume.
Consider an adiabatic change of volume, that is, a change in which no heat enters or leaves the sample.
In that case, the change in energy is entirely work (First Law with ¢ = 0). Differentiate the expression
for U/:

alu Nii2h?
dw = _) qv = — W v "
OV J adiabatic 12mVy3s3

In Chapter 2, we learned that expansion work has the form dw = —pexdV. Can these expressions be
reconciled, and if so, under what conditions? First, note that the expression that multiplies dV in equation
(a) refers to the sample, so if it is some sort of pressure, it must be the sample pressure, and not an arbitrary
external pressure, so if the expressions can be reconciled, it must be for reversible adiabatic expansion
or compression. The expression that multiplies dV can be expressed as

Nn*h: 2N

—— = -—E.
12mV3/3 v

2N
In fact, the kinetic model of gases (Chapter 21) says that the pressure of a pas is equal to E?E where

E is the average kinetic energy of the gas molecules—completely consistent with interpreting it as the
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average particle-in-a-box energy. To summarize, reversible adiabatic work for a gas of particle-in-a-box
molecules is dw = —pdV, where the pressure is

_ Ne’R* 2N
P= 12mL3 = 3V

In expansion, the volume increases, meaning that the box gets bigger. Equation 9.12b tells us that the
kinetic energy decreases, even as the quantum numbers remain constant. This is also consistent with
what we know of adiabatic expansion and the kinetic model of gases: the temperature of the sample
drops on expansion, and temperature is related to the kinetic energy (T2 o E).

In isothermal expansion, energy must enter the system as heat to maintain the temperature. We can
interpret this influx of heat as an increase in quantum numbers (an excitation of the molecules) that
offsets the falling energy levels.

A

P frrmm e

o peme---

Figure 9.2a

{a) The wavefunctions in each region (see Figure 9.2(a)) are {(egns 9.14, 9.16, and 9.17):
Vi (x) = ef1¥ 4 ple~iker
Va(x) = Age' + Bpe™h
Ya(x) = Azel™*

With the above choice of Aj = | the transmission probability is simply T = |43 |2. The wavefunction
coefficients are determined by the criteria that both the wavefunctions and their first derivatives with
respect to x be continuous at potential boundaries

Y1(0) = 2 (0 ¥a(L) = va(h)
dyn (@) _ dya@  dya(l) _ dys(l)
dx de ' dx dx
These criteria establish the algebraic relationships:
l14+B)-A2~ By =0
(—ik) — k2)A2 + (—ik) + k2)B2 + 2ik) =0

Arefl 4 BpeTRl _ 4ieitil = ¢

Askye®t — Bafne Kt _ jAqkqeidt = 0
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Solving the simultaneous equations for A3 gives

4k kgl
Az = — 3 - .
(ia + b) ekl — (ia — bye~hl

where a = k3 — kik3 and b = kika + kaks.

Since sinh(z) = (¢ —e~7)/2 ore? = 2sinh(z) + &%, substitute 2 = 2 sinh(koL) + e 2L giving:

4 2k, kel
37 g + by sinh(kal) + be—2L

T = |A |2 =A A:,' = ! .22
= |A3|" = A3 % *
(a2 + bZ) sinh (kzL) + bZ

where a? + b% = (k7 + k3) (k3 + k3) and b2 = K (ky + k3)?

(b} In the special case for which Vi =V3=0, eqns 9.14 and 9.17 require that &k =k3 Addi-

tionally,
k)2 E &
2l =—— =—" whe =E/V,.
(kg) V,—E 1-z re e=E/V2

2
k 2
a2+b2=(k§’-+k§)2=kgl1+(k—‘) }
2

b* = 4k3k3
o]
B\
k3 1+(—)
2 4 b 2‘ ka i
PR 2 T 4e(l — &)
= 22 + (& + 5%) sinh? B i
B2 + (a® + b?) sinh® (ko L) l+(a;; )sinhz(kzl«)
S PO (T2 N B PO Gl
= de(l—e) | 16e(l - £)

This proves eqn 9.20a where V1 = V3 = (.

In the high wide barrier limit k3L 3> 1. This implies both that e 7*2% is negligibly small compared

to e*2L and that 1 is negligibly smali compared to e?2£ /{166(1 — £)}. The previous equation simp-

lifies to
T = 16e(l — £)e~ 2%k [9.20b)
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E=10K/mol, ¥,=V,=0, L=5Cpm
0.25 T T T T

0.2

0.5 .
T
0.1 .
0.05 N
0 1 1 |
1 12 14 16 1.8 2
le (ie.. Vo/E) Figure 9.2(b)
e . Kdy 2
P9.12 The Schridinger equation is — o dZ + - k_x W =Ey¢
d
and we write ¥ = e 8%, 50 Eii = —2gxe™#
dz‘x[f —gx? 2 gl _ 2.2
s —2ge + 4g%x%e 7 = 2y + 4g°x°Y
K 2K%g?
(20~ ()=
m m

2 2.2
(2)-Jo+ -2}
m 2 m

This equation is satisfied if

E=— d 2h°g" = k == —=
- an mk, or | g 2 (h2
Therefore
1 2 1/2
E=-h|— =-hw fwo=|—
2 m 2
+c0 +00
Po.14 XM =" ") =" ¥y dx = o™ f ' dy [x = ay)
—o0 —o0

+00
oy o f 1}!2}'3 dy = @ by symmetry [y is an odd function of y]
—C0

+00
'ty =o’ f Wyt dy

Y =y NH,e
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3

YH, =y (LHop + VH\._l) =2 [% (%ng + vt I)H‘.) +v (%H,, +v— l)H‘,_g)]

"

¥ [};sz + (V + %) H, +v(v — l)H,,_g]

=y [ (3Hsa+ 0+ DH )+ (v 4 1) x ($Hops +vH)
v = 1) x (HHet + = DH )]

=y (%HH.:; + 30+ DHopr + BPHC v — D) x (v — 2)H‘._3)

Only yH, 4| and yH,_; lead to H, and contribute to the expectation value (since A, is orthogonal to all
except H,) [Table 9.1]; hence

YH, = 3y((v 4+ DHup + 2P H ) + -
=3[0+ 1 3tz + 0+ DH) + 22 (30, + 60— DH2) |+ -
=@+ D H + V) +
=3+ + DH+ -
Therefore

+4-c0 +o0 s 2 3
f 'ty dy = 20vt +2v + l)sz Hledy= E(sz +24 1)

—o -0

and so

&Ny = (@) x (%) x (2 +2v+ ) = %(21;2 + 2+ Dot
154

P9.16 U= f Yxi, dr = o f Yoy dy  [x = ay]

yWho =Ny (§Hup + vH,o ) €772 [Table 9.1]

1 2 I
Hence . = azN,,NUrf (EHV’HIH‘I + vHeru_1)e_-‘ dy =0 unlessv =v L1 [Table9.1]

Forv =v+1

1 2 2 2 1, 172041 v+ 1 1/2
w= Ea NoNop | Hy 67" dy = Ea'NuN.,Hrc 2w D = 5

Forv =v—1

2 1/2
= va*NuNo_y fH?,_,e--‘ dy = v’ N Ny_ 122" Yo — 1)l = | & (3)

No other vatues of v’ result in a non-zero value for 14: hence, no other transitions are allowed.
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To address this time-dependent problem, we need a time-dependent wavefunction, made up from
solutions of the time-dependent Schrédinger equation

oW (x, 1)

AW n =ik
{(x,1)=1h o

[Table 8.1]

If yr{x) is an eigenfunction of the energy operator with energy eigenvalue E, then
Wix,1) = Pne HE

is a solution of the time-dependent Schrodinger equation (provided the energy operator is not itself time
dependent). To verify this, evaluate both sides of the time-dependent Schrédinger equation. On the left
we have

HY(x. 1) = By e B = Ey (e B0 = Ew(x, 1)

On the right we have
av(x, 1)
ar

A .
ih = inw(x)ae*'ﬂ/“ = —iPEy(x)e B = Ew(a, 1),

the same as on the left. Qur wavepacket is an arbitrary superposition of time-evolving harmonic oscillator
states,

Wix,t) = Z Cuwp(.\')ewig""/h

v=0
where {r, (x) are time-independent harmonic-oscillator wavefunctions and

Ev=(v+})ho 19251

Hence, the wavepacket is

Wi, 1) = e—iwl/Q ZC“I‘[{N (x)c—il'w.'

1=~}

The angular frequency c is related to the period T by 7 = 27 /w, so we can evaluate the wavepackel at
any whole number of periods after 7, that is at a time ¢ + nT, where n is any integer. (Note: n1 is not a
quantum number.) Note that

t+nT =14 2nn/w,

50

W(x, 4+ nT) = e—imr/2e—iwn7'/?. ZC\'WI' (A,)e—ivwre—ivmn'f
r=0

— e—iwrlze—inrJ § :Cl'_"b,”(A_)e—il'(ure—eriru
v=0

Noting that the exponential of (2=i x any integer) = 1, we note that the last factor inside the sum is |
for every state. Also, since e ™" = (—1)", we have

Wix, !+ nT) = (—1Y"\(x, 0

At any whole number of periods after time ¢, the wavefunction is either the same at time ¢ or —1 times
its value at time 7. In any event, |¥ | returns to its original value each period, so the wavepacket returns
to the same spatial distribution each period.
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P9.20 In each case, if the function is an eigenfunction of the operator, the eigenvalue is also the expectation
value; if it is not an eigenfunction we form

() = [ Wy dr [8.34]

() e = 7—¢e‘¢ = he'?: hence /. =

id

(b) je—2i® = ;Ee‘z"” = —2he~?¥; hence /, =
i

2r hod h 2 )
(c) (Iz)ocj; coscp(?@cosq&)ddjoc—T](; cos¢ sm(pdgb_@

et . ' hod A i
{d) .y = sz (cos yet? 4 sin ye ¥)* (—La) % (cos xe'? + sin xe7'?) dg
4] 1

h 2m . ) . .
= Tlsz (cos xe™® 4 sin xe'®) x (icos xe'® — sin xe %) dg
i Jo

2T : i
= kN2 (coszx — sinzx -+ cos x sin X[EM - B_MD d¢
0

= hNZ(cos?y —sinx) x (2m) = 2T AN cos 2x

We must evaluate the normalization constant;

iz . . . .
sz (cos xe'® + sin xe " '®)*(cos xe'® + sin xe Ty d¢ = 1
0
2 " .
1= N?‘f (cosy +sin’y +cos x sin x [e® + e~ 2]y dg
0

1
=2aN%(cos’x +sin’y) =2aN? soN? = 5
4

Therefore

{I.) = [x is a parameter]

For the kineti T=E 72 [9.36] # o [9.40)
T €. 2 use = = = . = —_-— R
Q e Kinetic en l'gy Wi K 21 d¢2
. R, . B
(a) Te¥= —%(ize'*ﬁ) = %e""’; hence (T) = 3
Y B2 L AR 252
(b) Te 29— —%(m)?c-m = 2—;e~2'¢; hence {T) = T’“
@ Foospm=—1(—cosdh = - cosd: hence () =|
[ COSqQp = ——(—COS = — COS ¢, NEence = | —
21 21 21
i3 h?

(d)  T(cos xe'® + sin ye i) = — %(—cos xe'? — sin xe ) = 2—;(005 x€ + sin xe~¢)

Kt

and hence {T) = 37
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COMMENT. All of these functions are eigenfunctions of the kinetic energy operator, which is also the total
energy or Hamiltonian operator, since the potential energy is zero far this systemn,

Mathematical software can animate the real part or the imaginary part of ¥ (¢, 1), or you may wish to
have it display |¥ (¢, r)|. Try a “pure” state, that is, let ¢ = | for one value of m; and O for all others.
This “packet” does not spread, but only circulates. Also try making all the coefficients in the sum equal
(all 1, for example). Whatever your choice of coefficients, the pattern will repeat with a period T that
makes all the time-dependent factors equal to the exponential of (271 x an integer):

_43':1
TR

T

making the exponent iE,, 1/ h equal to 2n im? when r = T and at intervals of T thereafter. (See Problem
9.18.) An example of this approach using Mathcad is illustrated below:
Wavepacket on a Ring as a MathCad Document. Let r = H and let each function in the superposition
of m + 1 functions contribute with equal probability. The normalized angular functions are:

1
ym,¢) = (%) 2 gime {[9.38b] where m is an integer.)

The normalized superposition is:

1 % Mmax m2
¥ (Mmax, ¢, T} = (m_-l-'f) - Z Yim,¢)-e” M7
m=0
2.m-j

N:=500 j:=0.N ¢:= Mmax =8 At :=.03

N
The probability density of the superposition is: P(¢, t) = Y{mMmax. ¢, ) - ¥(Mmax, ¢, 7)

8 T T I ]
oL b
P(6;,0)
pp3ar) |3 [
—_ o p -
P(0;,6-41) '. ,,' \'1
P($;.9-41) ,:' ‘\‘
— b i
i i
g i

2 Figure 9.3
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The above plot (Figure 9.3) shows that as the initially localized wave propagates around the ring it
spreads with time and the uncertainty in knowing particle position increases. The effect of increasing or
decreasing the energies accessible to the particle may be explored by increasing or decreasing the value
of mmyy In the MathCad document.

4 2m 1 35 b4 2n
P9.24 f f Yi3Y33sin0d0dg = (—) x (—)f sin® @ sin9d9[ d¢ [Table 9.3]
o Jo ) 64 T ) Js 0

1 35 ! 2.3
= (6_4) e (;) ® (2:&')[_I (1 —cos“8)’ dcosé

[sin@dd = dcosd, sin20 = 1 — cos>8]

|
=§f (1 =33 +3x* = dx [x =cosf]
—1

35 ; 35 1.0 35 32
SRty FI)_]_ﬁxe.s“m

V2 _ 82 N 32 N 32
P9.26 - axz ay2 322

9? 2 8* ) 3* 2

—_—f = — —_—1 = —b" —f = -

a2l == A=W af ==

and f is an eigenfunction with cigenvalue | —(a® + b% + ¢)
P9.28 Upon making the operator substitutions
ka3 o

== d p.— ——
Pr=7a M P T %y

into ?z we find

L L i)
T I Yax

a ax d ay 8 dz d

But ﬁ = %5 % B_y ﬁ %% which is the chain rule of partial differentiation.
ax o . . .
% = — (rsinfcos¢p) = —rsinfsingp = —y
dy d . . .
— = —(rsinf@sing) =rsinfcos¢g =x
de
il
% _p
a¢
d d a
Thus, — =-y—4x—
ue a¢ yax xay
Upon substitution,
+ R4 ., 8
I, = = —ih—

ST e 09
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P9.30 {(a) Suppose that a particle moves classically at the constant speed v. It starts at x = O at t = 0 and at
t=rtisatposiionx =L.v=L/t and x = v1.

l T l T
(x):—f xdr:—f vids
T Ji=0 T Ji1=0

=0
__vrz_vr_ L_()
T T2 |27V
1 T 2 T
(,\'2)=—f xzdr=v—f 2 dr
T Ji=0 T Ji=0
_ v E (v1)? _ L?
- 31' =0 3 - 3
L
w2 = e

b _(2)7 o (1 for0<x<L [9.4b
(b) wn—(z) sxn(T) or0<x <L [94b]

), = - vy d.x—E[Lx sin’ (E)dx
n - 0 n i _L 0 L

_ [ 2nmx 2nmx\ 1F
xsin cos
L L

4{nm/L) 8(nm/L)?

2 LZ]_ E_(.

This agrees with the classical result.

L
2 .2 nrx
(X )n—[ 'l,tfl\b’,-;dx- £=01 sin (—L)Cb.

. 2nmx =L
_2 x_3 _ ( x* 1 ) . (2;11:.1:) o8 L
= L| 6 " \aGm/n) s/ )t TL 8 /LY2

I,
L1 6 S8(mur/L)?
L? 1

x=0

3 4(nm/L)?

2
W2 = (L_2 _ ;)”
" 3 dnm/L)?
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This agrees with the classical result in the limit of large quantum numbers:

L
; 2,172
"lll'l'l (X >" = —3”2

Solutions to applications

The rate of tunnelling is proportional to the transmission probability, so a ratic of tunnelling rates is
equal to the corresponding ratio of transmission probabilities (given in eqn 9.20a). The desired factor is
T /T2, where the subscripts denote the tunnelling distances in nanometers:

«Lz —ilay2
- _e -
1 + __—(e )

T 16:(1 — ¢)

= P AETTITV I

I Gt S
T6e(1 —2)

(exL-_: _ e—xl’.g )2

e ————————— %> ]
iIf T6c(1 — &) » 1,

wly _ a—xlay2
then 1\ n (€2 —e™) ¢ e la—Li) = 2(/am0-10nm _{] 2 % 106
Ta (ch] - e—xLl)Z - : ¥

This is, the tunnelling rate increases about a million-fold. Note: if the first approximation does not hold,
we need more information, namely ¢ = E/V. If the first approximation is valid, then the second is also
likely to be valid, namely that the negative exponential is negligible compared to the positive one.

Assuming that one can identify the CO peak in the infrared spectrum of the CO-myoglobin complex,
taking infrared spectra of each of the isotopic variants of CO-myoglobin complexes can show which
atomn binds to the haem group and determine the C=0 force constant. Compare isotopic variants to
12C16() as the standard; when an isotope changes but the vibrational frequency does not, then the atom
whose isotope was varied is the atom that binds to the haem. See table below, which includes predictions
of the wavenumber of all isotopic variants compared to that of #('2C'60). (As usual, the better the
experimental results agree with the whole set of predictions, the more confidence one would have with
the conclusion.)

Wavenumber for If O binds If C binds

isotopic variant

#('2C'80) = 3('2C150)f (16/18)1/25(12C'60)
1-}(13cl60) — (12/]3)|/2"}(l2cl60) F(IZCmO)T
(12CB0) = 12713y /25(12C'60) (16/18)1/25(12C1%0)

T That is, no change compared to the standard.

The wavenumber is related to the force constant as follows:

1/2
w=2rch = (—) s0 k= m(2mxch)?,

m

k = m(1.66 x 10727kg u~")[(27)(2.998 x 10'"0 cm s~ )u('2C100))%,

and k/(kgs™') = (5.89 x 10-%)(m/u)[5('2C'%Q)/cm~' 2.
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Here m is the mass of the atom that is not bound, i.e. 12 v if O is bound and 16 u if C is bound. (Of course,
one can compute k from any of the isotopic variants, and take & to be a mean derived from all the relevant
data.)

P9.36 See solution to P2.38, parts (c) and (d). First, let f = n /N; therefore, f is the fraction of the totally
stretched chain represented by the end-to-end distance.

2 "\N—n 2 \NA-H) " 2 \1-f
kT
= —-2—[-[ln(1 +f)—In(l =31

When n < N, then f < 1, and the natural log can be expanded: In(l + f) # f and In{1 — f) = —f.
Therefore

kT AT nkT kT
Fra—— —(— _e— = —— = ——1X.
TR I NI net

In the last step, we note that the distance x between ends is equal to n/, so n = x/I. This is a Hooke’s
law force with force constant kT/NI2.

The root mean square displacement is {x2)!/2. In part (b) of P9.15, (x?) for a harmonic oscillator was
evaluated and was found to be

1 ﬁz 1/2
w=(7+3) * (i)
) 2 rkforce

Therefore, putting in the appropriate values for the ground state (v = 0} of this model

Wy L (P N w1\
EI N\ N W) T2 \mkd

12 174
and (x2)1/2= (%’) x (-%)
m

Po.38 (a) In the box, the Schridinger equation is

N N L L
- — - - =FE
2m (3):2 + ay? t 822) v v

Assume that the solution is a product of three functions of a single variable; that is, let
¥ x, y,2) = X0 Y (Z(2)-
Substituting into the Schridinger equation gives

£ (Yzazx +X232Y +XY822) = EXYZ
2m ox? ay? a2 )~
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(b)

(c)

(d)
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Divide both sides by XYZ:

K /182X 19%Y 13%z
—— S+ +=zs—=|=E
2m \X 3x2 Y &?  Z 8

For the purposes of illustration, isolate the terms that depend on x on the left side of the equation:

R (13%X K182 19%Y
o lyaz ) =Et oot y57
2m \ X 9x 2m \Z 8z Y ay
Note that the left side depends only on one variable, x, while the right side depends on two different
and independent variables, y and z. The only way that the two sides can be equal to each other for

all x, y, and z is if they are both equal to a constant. Call that constant E,, and we have, from the left
side of the equation:

R /1 a%x £ K %X Ex
_ —_—— | = sQ —— = EyA.
2m \ X ax? * 2m 3x2 !

Note that this is just the Schrodinger equation for a particle in a one-dimensional box. Note also that
we could just as easily have isolated y terms or z terms, leading to similar equations.

R 3%y r* 8%z
——5=EY and —_——5 =EZ
2m 8y 2m 3z

The assumption that the wavefunction can be written as a product of single-variable functions is a
valid one, for we can find ordinary differential equations for the assumed factors. That is what it
means for a partial differential equation to be separable.

Since X, Y, and Z are particle-in-a-box wavefunctions of independent variables x,y, and z respect-
ively, each of them has its own quantum number. The three-dimensional wavefunction is a product
of the three, and therefore depends on all three quantum numbers:

W ) = X(0)Y()Z(2) 2 172 L M TTX . ( 2 )lﬂ . MWy 2 172 - n.mz
Xy Vs = X =1 — sin - sip =2 <[ = si

Each constant of separation (E,, Ey, and E;) depends on its own quantum number. The three
constants of separation add up to the total energy, which therefore depends on all three quantum
numbers:

EomrE b= (T
TN T g le L% Lg

Foracubicbox, L) =L;=Li=1L,s0
2 (n_% + er2. + nf)
- 8mL2

The energy levels are shown in Figure 9.4.

Compare this energy-level diagram to Figure 9.2 of the textbook. The energy levels here are
much more closely spaced. In a one-dimensional box, the 15th energy level is not reached until
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30 —
2,34
1,1,5; 3,33
1.3,4
25—
2,24
233
1,2,4
20 —
1,3,3
1,1,4
223
15 |-
1,2,3
2,22
1,1,3
10
1,2,2
1,1,2
5 e
1,1,1
0 Figure 9.4
E . . . . .
————— = 225, and the previous level is 29 units below that. In the three-dimensional box, the
h2/8mL?

first 15 energy levels fit within the range of 29 units. The energy levels in a one-dimensional box
are sparse compared Lo those in a three-dimensional box.



Atomic structure and
atomic spectra

D10.2

D10.4

D10.6

D10.8

Answers to discussion questions

(1) The principal quantum number, r, determines the energy of a hydrogenic atomic orbital through
eqgn 10.11.

(2) The azimuthal quantum number, /, determines the magnitude of the angular momentum of
a hydrogenic atomic orbital through the formula {/(/ + 1)}'/*5.

(3) The magnetic quantum number, »y, determines the z-component of the angular momentum of
a hydrogenic orbital through the formula m; k.

(4) The spin quantum number, s, determines the magnitude of the spin angular momentum through the
formula {s(s + 1))'/2h. For hydrogenic atomic orbitals, s can only be 1/2.

(5) The spin quantum number, m;, determines the z-component of the spin angular momentum through
the formula mi:h. For hydrogenic atomic orbitals, m; can only be £1/2.

(a) A boundary surface for a hydrogenic orbital is drawn so as to contain most (say 90%) of the
probability density of an electron in that orbital. Its shape varies from orbital to orbital because the
electron density distribution is different for different orbitals.

(b) The radial distribution function gives the probability that the electron will be found anywhere within
a shell of radius r around the nucleus. It gives a better picture of where the electron is likely to be
found with respect to the nucleus than the probability density which is the square of the wavefunction.

The first ionization energies increase markedly from Li to Be, decrease slightly from Be to B, again
increase markedly from B to N, again decrease slightly from N to O, and finally increase markedly from
N to Ne. The general trend is an overall increase of {; with atomic number across the period. That is to
be expected since the principal quantum number (electron shell) of the outer electron remains the same,
while its attraction to the nucleus increases. The slight decrease from Be to B is a reflection of the outer
electron being in a higher energy subshell (larger [ value) in B than in Be. The slight decrease from N
to O is due to the half-filled subshell effect; half-filled sub-shells have increased stability. O has one
electron outside of the half-filled p subshell and that electron must pair with another resulting in strong
electron—electron repulsions between them.

An electron has a magnetic moment and magnetic field due to its orbital angular momentumn. It also
has a magnetic moment and magnetic field due to its spin angular momentum. There is an interaction
energy between magnetic moments and magnetic fields. That between the spin magnetic moment and the
magnetic field generated by the orbital motion is called spin—orbit coupling. The energy of interaction is
proportional to the scalar product of the two vectors representing the spin and orbital angular momenta
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and hence depends upon the orientation of the two vectors. See Figure 10.27. The total angular momentum
of an electron in an atom is the vector sum of the orbital and spin angular momenta as illustrated in
Figure 10.28 and expressed in eqn 10.46. The spin—orbit coupling results in a splitting of the energy
levels associated with atomic terms as shown in Figures 10.29 and 10.30. This splitting shows up in
atomic spectra as a fine structure as illustrated in Figure 10.30.

Solutions to exercises

E10.1(b) The energy of the photon that struck the Xe atom goes into liberating the bound electron and giving it
any kinetic energy it now possesses

Ephoton = I + Ekinctic [ = ionization ener
p

The energy of a photon is related to its frequency and wavelength

he
Epholon =hv = T

and the kinetic energy of an electron is related to its mass and speed, s

1 2
Einetic = FMes

he 1 he 1
SOT =I+§mes2 =1 = i Emes2

_ (6.626 x 10-3475) x (2998 x 10°ms™!) 1 N
= 584 x 10-%m - 5(9.11 x 10 kg)

X (1.79x 10"’ms.-‘)2

=194 % 10718 y[=12.1eV

E10.2(b) The radial wavefunction is [Table 10.1]
1 2 — /6 22r . .
Rig=4Al06-2p+ 6'0 e ?/° where p = —, and A is a collection of constants.
ag

[Note: p defined here is 3 x p as defined in Table 10.1]

Differentiating with respect to p yields

dR 1 1 2
—22=0=4 (6—2.0 + 6'02) x (_6) e P8 4 (—2+ ap)Ae‘p/E'

dp
2
5
—ae P _P_ L2, 3
¢ (54+9p

This is a quadratic equation

1
O=ap*+bp+c wherea:—g, b=§, and ¢ = —3.
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The solution is

_ 2 _ 4gcy1/2
o= bi(bza ) 1537

3(7'/2
s0Fr = (;:l: (2 ))(‘IZ—D.

Numerically, this works out to p = 7.65 and 2.35, so r = | 11.5a0/Z | and | 3.53ap/Z ] Substituting
Z=landag=5292x 10~'' m,r =607 pm | and | 187 pm |

The other maximum in the wavefunction is at . It is a physical maximum, but not a calculus
maximum: the first derivative of the wavefunction does not vanish there, so it cannot be found by
differentiation.

The complete radial wavefunction, R4 is not given in Table 10.]; however in the statement of the
exercise we are told that it is proportional to

(20— 10p + pz)p where p = % [Note: p defined here is n x p as defined in Table 10.1]
The radial nodes occur where the radial wavefunction vanishes, namely where

(20 — 10p + p*)p = 0.
The zeros of this function occur at

p =0, r=0
and when

(20 — 10p + p%) =0, withroots p = 2764, and p = 7.236

pag _ pap _ 2.764ag 7.236ap
then r = "‘2‘—2— = T = T = l382a0 and T =|3.618ap

orr=[731x10""'m] and [ 1917 x 1010 m]|

Normalization requires

oo T 2x
[IWIzdr= 1 =f0 fo [0 N2 — rfag)e~"0 d¢ sin6 do r dr

1 NZ o —rfag 2,2 T 2
= A € (2 —rfag)rodr A sind d@ A d¢

Integrating over angles yields
2 g 22
1 = 4xN* f e (2 — riag) et dr
0

w0}
= 47 N*? [ e~ (4 — drjag + 2 jad)? dr = AT N2 (8ap)
i}
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In the last step, we used

[o.@] o0 oQ
f e~ 2 dr = 243, [ e~"%3dr = 6k*, and f e ket dr = 2445,
0 0 1]

1
So|lN =

3
4 27mo

E10.5(b) The average kinetic energy is

(B = f By dr

4 3 ag

112
1{ 23 z
where § = N(2 — p)e™#/% with N = - (ﬁ) and p = il here
2may

3.2
a sinfdpdé d
Ec=-2V2  dr=rsin0drdode = 207 ng ¢

In spherical polar coordinates, three of the derivatives in V2 are derivatives with respect to angles, so
those parts of V24 vanish. Thus

vy = BV 200 By (00N 22 (YN (ZNE azmm)
T oarr ordr T 3p2 \ 2 pag \dp } ar 2

ap
)
Eg =NQ2—p) x (—%) eP2 _ NePI? = N(zlp—2) e=P/2
aly - - -
Gr =N (b =2) x (4) e Ve = (3 o) e

vy = (Z) wetima/p 4 5/2.- /0
0

and

o px 2w 2 2
to= [ [ a0 (5) <(35)
0 0 Jo ap 2m

3 ; 2
dp sin 06 p d
x Ne=#/2(=4/p +5/2 — p/H =2 ¢sz3 per

The integrals over angles give a factor of 47, so

-2 oo
By = axN? (90 o (222 _ EPRE DRI ) e
(EK>—4nN(Z)x( 2,")]0 2 p)x( 44 Zp— 20" pefdp

oo
The integral in this last expression works out to —2, using f e Pp"dp =n!forn=1,2,and 3. So
0

) = 4 z3 5 (ao) 5 n? K2zZ?
= I — —_— —_— =
K 327rag Z m

2
8may
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The average potential energy is

y/ 2 22 2
(V) =fl.lf*V1,lrdr where V = — =2 — _ €
dregr 4 egagp
0 pr plm ) 32
z Bdpdéd
and (V) =f f [ N2 - p)e—p/z (_ € )N(Z— p)e—pﬂaop sinfdp )
0 Jo Jo 4y egagp 73

The integrals over angles give a factor of 47, so
zz 2 a3 o0
(V) = 4 N® ¢ x| =2 f (2 — pypePdp
4 egag Z3 1 Jy

[s.0)
The integral in this last expression works out to 2, using f e Pp"dp=nlforn=1,2,3, and 4. So
0

V) = dn z3 5 Z2e? y a X (2) = Z2e?
B 32r ag 4w egagp z3 | 16wegap

The radial distribution function is defined as

P= 41'!)‘21,92 50 Pi; = 4Irr2(Y0'oR3_0)2,

1 | Z
Pis = dmr? (E) x (ﬁ) X (E(;) x (6 —6p + p)e

2Zr  2Zr
where p = % = 320 here.

But we want to find the most likely radius, so it would help to simplify the function by expressing it in
terms either of r or p, but not both. To find the most likely radius, we could set the derivative of P,
equal to zero; therefore, we can collect ail multiplicative constants together (including the factors of
ag/Z needed to turn the initial 72 into p?) since they will eventually be divided into zero

Py = C2p%(6 — 60 + p*) e™”

Note that not ail the extrema of P are maxima; some are minima. But all the extrema of (P3;)!/ 2
correspond to maxima of Ps;. So let us find the extrema of (P3;)'/?

d(P3;)'/2 d
L.)_. =0=—Cp(6—6p+ pz)e_’”/2
dp de

= Clp6 — 6p+ p2) x (=}) + (6 = 120 +3p7)e ™"
0=C(6_15‘°+6p2_%93)e_p’2 s0 12 -30p+ 12p% = p° =0

Numerical solution of this cubic equation yields

p =049, 279, and 8.72

corresponding to

r=[0.74a0/Z, 4.19a0/Z, and 13.08a0/Z
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COMMENT. If numerical methods are to be used to locate the roots of the equation which locates the
extrema, then graphical/numerical methods might as well be used to locate the maxima directly. That is, the
student may simply have a spreadsheet compute P and examine ar manipulate the spreadsheet to locate
the maxima.

The most probable radius occurs when the radial wavefunction is a maximum. At this point the derivative
of the function wrt either r or p equals zero.

dR di(4— c_PfE 3
( 31) =0= ((4 — p) pe=/7) [Tab1e10.1]=(4_4p+P_)e_,,,2
9 s de max 2

The function is a maximum when the polynomial equals zero. The quadratic equation gives the roots
p=4+2/2=689and p =4 —2+/2 = 1.17. Since p = (2Z/nag)r and n = 3, these correspond to

R31 {p1) Ry (1.17)
r=103 x ag/Z and r = 1.76 x ag/Z. However, =
of / Ry (02| |Roi (10.3)

that the function is a maximum at p = 1.17 which corresponds to| r = 1.76ap/Z.

Orbital angular momentum is

= 4.90. So, we conclude

(LA = haa + DY

There are / angular nodes and n — ! — | radial nodes

a n=4.1=2, so (1’:2)”2 =617r =245 x107MJs| ]2 angular nodes | 1 [radial node

(a}

(b) n=21=1,s0 ()" =2"2h = | 149 x 10*Js| [ ] angular nodes [0] radial nodes
@  n=31=1 50N =225 =149 x 10-3Js| [ 1]angular node [1] radial node

For! =0, j=[1£1/2 s0

@ =1 soj=[120r37]
b  1=5, s0j=|%2or1172]

Use the Clebsch—Gordan series in the form
J=ji+j hi+i-L..lh -l

Then, withj; = 5and j» =3

J=|8,7,6,543,2

The degeneracy g of a hydrogenic atom with principal quantum number n is g = n?. The energy E of
hydrogenic atoms is

heZ'Ry _ heZ’Ry

]
ns g




E10.12(b}

E10.13(b)
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so the degeneracy is

heZ?Ry
E

g:

@) _ ke (2)% Ry

—4hcRy - II'
]
®) g @ Rw

— pheRy

he(5) Ry
(c) == = -25
5 —hcRy -

The letter F indicates that the total orbital angular momentum quantum number L is 3; the superscript 3
is the multiplicity of the term, 2§ + 1, related to the spin quantum number § = 1; and the subscript 4
indicates the total angular momenum quantum number J.

The radial distribution function varies as

_2
"a 2r/ao

dP 2r? 4
e X (21' - L) e =0 at r=ap and Py = —e?
d ag

P falls to a fraction f of its maximum given by

(41'2/03)6_2"/”‘" ,.2

2. —2rfap
= = —£7e
4 (4/ap)e? a;

and hence we must solve for r in

1/2 .
-L — ’—e_’/"“
e ap
(a) f =050
;
0.260 = —e~"/" solves to r = 2.08ag = and to r = 0.380ay = | 20.1
(b F=075

_ ’_ —riay A _ _ .
0319 = _~ 9 solves o r = 1.63ap = and to r = 0.555ag = [29.4pm

In each case the equation is solved numerically (or graphically} with readily available personal computer
software. The solutions above are easily checked by substitution into the equation for f. The radial
distribution function is readily plotted and is shown in Figure 10.1.
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Q.15

0.10 |

P/(4TN?)

005 |

000 L

rfa Figure 10.1

E10.14(b) (a) 54 — 2sis an allowed (ransition, for Al = —2 (Al must equal £1).

(b) 5p — 3sis , since Al = —1.

€} 5Sp—= 3 is allowed, for Al = 42 (Al must equal £1).
(d) 6/ :! = 5; maximum cccupancy =

E10.15(b) V2t : 1522s22p%3523p%34° = [Ar]34°

The only unpaired electrons are those in the 34 subshell. There are three.

S= and %—l:.

ForS =3, Ms=|%4 and +3

for§ =4, Ms= %

—

E10.16(b) (a) Possible values of S for four electrons in different orbitals are| 2, 1, and 0 |; the multiplicity is 25+ 1,

so multiplicities are [ 5, 3, and 1 | respectively.
{b) Possible values of S for five elecirons in different orbitals are | 5/2, 3/2 and 1/2 §; the multiplicity is
25 + 1, so multiplicities are respectively.

E10.17(b) The coupling of a p electron (! = 1) and a d electron (/ = 2) givesrise to L = 3 (F}, 2(D), and | (P}
terms. Possible values of § include 0 and 1. Possible values of J (using Russell-Saunders coupling) are
3,2,and 1 (§ =0)and 4, 3,2, 1, and 0 (§ = 1). The term symbols are

['F3:%Fy. F3, 3Fy: ' D2 Dy, "Dz, D3 1Py, 3P, 3Py, P |

Hund’s rules state that the lowest energy level has maximum mulliplicity. Consideration of spin-orbit
coupling says the lowest energy level has the lowest value of J(J + 1) — L(L + 1) — §(5 4+ 1). So the

lowest energy level is .

E10.18(b} (a) 'DhasS = land L =2,s0J=|3,2,and | |are present. J = 3 hasstates, with My =0, £1,£2,

or £3; J =2 has|5]states, with M, = 0, %1, 0r £2; J = | has[3] states, with M; =0, or £1.
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(b} *D has § = 3/2and L =2,50J = | T2, 512, 3/2, and 1/2 | are present. J = 7/2 has possible
states, with My = £7/2,+5/2,£3/2 or £1/2;, J = 5/2 has IEI possible states, with M; =
+5/2,£3/20r £1/2; J =3/2 haspossible states, with My = £3/2or£1/2; J = 1/2 has
possible states, with M; = £1/2.

(c) 2G has S=1/2 and L =4, so J=9/2 and 7/2 are present. J =9/2 has possible states, with

My= +9/2,4£7/2,£5/2,£3/2, or £1/2; J=7/2 has possible states, with M; = £ 7/2,
+5/2,+3/2, or £1/2.

E10.19(b) Closed shells and subshells do not contribute to either L or S and thus are ignored in what follows.
(a) Sc[Ar]3d'4s* S = L,L =2;J = 3,3, so the terms are 2Ds; and D3/

(b) Br{Ar])34'%4s%4p>. We treat the missing electron in the 4p subshell as equivalent to a single “electron”

with!=1, s= 4 HenceL=1, S= 1, andJ = 2, L, sothe terms are | 2P3/7 and 2P 2 |
i 3 2'2 / /

Solutions to problems
Solutions to numerical problems

P10.2 All lines in the hydrogen spectrum fit the Rydberg formula

2 2

i 1 1 1
—=Ryl=-—= [10.1, withﬁ:—] Ry = 109677 cm™!
A ny  nj A

Find n; from the value of JAgax, Wwhich arises from the transition n; 4+ 1—m
1 1 1 _ 2n + 1
AmaxRH - b+ 1D 2+ 1)2

ndny + 1)

= (656.46 x 107 m) x (109677 x 10’ m~") = 7.20
2n + 1

AmanH =

and hence ny = 2, as determined by trial and error substitution. Therefore, the transitions are given by

2

1 1o
b=—=(09677em ) x{~-—- =), m=3456
A 4 ng

The next line has no = 7, and occurs at

o . 1o
=1 = (109677cm )X(Z_E)_

The energy required to ionize the atom is obtained by letting 13 — co. Then
u=g=(109677cm )x(4——0)=27 419cm™", or |3.40eV

(The answer, 3.40eV, is the ionization energy of an H atom that is already in an excited state, with
n=2)
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COMMENT. The series with n; = 2 is the Balmer series.

The lowest possible value of # in 1s%nd! is 3; thus the series of 2D terms correspond to 15234, 15244,
etc. Figure 10.2 is a description consistent with the data in the problem statement.

AN

P10.4

\ ' ——
R'f9 1E4d}2D
15234
E| E| &
[} (=]
I 3| 83
152p7P
£
=
(=]
B
1592528 Figure 10.2

If we assume that the energies of the d orbitals are hydrogenic we may write

heR/
E(lsnd',’D) = —— [n=3,4,5,L]
n

Then for the 2D — 2P transitions

1 |E(Ls%2p!,%P )4 A
5 L _JEUs72p, ") R AE—hv= "€ _pes, 5= 2F
A he n? A

from which we can write

1 R
61036 x10em T 9 @
E(15%2p',2P 1 R '
Bz, P _ 2oL R
he A on 46029 x 10-7cm ' 16
! + R ()
41323 x 10-7cm 25

(b} — (a) solves to R = 109 886cm™!
Then (a) — (c) solves to R = 109910cm™! } Mean = 109920cm™"

(b) — {c) solves to R = 109963 cm™!

The binding energies are therefore
24 41 2 R -
E(15*3d°,°D) = 5= —12213cm
1
610.36 x 10~ 7cm
1
670.78 x 10~7 cm

E(15°2p,%P) = —12213cm™" = —28597cm™!

E(15°25',28) = — —28597cm™! = —43505cm™!
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Therefore, the ionization energy is
1(15725',28) = 43505em™!, or |5.39eV

The ground term is [Ar}ds' 2S;;2 and the first excited is [Ar}dp' 2P, The latter has two levels wilh
J=1+4+1=3andJ =1 -1 =1 which are split by spin—orbit coupling (Section 10.8). Therefore,

ascribe the transitions to 2P3/3 -2 Sy land 2P1/2 —2 S1/2 f(since both are allowed). For these values

of J, the splitting is equal to %A (Example 10.5). Hence, since

(766.70 x 1077 cm)~ ! — (770.11 x 10 7em) ™! =57.75cm™!

we can conclude that A = | 38.50 em™!

The Rydberg constant for positronium (Rpg) is given by

R R |
Rpy = l_mc =151 ER [10.16; also Problem 10.7; m: (positron) = ;]

Mg

=54869cm™! [R=109737cm ™'}

| Pl
J=—=(54869cm ') x (—— —,—), n=3,4,...
A 4 n-

=[7621em™" | | 10288 em~! | [11522em' ...

The binding energy of Ps is

E = —heRpg, corresponding to (—)54 869 cm™!
The ionization energy is therefore 54 869 cm™!, or .

If we assume that the innermost electron is a hydrogen-like ls orbital we may write

52.92
» = “E“ [Examplel0.3] = —1-2-6'33 = [0.420pm

Solutions to theoretical problems

In each case we need to show that

f YiYadr =0
all space

o0 prx plm ”
(a) f f [ Yrisragr drsin@déde =0
0 0 0

== I
¥s Rl.OYO.()] Yoo = (

12
— [Table 9.3]
Yros = Ra0Yo0 4 )
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Since Yy is a constant, the integral over the radial functions determines the orthogonality of the
functions.

00
f R .0R2|0r2 dr
0

R]-O & e—p/2 = B_Zr/"ﬁ |:p = %:l
0

[+
2) e—Zr/?ug [P — &]
ap ag

oo o0 Zr p
f Rio. Raor* dr o f e~ Zrfa (2 - —) e~ /20,2 gy
0 1] ag

Rogox (2—p/2)e™P* = (2

oo . ) oo 7 i
=f 26— (B/DZrja0 2 4. _f Z o Bi2Zrfe 3 4,
0 0

ag
2x2! z 3!

L2 (), ¥
3z ag 3z
2 ag 2ag

Hence, the functions are orthogonal.

(b) We use the p, and p, orbitals in the form given in Section 10.2(f}, eqn 10.24

Px XX, Py ¥

Thus

+oo p+00 pH+00
f Pr py dx dy dz o [ f [ xy dx dy dz
all space —o0 J—00 -0
This is an integral of an odd function of x and y over the entire range of variable from —oo

to 400, therefore, the . More explicitly we may perform the integration using

the orbitals in the form (Section 10.2(f), eqn 10.24)
pe=f(rysinfcos¢ p,=f(r)sinfsing

2r

oG m
[ Px Py +2dr sin@ do d¢ = f f(irtdr f sin® @ dé f cos ¢ sin ¢ dg
all space ¢ 0 0

The first factor is nonzero since the radial functions are normalized. The second factor is 7 /2. The third
factor is zero. Therefore, the product of the integrals is and the functions are orthogonal.

P10.14 We use the p7, and py orbitals in the form (Section 10.2(f))

pe=rf{r)sinfcos¢p  p, =rf(r)sinfdsing

1 . . 1 . .
and use cos ¢ = E(e“" +e %)yand sing = f(e"f’ — ™%y then
i

| , , I . .
py=5r f(r)singEe® +e ) p.= AL sin@(e?® — ¢7¥)
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~ hd
L=+ % [Problem 9.28 and Section 9.6 and eqn 9.46)
i
= h‘ . i¢ h‘ . _i¢ .
Lpe = irf(r) sinfe'¥ — irf(r) sin@e™'% = ifip, # constant X p

- k . i N , —ig )
L.py = Erf(r) sinfe® + zrf(r) singe™® = —ihp, 3 constant x py

Therefore, neither py nor p, are eigenfunctions of L. However,| px + ipy and py — ipy |are eigenfunctions

pe+ipy =rf(r)sinfe®  p.—ipy =rf(r)singe™?

since both &% and e~ are eigenfunctions of I, with eigenvalues +# and —A.

I 172
Yris = (—3) e~"/% [10.18]
T

g

The probability of the electron being within a sphere of radius r' is

Y opm p2r
f f f vir2drsing dode
o 0 0

We set this equal to 0.90 and solve for r’. The integral over 8 and ¢ gives a factor of 47; thus

4 (7
090 = — f rre~ 2/ gr
ag J0

rf
f rle~2/%0 dr is integrated by parts to yield
0

r N a aoe—Zr/ao)
o 2 2

N2 2 3 3
__ao(ryle ¥/ apr e2rtao _ 20 ,-2rtag %0
2 2 4 4

-
agree

2

2.-2rlap

" aore_zr fag
an | = 22—
0 2

[

rl
0}

Multiplying by 4/a3 and factoring e =27/

. 2 F , . 2 r ,
090 =| -2 (—) -2 (—) —1|e ¥/t or 2 (—) +2 (—) +1=0.10e% 1
ap ag ag g

It is easiest to solve this numerically. It is seen that satisfies the above equation.

Mathematical software has powerful features for handling this type of problem. Plots are very con-
venient to both make and use. Solve blocks can be used as functions. Both features are demonstrated
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below using Mathcad.

]
mw@=4j£{“a
0

Let z= rig, The probability, Prob(z), thal a 1s electron is within a sphere of radius z is:

. T
Variables needed for plot: N := 800 i=0.N Ty = 3 7= N
1 T T
0B
06 KM alue I 2.6525
provfz,) Y-Value IU 90018 Copyp¥Y |
04 ¥ Track Data Points Close |
0af -
] 1 ! ]

q 1 a 3
EN

The trace feature of Mathcad is used to find that with z= 266 (r=
probability of finding the electron in the sphere,

The plot indicates that the probability of finding the electron in a sphere of radius z is sigmoidal.

2.66 ap) there is 2 90.0%

Figure 10.3(a)

The following Mathcad document develops a function for calculating the radius for any desired
probability. The probability is presented to the function as an argument

the function z(Probability).
Given
Probability = 4‘Jﬂ e e

0
ZProbabilily) = Find(z)

o 9) = 2661

z:=2 Estimate of z needed for computation within following Given/Find solve block for

Figure 10.3(b)

2

. € 1

The attractive Coulomb force = —— - =
neEg

angular momentum)*
The repulsive centrifugal force = (ang >

(uf)

Mer>

The two forces balance when

Ze? 1 nih? dmwnhleg

= ——, implying that r =

— X —
dreg - rt mer®’ Ze2m,

7 [postulated]
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The total energy is

I 2K Ze? [postulated]
X — = —— — —— [postulate
r 2mer*  A4mepr P

niR? Zem, 2 Ze? Zetm, Z2ef e |
=l —|x|—] - X = X —
21 drnihiley 47 eq drnhleg 32n2eln? T n?

Pi10.20 Refer to Problems 10.8 and 10.18 and their solutions.

(angular momentum)?  Ze?

E = E] V= _
K+ 21 4reg

Mmehtp
HH = == 2 m,  [m, = mass of proton}
me + mp
Meipos Mg
pHps = ———— = —  [mpes = mass of proton =, ]
me + Mpos 2

4 hleq

= =1)=
apg=r(n ) Zm

[10.13 and Problem 10.18]

e

To obtain ap; the radius of the first Bohr orbit of positroniurn, we replace m, with wps = m,/2; hence,

.
mheep
-

e2m,

The energy of the first Bohr orbit of positronium is

J
E)ps = —hcRps = —;Rw [Problem 10.8]

Thus, | Eyps = -E1 1

Question. What modifications are required in these relations when the finite mass of the hydrogen
nucleus is recognized?

P10.22 (a) The speed distribution in the molecular beam is related to the speed distribution within the chamber
by a factor of vcos8 as shown in Figure 10.4. Since an integration over all possible 8 must be

performed, the cos & factor may be absorbed into the constant of proportionality.

fbcﬂl'l'l (V) = CVfchambcr(V) Where C iS to be determined

vecost
Chamber

» Molecular beam

Figure 10.4
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By normalization over the possible beam speeds (0 < vpeam < 00)

Soeam = Cv (V‘ze_(’"“zl?.kT))
— Cv3e—{nn'2/2k]r')

oo

ee 21 |
fbcam dv=1= C[ 1'38_(""' /24T) dy = C { —-h—-—]

=0 y=0 2m[2kTH?

C = 2(m/24T)*

oo )
W= [ ¥ foearn (v) dv = C[ pie=n /BT g,
=0

[ ] (mJ2kT)?
=C)—_ VY —p "
(m/2kT)3 (m/2kT)3
_MT

"

m m [ 4kT
(Ex) = 5(\’2) =3 ("‘_) =

4Eq /) dz
dB  4ExAx _ 4(2kT)Ax
dz _ 2ppl?  2upl?
4kT Ax
or = e
4(1.3807 x 1072 JK™") x (1000K) x (1.00 x 107 m)
- (927402 x 10T~ x (50 x 10-2m)?

Solutions to applications

A stellar surface temperature of 30004000 K (a “red star”) doesn’t have the energetic particles and
photons that are required for either the collisional or radiation excitation of a neutral hydrogen atom.
Atomic hydrogen affects neither the absorption nor the emission lines of red stars in the absence of
excitation. “Blue stars™ have surface temperature of 15000-20 000 K. Both the kinetic energy and the
blackbody emissions display energies great enough to completely ionize hydrogen. Lacking an electron,
the remaining proton cannol affect absorption and emission lines either.

In conlrast, a star with a surface lemperature of 8000-10000 K has a temperature low encugh to avoid
complete hydrogen ionization but high enough for blackbody radiation to cause electrenic transitions of
atomic hydrogen. Hydrogen spectral lines are intense for these stars.

Simple kinetic energy and radiation calculations confirm these assertions. For example, a plot of black-
body radiation against the radio photon energy and the ionization energy, /, is shown below. It is clearly



200 INSTRUCTOR'S SOLUTIONS MANUAL

seen that at 25 000 K a large fraction of the radiation is able to ionize the hydrogen (hv/I). It is likely that
at such high surface temperatures all hydrogen is ionized and, consequently, unable to affect spectra.

Alternatively, consider the equilibrium between hydrogen atoms and their component charged
particles:

H=H"+e"

The equilibrium constant is:

PP —AG® —-AH® —AS®
K=m=cxp( BT )=exp( RT X exXp R .

Clearly AS® is positive for ionization, which makes two particles out of one, and AH®, which is close
to the ionization energy, is also positive. At a sufficiently high temperature, ions will outnumber neutral
molecules. Using concepts developed in Chapters 16 and 17, one can compute the equilibrium constant;
it turns out to be 60. Hence, there are relatively few undissociated H atoms in the equilibriom mixture
that is consistent with the weak spectrum of neutral hydrogen observed.

The details of the calculation of the equilibrium constant based on the methods of Chapter 17
follows. Consider the equilibrium between hydrogen atoms and their component charged
particles:

H=H"4e".

The equilibrium constant is:

K= 2P =exp(—AGe).

pup® RT

Jump ahead o Section 17.7(b) to use the statistical thermodynamic analysis of a dissociation
equilibrium:

_ 434

—AEo/RT
== .
C]HNA

[+

12
where ¢% =

RT ”?
=53 and A =( ' )
gP°A 2mwkTh

and where g is the degeneracy of the species. Note that g4 =2, g_ =2, and gy =4. Consequently,
these factors cancel in the expression for K.

3/2 372
So K = fT (ZJrfT) / (m_m+) / o= B Eo/RT
PPNy h* my

Note that the Boltzmann, Avogadro, and perfect gas constants are related (R = Nak), and collect powers
of kT; note also that the product of masses is the reduced mass, which is approximately equal to the
mass of the electron; note finally that the molar energy A,Ep divided by R is the same as the atomic
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jonization energy (2.179 x 10~!8 J from Chapter 10.2(b)} divided by £:
K= (kT2 (2 m,)3 2 o—ENT
= -—p"}hs ,

o _ [(1381 x 1075 1K) @25 000 K)]** [2 (.11 x 1031 Kg)]"?

(105 Pa) (6.626 x 10-3Js)’

X ex —2.179 x 10787
P (1381 x 1023 JK~1) (25000K) /

K =60.

Thus, the equilibrium favors the ionized species, even though the ionization energy is greater than kT

heR
P10.26 Ey = — 1 where Ry = 109677 cm="! [10.11 with 10.15]
3

Forn = 100
AE = E,y1 — En = —hcRy (L - L) =1.97 x 10~ShcR
1012 1002
AE

=== 197x 107°R =[0.216cm~" |
1 1+ 1\ a0
(Phng = n* {1 +o+ (1 - )] 3 [1019]

2
{(rhoo =~ nzﬂ = 100%ap = 10%a =

heRy
I=Eyx —E,=-E, = 3
H

I
hoo = 10™heRy s0 | == = 10.9677 cm™!
c

AT

i (138 x 1072 TK1) x (298 K)(

I”Z(: )
=
hC

=207cm™!
663 X 10915 x 300 X [Bms-1) 20/ °m

so the thermal energy is readily available to ionize the state n = 100. Let vpip be the minimum speed
required for collisional ionization. Then

2
Tmuvii,  fio

2 he he

2he (oo \1?
Vmin = -
my \ hc

g 2(6.63 x 1073735) x (3.00 x 108 ms™ 1) x (10.97ecm™Y)
(1.008 x 10-3 kg mol™") x (6.022 x 102 mol~")~! x ( o )

102¢m
[very slow for an H atom]
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The radius of a Bohr orbit is a, & nZag; hence the geometric cross-section wa2 =~ n'mad. Forn = 1

this is 8.8 x 1072! m?: for n = 100, itis [ 8.8 x 10~'> m? | Thus a neutral H atom in its ground state is
likely to pass right by the n = 100 Rydberg atom, leaving it undisturbed, since it is largely empty space.

The radial wavefunction for # = 100 will have 99 radial nodes and an extremely small amplitude above
r/ap = 20. For large values of n we expect the radial wavefunction [10.14] to be governed largely by
the product of p"~! and e ~#/ 2 and thus to approach a smoothly decreasing function of distance, as the
exponential will predominate over the power term.

Electronic configurations of neutral, fourth period transition atoms in the ground state are summarized in
the following table aloeng with observed, positive oxidation states. The most common, positive oxidation
states are indicated with bright boxing.

Group 3 4 5 6 7 g 9 10 11 12
Oxidation | Sc Ti \Y% Cr Mn Fe Co Ni Cu Zn
State
0 3dds? | 3d%4s” | 3d%4s? | 3d°4s | 3d%ds® | 3d%s? | 3d74s” | 3d%4s” | 3d™4s | 3d'%4s?
+1
+2 ® © © ® & ©
+3 © © © © © @
+4 © © ©
+5 @
+6 ©
+7 ®

Toward the middle of the first transition series (Cr, Mn, and Fe) elements exhibit the widest ranges of
oxidation states. This phenomenon is related to the availability of both electrons and orbitals favorable
for bonding. Elements to the left (Sc and Ti) of the series have few electrons and relatively low effective
nuclear charge leaves d orbitals at high energies that are relatively unsuitable for bonding. To the far
right (Cu and Zn) effective nuclear charge may be higher but there are few, if any, orbitals available
for bonding. Consequently, it is more difficult to produce a range of compounds that promote a wide
range of oxidation states for elements at either end of the series. At the middle and right of the series
the +2 oxidation state is very commonly observed because normal reactions can provide the requisite
ionization energies for the removal of 45 electrons, The readily available +2 and +3 oxidation states
of Mn, Fe, and the +1 and +2 oxidation states of Cu make these cations useful in electron transfer
processes occurring chains of specialized protein within biological cells. The special size and charge of
the Zn?* cation makes it useful for the function of some enzymes. The tendency of Fe?* and Cu™ to
bind oxygen proves very useful in hemoglobin and electron transport (respiratory} chain, respectively.
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D11.2

D11.4

D11.6

Answers to discussion questions

Consider the case of the carbon atom. Mentally we break the process of hybridization into two major
steps. The first is promotion, in which we imagine that one of the electrons in the 2s orbital of carbon
(2522p?) is promoted to the empty 2p orbital giving the configuration 2s2p>. In the second step we
mathematically mix the four orbitals by way of the specific linear combinations in eqn 11.3 corresponding
to the sp? hybrid orbitals. There is a principle of conservation of orbitals that enters here. If we mix four
unhybridized atomic orbitals we must end up four hybrid orbitals. In the construction of the sp® hybrids
we start with the 2s orbital and two of the 2p orbitals, and after mixing we end up with three sp® hybrid
orbitals. In the sp case we start with the 25 orbital and one of the 2p orbitals. The justification for all of
this is in a sense the First Law of thermodynamics. Energy is a state function and therefore its value is
determined only by the final state of the system, not by the path taken to achieve that state, and the path
can even be imaginary.

It can be proven that if an arbitrary wavefunction is used to calculate the energy of a system, the
value calculated is never less than the true energy. This is the variation principle. This principle allows
us an enormous amount of latitude in constructing wavefunctions. We can continue modifying the
wavefunctions in any arbitrary manner until we find a set that we feel provides an energy close to
the true minimum in energy. Thus we can construct wavefunctions containing many parameters and
then minimize the energy with respect to those parameters. These parameters may or may not have
some chemical or physical significance. Of course, we might strive to construct trial wavefunctions that
provide some chemical and physical insight and an interpretation that we can perhaps visualize, but that
is not essential. Examples of the mathematical steps invelved are illustrated in Sections 11.5(c) and (d),
Justification 11.3, and Section 11.6.

These are all terms originally associated with the Hiickel approximation used in the treatment of con-
jugated m-electron molecules, in which the s-electrons are considered independent of the o -glectrons.
r-electron binding energy is the sum of the energies of each m-electron in the molecule. The delocaliz-
ation energy is the difference in energy between the conjugated molecule with n double bonds and the
energy of n ethene molecules, each of which has one double bond. The 7 -bond formation energy is the
energy released when a w-bond is formed. It is obtained from the total m-electron binding energy by
subtracting the contribution from the Coulomb integrals, o.
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In ab initio methods an attempt is made to evaluate all integrals that appear in the secular determin-
ant. Approximations are still employed, but these are mainly associated with the construction of the
wavefunctions involved in the integrals. In semi-empirical methods, many of the integrals are expressed
in terms of spectroscopic data or physical properties. Semi-empirical methods exist at several levels. At
some levels, in order to simplify the calculations, many of the integrals are set equal to zero. Density
functional theory (DFT) is considered an ab inirie method, but it is different from the Hartree—Fock
(HF) or self-consistent field (SCF} approach in that DFT focuses on the electron density while HF/SCE
methods focus on the wavefunction. They are both iterative self consistent methods in that the calcu-
lations are repeated unti! the energy and wavefunctions (HF) or energy and electron density (DFT) are
unchanged to within some acceptable tolerance.

Solutions to exercises

Use Figure 11.23 for H;, 11.33 for N3, and 11.31 for O3.

(a) H; (3 electrons) : b=05

()  Np(l0electrons): | 10?202 1n%302 | b=3

(©) 0z(12 electrons) : | lo?20*23g2im%27* | b=2

CIF is iscelectronic with F2, CS with Na.

@  CIF(J4electrons): | lo%20"302 %2 | b=1

)  CS(l0electrons) : | lo%20™21x%30?| b =3

©  Oj(3electrons): |lo%20"3021x%2n*} b =15

Decide whether the electron added or removed increases or decreases the bond order. The simplest
procedure is to decide whether the electron occupies or is removed from a bonding or antibonding
orbital. We can draw up the following table, which denotes the orbital involved

N2 NO 03 Ca F» CN

(a) AB~ 2n* 2t 2r* 3o 4g* 3
Change in bond order —1/2 —1/2 —1/2 +1/2 -2 +1/2

{b) AB* 3o 27* 2r* 1w 2™ 3o
Change in bond order —1/2 +172 +1/2 —1/2 +1/2 —1/2

(a) Therefore, | C; and CN |are stabilized (have lower energy) by anion formation.

{(b) { NO, Oz and F; | are stabilized by cation formation; in each of these cases the bond order increases.

Figure 11.1 is based on Figure 11.31 of the text but with Cl orbitals lower than Br orbitals. BrCl is likely
to have a shorter bond length than BrC17; it has a bond order of 1, while BrCl™ has a bond order of 1/2.
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4p
p
45
3s
Figure 11.1
E11.5(b) Of (11 electrons) 1 1o?20* 302 1n*27*! b =572

0,(12electrons) :  1o220*23c%1n*27*? b =2
05 (13 electrons) : 16226*%3c2 1420 b =132
0%~ (l4electrons) : 10220230 In*27* b=

Each electron added to 05" is added to an antibonding orbital, thus increasing the length. So the sequence

O;’ , 02,05, Og_ has progressively longer bonds.

E11.6(b) fl,trzdr =N? [ (Wa +Agp)idr =1 = sz(wg + 225 + 22ayp)dr = |

= N2(1 4+ A% 4+ 2A5) U Yavpdr = s:|

| 12
Hence|N = | ——————
1+ 218+ A2

E11.7(b) We seek an orbital of the form a4 4 bB, where a and b are constants, which is orthogonal to the orbital
N(0.1454 4 0.844B). Orthogonality implies

f(aA + bBIN(0.1454 + 0.844B)dr =0

N /‘[0.14551442 + (0.1456 4+ 0.844a)AB + 0.844p8%)1dr = 0

The integrals of squares of orbitals are | and the integral { ABdr is the overlap integral §, so

0.1455 + 0.844

= (0. 844, 0.14 0.844)b =--—
0= (0.145 4+ 0.8448)a + ( 55 + Yo so a 0.145 1 08445




E11.8(b)

E11.9(b)

E11.10(b)

E11.11{b)
E11.12(p)

206 INSTRUCTCR'S SOLUTIONS MANUAL

This would make the orbitals orthogonal, but not necessarily normalized. If § = 0, the expression
simplifies to

0.844

Sanyl

0.145

and the new orbital would be normalized if a = 0.844% and b = —0.145N. That is

| N(0.8444 — 0.1458) |

The trial function ¥ = x2(L — 2x) does not obey the boundary conditions of a particle in a box, so it is
. In particular, the function does not vanish at x = L.

The variational principle says that the minimum energy is obtained by taking the derivative of the trial
energy with respect to adjustable parameters, setting it equal to zero, and solving for the parameters:

3ak? &2y a \12 dEga  3R* & 1 '/
Etfial = —— — —(—3) s0 =-—=->—\53 =
2u £g \2W da 20 2eg\2m’a
Solving for a yields:

3K2 &2 1 \'/? 5 e 2 ( 1 ulet
—~— = — S a = _— =
2 2e9 \2xla g 2n? 1873hted

Substituting this back into the trial energy yields the minimum energy:

1/2
e 352 w2t o2 et ! e
T 2u \18m3rtel | s \1BnORtR2 270 ) | 1200e2? |

Energy is conserved, so when the photon is absorbed, its energy is transferred to the electron. Part of
it overcomes the binding energy (ionization energy) and the remainder is manifest as the now freed
electron’s kinetic energy.

Ephoton = I + Exinetic

he (6.626 x 1073 Js) x (2998 x 108ms™ )
50 Eyineic = Eohoton — I = = = = —4.69¢eV
inedie = Zpholon A (584 x 10-"2m) x (1.602 x 10-19Jev~1)

=[2119eV]={339x 1076 J

The molecular orbitals of the fragments and the molecular orbitals that they formare shown in Figure 11.2.

We use the molecular orbital energy level diagram in Figure 11.41. As usual, we fill the orbitals starting
with the lowest energy orbital, obeying the Pauli principle and Hund’s rule. We then write

(a) CeHg (7electrons) : | a3 ef e},

E=20a+28)+4@+p)+ (@ - p) =[Ta + 78]
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Figure 11.2

(b) CeHJ (Selectrons) : | a3 e

aZrlelg

E =20 +26)+3a+ ) =[5a+ 78]

The secular determinants from E11.13(a) can be diagonalized with the assistance of generai-purpose
mathematical software. Alternatively, programs specifically designed for Hiickel calculations (such
as the one at Australia’s Northern Territory University, http://www.smps.ntu.edu.au/modules/mod3/
interface.html) can be used. In both molecules, 14 x-electrons fill seven orbitals.

(a) In anthracene, the energies of the filled orbitals are @ + 2414218, «+2.000008, « +1.414218
(doubly degenerate), o + 1.000 008 (doubly degenerate}, and & -+ 0.414 218, so the total energy is

l4er + 19.313 688 and the & energy is| 19.313 688 |

(b) For phenanthrene, the energies of the filled orbitals are o -+ 2.434768, o« + 1.950638, « +
1.516278, o+ 1.305808, o+ 1.142388, o +0.769058, «+0.605238, so the total energy is
l4a + 19.448 248 and the 7 energy is| 19.448248 |

Solutions to problems

Solutions to numerical problems

Draw up the following table

Riag 0 1 2 3 4 5 6 7 8 9 10

3 1.000 0.858 0.586 0349 0.185 0.097 0.047 0.022 0.010 0.005 0.002

The points are plotted in Figure 11.3.

Quantitatively correct values of the total amplitude require the properly normalized functions

| 1/2
Y = (m) (A £ B)[11.7 and Example 11.1]
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ENEN
08 \VSUS' 15)
s \

0.6 %
04 \

b
02 \‘

0 P
0 2 4 6 8 10
Riap Figure 11.3

We first calculate the overlap integral at R = 106 pm = 2ag. (The expression for the overlap integral, §

is given in Problem 11.2.)

1
S= (1 +2+ 3(2)2) e 2 = 0.586

| 12 ) if2
ThenNp={——) ={—} =056l
on (2(1+S)) (2(1+0.586))

I 12 1 12 )
-= (2(1 —S)) = (2(1 —0.586)) =109

3
Tag

andrg both measured from nucleus A, that is

1/2 1/2
1 1
We then calculate with y = (_) e=infan ey = Ny (—3) [e=7af90 £ e=78/%0) with rp
J'rao

12
_1_ le*lll/ao + e—|Z—R|/ﬂD]
Irag

LA =N:l:(

with z measured from A along the axis toward B. We draw up the following table with R = 106 pm and

ag =529 pm.
z/pm —-100 —-80 -60 —40 20 0 20 40
'ﬂ+3 73 009 0.14 020 030 04 064 049 042
(1/ma3)
V-

_ 0.14 0.21 0.31 0.45
(1 /J'mg) /2

0.65 095 054 020
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z/pm 60 80 100 120 140 160 180 200

(‘J’ﬁ 0.42 0.47 0.59 0.49 0.33 0.23 0.16 0.11
l/may

_ ¥ o1l —043 —081 —073 —050 —034 -023 -0.16

(l/:rag) 172

The points are plotted in Figure 11.4.

-100 0 100 200
#/ pm Figure 114

P11.6 Ri2 Ri2

A z=0 B
L L 4 —& z

(a) With spatial dimensions in units {(multiples) of ap, the atomic orbitals of atom A and atom B may
be written in the form

l 2dics L2
) R/2ye— [ Ay R ] /2
Pah = Gom)ii2 (z+R/2)e

and

1 2,2 21172
p= ———(z—R/2 —[-r +y-Hz—R{2) ] /2
P=B = 2072 (z—R/2)e
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Following eqn 11.7 and Example 11.1, we form LCAO-MOs of the form:

Vo = PAtP:B
T 2(1 4 §))?

whcrcS:[ffp3|Apz,ded)’dz[ll.17]

—00 —0o —0@

Pz.A — PzB

[antibonding]  and Vo, = TG [bonding]

Computations and plots are readily prepared with mathematical software such as Mathcad.

Probability densities along internuclear axis (v=y=0) with R=3,
(all distances in units of ap}
0.02 T T T

0.015 P a

T

WP 001 -

5 10

Figure 11.5(a)

(b) With spatial dimensions in units of ag, the atomic orbitals for the construction of 7 molecular
orbitals are:

P = 1 —[_(2+)-3+(: Rj”)z]l"‘z/’?
x‘A ._(Txe 4

1(2 1 3 X [I?. _"1+(E—R/2)2]”2/')
p-\'.B W e +

The 7-MOs are:

PrA T PeB . Px.A — PxB - -
Y, = W [bonding] and yry, = W [antibonding]
[+ ol s s B+ ]
where § = f f PxapPyp dx dy dz
—00 —00 —C0

The plots clearly show the constructive interference that makes a bonding molecular orbital. Nodal
planes created by destructive interference are clearly seen in the antibonding molecular orbitals.
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R=3

Ampliwde of Sigma Antibonding MO in xz Probability Density of Sigma Antibonding MO

Ampliwde of Sigma Bonding MO inxz Probability Density of Sigma Bonding MO

Amplitude of Sigma Antibonding MO in a1z Amplilude of Sigma Bonding MO inxz

Figure 11.5(b)
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2p Pi Bonding Amplitude Surface

2p Pi Bonding Probability Densily Surface

2p Pi Antibonding Amplitude Surface

2p Pi Antibonding Probability Density Surface

2p Pi Bonding

2p Pi Antibonding

/

N

——

7

\

Figure 11.5(c)
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When calculations and plots are produced for the R = 10 case, constructive and destructive
interference is seen to be much weaker because of the weak atomic orbital overlap.
P11.8 En = E| = —hcRy [Section 10.2(b)]
Draw up the following table vsing the data in question and using
] el byl
e __ e a0 _ e %
dweoR ~ Amegag R dweg x (dweehi/mee?) R

4 4
Ria€ [4]4] an M€
£ X — = Ejp X — [Eh——-—°—=2thH]

- 16Jr2¢::5h2 R R - l6Jr2£%h2
vl
(et
so that ﬂ]R— = @.
En R
R/ag 0 1 2 3 4 oo

(e*/4meqR) /En o0 1 0500 0333 0250 0
(VI + Va) / By 2000 1465 0843 0529 0342 0
(E — En)/En oo 0212 —0031 -0.059 -0038 0

The points are plotted in Figure 11.6.

Figure 11.6

The minimum occurs at R = 2.5a¢, so R = 130 pm. At that bond length

E—Ey=-007E,=—-191eV

Hence, the dissociation energy is predicted to be about and the equilibrium bond length about

)
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The electron configuration of Fa is 1022022362 12 2%, that of Fy is 102207307 nd2m} 4oy
So F; has one more antibonding electron than does Fa, suggesting a lower bond order (1/2 versus 1}
and therefore a weaker bond. By definition a weaker bond has a smaller dissociation energy {hence the
difference in D). Weaker bonds tend to be longer (hence the difference in R} and less stiff (hence
the difference in b, reflecting a difference in the force constant &) than stronger bonds between similar
atoins.

Energy is conserved, so when the photon is absorbed, its energy is transferred to the electron. Part of
it overcomes the binding energy (ionization energy) and the remainder is manifest as the now freed
electron’s kinetic energy.

Ephoton = 7 + Ekinetic 80/ = Ephoton — Elinetic

so the first three ionization energies are:

I =2121eV —11.01eV =| 10.20eV
Ih=2121eV —823eV =|1298eV
and I3 =21.21eV —522eV =|1599eV

0
8 | -,=-1020eV
(5]
0
—12= —12.98 eV
—13= -1599eV Figore 11.7
E = n*i? I and ¥ = (2)”2 sin (E) [Section 9.1]
n= g " e M "TAL L -

Two electrons occupy each level (by the Pauli principle), and so butadiene (in which there are four
electrons) has two electrons in yr; and two electrons in 2

1/2 ! .
n=(2) n(5) we = (3) 0 ()

These orbitals are sketched in Figure 11.8(a).
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)
Compared
with
d Q Compared

with

Figure 11.8(a)

The minimum excitation energy is

e
AE=Ei—-E=5| ——
1T (81?:.;[.3 )

In CH;=CH—CH=CH—CH=CH—CH==CH3 there are eight x electrons to accommodate, so the
HOMO will be ¥4 and the LUMO /5. From the particle-in-a-box solutions
h? oh”

AE = Es—Eq= (25— 16— = =
3 = )SmEL:’- 8mL2

(9 x (6.626 x 1073 15)?

= - ——— =43 x 107'%]
{(8) x (9.109 x 1031 kg) x (1.12 x 10~ m)?

which corresponds to | 2.7 eV | The HOMO and LUMO are
2\!? . /NRX
Yoy = (Z) sin (T)
with 17 = 4, 5 respectively; the two wavefunctions are sketched in Figure 11.8(b).

s
Uiy

Figure 11.8(b)

COMMENT. It follows that

hc (6626 x 1079 Js) x (2.998 x 108 ms™) 5
A= —= =46 x 107" m, or | 460nm.
AE 43 % 1019y ®

The wavelength 460 nm corresponds to biue light; so the molecule is likely to appear in white light
{since hlue is subtracted).
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In the absence of numerical values for ¢ and 8, we express orbital energies as (Ex — a)/B for
the purpose of comparison. Recall that B is negative (as is a for that matter), so the orbital
with the greatest value of (E; — a)/B has the lowest energy. Draw up the following table,
evaluating

E,—«a 2km
=2cos —

energy (Ey —«)/8

orbital, k. CgHg CsHg

T4 —2.000

+3 —2.000 1414

x2 —1.000 0

= | 1.000 1.414
0 2.000 2.000

In each case, the lowest and highest energy levels are non-degenerate, while the other energy levels
are doubly degenerate. The degeneracy is clear for all energy levels except, perhaps, the highest:
each value of the quantum number & corresponds to a separate MO, and positive and negative values
of k therefore give rise to a pair of MOs of the same energy. This is not the case for the highest energy
level, though, because there are only as many MOs as there were AOs input to the calculation, which
is the same as the number of carbon atoms; having a doubly-degenerate top energy level would yield
one extra MO.

The total energy of the 7 electron system is the sum of the energies of occupied orbitals weighted
by the number of electrons that occupy them. In CgHs, each of the first three orbitals is doubly
occupied, but the second level (k = %1} is doubly degenerate, so

2
- = 2E0+ 2 x 2E) =2(a+2ﬂcosO)+4(a+2ﬁcos%) =6a + 88

The delocalization energy is the difference between this quantity and that of three isolated double
bonds:

Ede!DC=EJT_6(a+ﬁ)=6a+8ﬁ—6(0{+ﬁ)=

For linear hexatriene, Egeoc = 0.9888, so benzene has considerably more delocalization energy
(assuming that 8 is similar in the two molecules). This extra stabilization is an example of the

special stability of compounds.

In CgHjs. each of the first three orbitals is doubly occupied, but the second level (k = £1) is doubly
degenerate. The next level is also doubly degenerate, with a single electron occupying each orbital.
So the energy is

Ex =2E0+2x2E1+2x 1E;
2 4
=2{z + 28 cos0) + 4 a+2ﬂcos? + 2 a+2ﬁcos?

= 8a +9.657 8
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The delocalization energy is the difference between this quantity and that of four isolated double
bonds:

Egeloc = Enx — 8(ct + B) = 8t +9.6578 — 8(a + B) =

This delocalization energy is not much different from that of linear octatetraene (1.5188), so cyclo-
ocatetraene does not have much additional stabilization over the linear structure. Once again, though,
we do see that the delocalization energy stabilizes the 7 orbitals of the closed ring conjugated
system to a greater extent than what is observed in the open chain conjugated system. However,
the benzene/hexatriene comparison shows a much greater stabilization than does the cyclooctat-
etragng/octatetraene system. This is a demonstration of the Hiickel 4n + 2 rule, which states
that any planar, cyclic, conjugated system exhibits unusual aromatic stabilization if it contains
4n + 2 m electrons where “n” is an integer. Benzene with its six 7 electrons has this aromatic
stabilization whereas cyclooctatetraene with eight 7 electrons doesn’t have this unusual stabiliz-

ation. We can say that it is , consistent with indicators of aromaticity such as the

Hiickel 4n + 2 rule.

The table displays computed orbital energies and experimental 7* < x wavenumbers of ethene
and the first few conjugated linear polyenes.

Species ELumo/eV* Enomo/eV* AE/eV* /ecm™!

CoHy 1.2282 ~10.6411 11.8693 61500
CaHe 0.2634 —9.4671 9.7305 46080
CeHs —0.2494 —8.8993 8.6499 39750
CsHo —0.5568 —8.5767 8.0199 32900
CioHiz2 ~0.7556 —8.3755 7.6199

* Semi-empirical, PM3 level. PC Spartan ProTM

A plot of the computed energy difference vs. experimental wavenumbers appears in Figure 11.9.
The computed points fall on a rather good straight line. Of course a better fit can be obtained to a
quadratic and a perfect fit to a cubic polynomial; however, the improvement would be slight and the
justification even more slight. The linear least-squares best fit is:

AEfeV =3.3534 + 1.3791 x10~* flem™" | (% = 0.994)

12 - - . >
11
AE 10 ///
9 -~
. -
8 e A L
30000 40000 50000 60000

Tem™! Figure 11.9
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{(c) Invert the fit equation obtained in (b) above:

5 /em! AEjeV —3.3534
p/Ccm =
13791 x 10~*

So for C|pH)32, we expect a transition at:
- 7.6199 — 3.3534 -
-1 |
= ——————— =130937
pfem™ = So IS

{d) The fitting procedure is necessary because the orbital energies are only approximate. Remember
that an orbital wavefunction is itself an approximation. A semi-empirical computation is a further
approximation. If the orbitals were exact, then we would expect the energy difference to be directly
proportional to the spectroscopic wavenumbers with the following proportionality:

_ (6626 x 1073 715)(2.998 x 10%cm s~
AE = hcy =
1.602 x 10~ 19 /eV

50 AEjeV = 1240 x 1074 i/cm™!,

Clearly this is different than the fit reported above. A further illustration of why the fitting procedure
is necessary can be discerned by comparing the table from part (a) to a corresponding table based
on a different computational model, namely Hartree-Fock computations with an STO-3G basis

set:

Species Erumo/eV* Enomo/eV* AE[eV*
CaH,y 8.9335 —9.1288 18.0623

CyHg 6.9667 -7.5167 14.4834

CgHg 6.0041 —6.6783 12.6824

CgHg 5.4488 —6.1811 11.6299

CioHi12 5.0975 —5.8621 10.9596

* Ab initio. STO-3G. PC Spartan Pro™™
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Obviously these energy differences are not the same as the PM3 differences computed above. Nor
are they energy differences that correspond to the experimental frequencies.

COMMENT. The STO-3G data also fit a straight line. That fit can also be used to estimate the transition in
CigH12:

bjom=! = AE eV — 3.8311
T 2.3045 x 104
so for GigHq2 we expect a transition at

_; _ 10.9596 — 3.8311

= ——————— =30033.
2.3045 x 101

B/om

Even though the computations differed considerably in detail, with the calibration procedure they result in
nearly identical predictions.

P11.20 (a) The standard enthalpy of formation (A¢H® /kJ mol~") of ethene and the first few linear polyenes is
listed below.

Species  Computed*  Experimental’ % error

CyHa 69.580 52.46694 32.6
C4Hg 129.834 108.8 £ 0.79 19.3

1119+ 096 16.0
CgHg 188.523 168. + 3 12.2
CgHyp 246.848 295.9% 16.6

* Semi-cmpirical. PM3 level, PC Spartan Pro™
i http:/fwebbook .nist.gov/chemistry/

t Pedicy, Naylor, and Kirby, Thermodynamic Data of Organic Compoinids.

{b) The % error, shown in the table, is defined by:

ArH®(calc) — ArH® (expt)

100%.
ArH® (expt) X ?

Joerror =

(c) For all of the molecules, the computed enthalpies of formation exceed the experimental values by
much more than the uncertainty in the experimental value. This observation serves to iflustrate that
molecular modeling software is not a substitute for experimentation when it comes to quantitative
measures. It is also worth noting, however, that the experimental uncertainty can vary a great deal.
The NIST database reports ArH® for CoHy Lo seven significant figures (with no explicit uncertainty).
Even if the figure is not accurate to | part in 5000 000, it is clearly a very precisely known quantity—
as one should expect in such a familiar and well studied substance. The database lists two different
determinations for AfH® (C4Hg), and the experimental values differ by more than the uncertainty
claimed for each; a critical evaluation of the experimental data is called for. The uncertainty claimed



220 INSTRUCTOR'S SOLUTIONS MANUAL

for AfH®(CgHs) is greater still (but still only about 2%). Finally, it should go without saying that
not all of the figures reported by the molecular modeling software are physically significant.

Solutions to theoretical problems
P11.22 We need to determine whether E_ + E; > 2Ey

Vi—V; e* Vi+Vy &2

E. +E,=— - 2E

+ By =S T ameR 145 | ameoR T M
__{(Vj—Vp_)x(l+S)+(1—S)x(V|+V2)l+ 262 +2E
= TS x (L+5) 4reoR H

SV -V | 28
T 1= 4meoR

+ 2Ey

The nuclear repulsion term is always positive, and always tends to raise the mean energy of the orbitals
above Ey. The contribution of the first term is difficult to assess. IfS =~ 0,5Vs = 0 and V; = 0, then the
first term is small compared to the nuclear repulsion term. If § ~ 1 and SV2 = V1. then once again the
nuclear repulsion term is dominant. At intermediate values of §, the first term is negative, but of smaller
magnitude than the nuclear repulsion term. Thus in all cases E_ + E} > 2Ep.
P1124 (@) y=e* H= Pp £
2u dweqr

cQ 4 2n T
[wzdr =f rze_Zk'drf sin9d9[ d¢p = =
0 0 0 k

1 co ) T 2 T
f:,lr—y’;dr:f re-z"fdrf sin9d9f d¢ =
r 0 0 0 k

2 . 2 2%
YyVigdr= | ¢——@re™)dr = | k" — — J¥dr
rdr? r
= S
Tk kT k
Therefore
[ &2 T
Hidt=—x -~ —— X 3
f"& VT = Xk e
and
K eln
o \2uk dmeok?) KK ek
- Tk T 24 4nep

dE h? e etu
Y (L VO =0 when k=%
dk (2;;,) 4reo when A eoh?
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The optimum energy is therefore

4
€1
E=———-— =1 —hcRy |the exact value.
Tl = LR

(b) ¥ = e~**  H as before.

o0 7 n 1/2
24, —2hr? 2 . _my
fllf dr—j(; e rdJ"f0 sdeB[) d¢o_5(m)

1 o0 2 ™ 2 T
[w—wdr =f re~2kr drf sianaf dgp = =
r 0 0 0 k

fxpvzw dr = —2] 3k — 263 de

2

=] y T
=2 f (3kr? — 22 e W gy [ sin @ d@ f dep
] 0 4]

= [(3)- G- % )"

Therefore
30k k2
T2 ep(2m)1R
4dE 4,2
— =0 when k= _eR
dk 181735(2)!14

and the optimum energy is therefore

4
e 8
E=——F | 2 xher

1273632 | 3w oM

Since 8/3m < I, the energy in (a) is lower than in (b}, and so the exponential wavefunction is better than
the Gaussian.

Solutions to applications

(a) a—E B B
B a—E B =0
B B o-E
a—FE B Jel B a—E | _
=B " E’_ﬁ\ﬂ E"Lﬂ‘ﬂ P “0
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(@ —E) x {(@ — E)* — 8%} — BlBta —E) — B*} + B(B* — (@ — E)B) =0
(@—E) x {(a ~EY — g2} —28la —E- B} =0
(@—EYx{@—E—-B)x(@—E+B)—28*w—E~-$=0
@—E-B)x{la—E)x{a—E+p)—-281=0
@-E-Px{@—E)x(@—E+28)—Bla—E)—287}=0
(@—E—-Bx{{e-E)x(@—E+28)-Bla—E+28)}=0
(c—E—-B)x(a—E+28)x{a—E—-£)=0

Therefore, the desired roots are £ =| -8, a—B,anda +28 | The energy level diagram is shown
in Figure 11.10.

I 3

Energy ax—f

o+ 2B

Figure 11.10

The binding energies are shown in the following table.

Species Number of e~ Binding energy
HY 2 2 +2B) =20 + 48
H; 3 2@ +28) +{a — p) = 3o + 38
H; 4 2 +28) + 2a — f) = 4a + 28
(b) Hi(g — 2H(g) + H*(g) AH| = 849kJ mol~!
H*(g) + Ha(g) — Hi () AHy =7
Hz(g) — 2H(g) AHy = [2(217.97) — 0] kJ mol !

AHy = AHy — AH| = 2[(217.97) — 849] kI mol ™!
AHz =| =413 kJ mol™!

This is only slightly less than the binding energy of Ha (435.94 kY mol™")
(c) 20 + 48 = —AH, = —849kJ mol ™!

_ —AH| — 2«

B= Z where AH| = 849 kJ mol™'
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Species Binding energy
Hf 2a + 48 = —AH; =| —849 kJ mol~!
AH 4+ 2a 1 AH, -1
H; 3a+3ﬁ=3(a——4—)=3(5a—7) =[3(a/2) - 21217 mo1”" |
AH) +2 AH
Hy 4a+2ﬁ=4a—%=3a-—TI=|3a—425kJmol']|

As @ is a negative quantity, all three of these species are expected to be stable.

P11.28 (a) The orbitals are sketched in Figure 11.11(a). v is a bonding orbital, showing no nodes between
adjacent atoms, and yr3 is antibonding with respect to all three atoms. ¥ is non-bonding, with
neither constructive nor destructive interaction of the atomic orbitals of adjacent atoms.

0 C N

2 —H

~H-

Figure 11.11(a)
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(b) This arrangement only works if the entire peptide link is coplanar. Let us call the plane defined by
the O, C, and N atoms the xy plane; therefore, the p orbitals used to make the three MOs skeiched
above are p, orbitals. If the p, orbital of N is used in the 7 system, then the o bonds it makes must be
in the xy plane. Hence the H atom and the atom labeled Cyz must also be in the xy plane. Likewise,
if the p, orbital of the C atom in the peptide link is used in the & system, then its o bonds must also
lie in the xy plane, putting the atom labeled Cg in that plane as well.

(¢) The relative energies of the orbitals and their occupancy are shown in Figure 11.11a. There are four
electrons to be distributed. If we look at the conventional representation of the peptide link (10 in the
text), the two electrons represented by the C=0 x bond are obviously part of the  system, leaving
the two lone pairs on O, the C—O o bond, and the two other ¢ bonds of C as part of the & system.
Turning now to the Lewis octet of electrons around the N atom, we must assign two ¢lectrons to

5 il
K
s il

Figure 11.11(b)
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each of the ¢ bonds involving N; clearly they cannot be part of the  system. That leaves the lone
pair on N, which must occupy the other orbital that N contributes to the molecule, namely the p,
orbital that is part of the & system.

(d) The orbitals are sketched in Figure 11.11(b). 14 is a bonding orbital with respect to C and O, and
Vg 1s antibonding with respect to C and Q. 5 is non-bonding, involving only the N atom. There are
four electrons (o be placed in this system, as before, two each in a bonding and non-bonding orbital.

{e) This system cannot be planar. As before, the atom labeled C,1 must be in the xy plane. As before,
the atoms bound to N must be in a plane perpendicular to the orbital that N contributes to this system,
which is itself in the xy plane; the bonding partners of N are therefore forced out of the xy plane.

(f The bonding MO | must have a lower energy than the bonding MO 4, for ¥ is bonding (sta-
bilizing) with respect to all three atoms, while ¥4 is bonding with respect to only two of them.
Likewise, the antibonding MO 13 must have a higher energy than the antibonding MO s, for 3
is antibonding (destabilizing) with respect to all three atoms pairwise, while g is antibonding only
with respect to two of them. The non-bonding MOs yr2 and 5 must have similar energies, not much
different than the parameter e, for there is no significant constructive or destructive interference
between adjacent atoms in either one.

{g) Because bonding orbital | has a lower energy than ¥4, the planar arrangement has a lower energy
than the non-planar one. The total energy of the planar arrangement is

Ep!anar = 2E| +2E,.
Compare this to the energy of the non-planar arrangement:
Enon-planar =2E4+2Es » 2E| + 2E2 = Eplnnnr-

The fact that E3 > Eg is immaterial, for neither of those orbitals is occupied.
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Answers to discussion questions

D12.2
Symmetry operations Symmetry elements
1. Identity, £ 1. The entire object
2. n-fold rotation 2. n-fold axis of symmeltry, Cy
3. Reflection 3. Mirror plane, o
4, Inversion 4. Centre of symimetry, i
5. n-fold improper rotation 5. n-fold improper rotation axis, S,
D124 A molecule may be chiral, and therefore optically active, only if it does not possess an axis of improper

rotation, S,. Animproper rotation is a rotation followed by a reflection and this combination of operations
always converts aright-handed object into a left-handed object and vice versa; hence an §,, axis guarantees
that a molecule cannot exist in chiral forms.

D12.6 See Sections 12.4(a) and (b).

D12.8 The direct sum is the decomposition of the direct preduct. The procedure for the decomposition is the
set of steps outlined in Section 12.5(a) and demonstrated in Hiustrarion 12.1.

Solutions to exercises

E124(b) CCls has[ 4 C3 axes | (each C—Cl axis), | 3 Ca axes | (bisecting Cl—C—Cl angles), (the same
as the C; axes), and [ 6 dihedral mirror planes | (cach CI—C—Cl plane).

E12.2(b) Only molecules belonging to C;, Cy, and C,y groups may be polar, so . ..
(a) CH3CI{C3,)| may be polar | along the C—ClI bond;

(b) HW2(CO)0(D4p) | may not be polar
{e) SnCly(T4) | may nol be polar



E12.3(b)

E12.4(b)

E12.5(b)

E12.6(b)

E12.7(b)
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The factors of the integrand have the following characters under the operations of Dg,

E 2C 205 (& 3¢ 3Cg i 253 25 oy log 3oy

Px 2 1 -1 -2 0 0 | I 2 0 0
z 1 1 | I -1 -1 -1 -1 -1 -1 1 1
P | 1 1 1 -1 -1 -1 =1 -1 -1 1 1
Integrand 2 ! -1 -2 0 0 -2 -1 1 2 0 0

The integrand has the same set of characters as species Ejy, so it does not include Ajy; therefore the

integral | vanishes |,

We need to evaluate the character sets for the product Ay Ezyq, where g = x,y, or z

E 2C 207 (O 3C5 3C£,J i 251 2% oy Jog 3oy

Al ] | ] 1 1 ] 1 11 l ] 1
Ea, 2 -1 -1 2 0 0 -2 11 -2 0 0
(x,» 2 1 -1 =2 0 0 -2 -1 I 2 0 0
Integrand 4 —1 1 —4 0 0 4 -1 1 —4 0 0

To see whether the totally symmetric species A is present, we form the sum over classes of the number
of operations times the character of the integrand

(A} =@ +2(=1) F 2(1) + (—=4) + 3(0) + 3(0) + (4)
+2(-D+2(1) + (-4 +30) +3(0) =0

Since the species Ayg is absent, the transition is | forbidden | for x- or y-polarized light. A similar
analysis leads to the conclusion that Ay is absent from the product AjpEay;; therefore the transition is

forbidden.

The classes of operations for D, are: E, C2(x), C2(y), and Ca(z). How does the function xyz behave
under each kind of operation? E leaves it unchanged. Cz{x) leaves x unchanged and takes y to —y
and z to —z, leaving the product xyz unchanged. Cz(y) and Cz(z) have similar effects, leaving one
axis unchanged and taking the other two into their negatives. These observations are summarized as
follows

E Cixy G(y)y G2

xyz 1 | 1 1

A look at the character table shows that this set of characters belong to symmetry species .

A molecule cannot be chiral if it has an axis of improper rotation. The point group Tq has
|S4 axes] and 1mirror planes (= §)) | which preclude chirality. The 7}, group has, in addition, a

I center of inversion (= S1) |

The group multiplication table of group Cyy is
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E cr Cy C2 o) ou(y) ol oa(—xy)
E E ct o Ca ov(x)  oy(y)  oaly)  og(—xy)
cf ct C2 E o oa(xy)  oa(—xy) ov(y)  ou(x)
oy cy E Cy cy og(—xy) og(xy)  ou(x) av(y)
G Cz oy cl E o) o) oa(—xy) oalxy)
ov(x)  ov(x)  oa(—xy) calxy) o) E C2 C;y ct
oy) o) oy  oa(—x) ovlx) G E o oy
oa(xy)  oglxy)  ou(x) oy  ea(-xyy Cf Cy E C2
oa(—xy) ga(—xy) av(y) &y (x) oalxy) Cj c; Cs E

Et2.8(b}) See Figure 12.1.

Coc
@ 43 ®)
e

4]

Ca

B2

(c) C (d

oy

Figure 12.1

(a) Sharpened pencil: E, C, ov; therefore
(b) Propellor: E, C3, 3Cy; therefore
(¢) Square table: E, C4, 40y therefore ; Rectangular table: E, Ca2, 20v; therefore

(d) Person: E, oy (approximately); therefore .

E12.9(b) We follow the Aow chart in the text (Figure 12.7). The symmetry elements found in order as we proceed
down the chart and the point groups are

(2) Naphthalene: E, C2, C}, €3, 30h.f;
(b) Anthracene: E, Cz, €, C}, 3om.7;



E12.10(b)

E12.11(b)

E12.12(b)

(¢) Dichlorobenzenes:

(i) 1,2-dichlorobenzene: E, C3, oy, 0,;
(ii) 1,3-dichlorobenzene: E, C3, oy, oy; ] Cay

MOLECULAR SYMMETRY

(iii) 1,4-dichlorobenzene: E, Cz, Cj, Cy, 30n, i;[ D |

(@) H-F C..
(b} (c)
F F
F
F 0
FTF o
F F
(e} M Ty
1
H
1
i Op
L

The following responses refer to the text flow chart (Figure 12.7) for assigning point groups.

(a) HF: linear, no i, so

(b) IF7: nonlinear, fewer than 2C,, with n > 2,Cs, SCE perpendicular to Cs, oy, s0

(¢) XeO7F>: nonlinear, fewer than 2C, with n > 2, C;, no Ci perpendicular to Cz, no oy, 20y, so

(8) Fey(CO)s: nonlinear, fewer than 2C, with n > 2, Ca, 3C; perpendicular to C3, o, 50
(e} cubane (CgHg): nonlinear, more than 2C,, with n > 2,1, no Cs, 50
(0 tetraflucrocubane (23): nonlinear, more than 2C, with n > 2, no |, so .

229

(a) Only molecules belonging to Cs,C,, and C,y groups may be polar. In Exercise 12.9(b)

| ortho-dichlorobenzene |and| meta-dichlorobenzene Ibelong 1o Cy, and so may be polar; in Exercise

12.6(b), | HF and XeQ»F; |belong to C,y groups, so they may be polar.

(b} A molecule cannot be chiral if it has an axis of improper rotation — including disguised or degenerate
axes such as an inversion centre ($2) or a mirror plane ($7). In Exercises 12.5(b) and 12.6(b), all the
molecules have mirror planes, so can be chiral.

In order to have nonzero overlap with a combination of orbitals that spans E, an orbital on the central
atom must itself have some E character, for only E can multiply E to give an overlap integral with a totally

symmetric part. A glance at the character table shows that orbitals available to a bonding N

atom have the proper symmetry. If d orbitals are available (as in SO3), F{ll d orbitals except &2 | could

have nonzero overlap.
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E12.13(b) The product /T x I" {1t} x I must contain A (Example 12.7). Then, since I} = By, I'(p) = I'(y) = B2
(C3y character table), we can draw up the following table of characters

E Ty o,

B, 1 -1 -1 1
B, 1 -1 1 -1
BB, 1 I -1 —1 =A2

Hence, the upper state is , because Az x Az = A).

Ei12.14(b) (a)

Anthracene
H H H
H H
QOQL,
H H
H H H

The componenis of p span Ba,(x), Bay(y), and By, (z). The totally symmetric ground state is Ag.
Since Ay x I = I in this group, the accessible upper terms are (x-polarized), (y-

polarized), and (z-polarized).

(b) Coronene, like benzene, belongs to the Dgp group. The integrand of the transition dipole moment
must be or contain the A, symmetry species. That integrand for transitions from the ground state is
Aggf, where g is x,y, or z and f is the symmeltry species of the upper state. Since the ground state
is already totally symmetric, the product gf must also have A |; symmetry for the entire integrand to
have A\, symmetry. Since the different symmetry species are orthogonal, the only way gf can have
Az symmetry is if ¢ and f have the same symmetry. Such combinations include zAyy, xEjy, and

vEu. Therefore, we conclude that transitions are allowed to states with symmetry.

E12.15(b)

E 2C 3ay
Ay 1 1 l
As 1 | -1
E 2 —1 0
sinéd l Linear combinations of 1
cosé I sin@ and cos @ -1
Product 1 1 -1

The product does not contain A, so | yes | the integral vanishes.
p ¥ g

Solutions to problems

P12.2 The operations are illustrated in Figure 12.2. Note that R? = E for all the operations of the groups, that
ER = RE = R always, and that RR" = R'R for this group. Since Caoy =i, opi = Ca, and iCy = oy, we
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can draw up the following group multiplication table

E Cs o f
E E ¢ Oh f
Cs s E i O
Oh Th i E o)
i i on Cz 1)

8]
Oy
i
G
Figure 12.2

The | trans-CHCI=CHCI | molecule belongs 1o the group Cap.

COMMENT. Note that the muitiplication table for Coy, can be put inlo a one-to-one correspondence with the
multiplication table of Ds obtained in Exercise 12.5. We say that they both belong tc the same abstract group
and are isomorphous.

Question. Can you find another abstract group of order 4 and obtain its multiplication table? There is
only one other.

P12.4 Refer to Figure 12.3 of the text. Place orbitals /#; and /r; on the H atoms and s, py, py, and p- on the O
atom. The z-axis is the C7 axis; x lies perpendicular to o, y lies perpendicular to oy. Then draw up the
following table of the effect of the operations on the basis

E Cy Oy a)
hy Ay ha ha h
hs ha h mn ha
5 5 M 5 5
Px Px —Px Px —Px
Py Py P —Py Py
P: Pz Pz P: Pz

Express the columns headed by each operation R in the form
(new) = D{R)(original)

where D(R) is the 6 x 6 representative of the operation R. We use the rules of matrix multiplication set
out in Jusrification 12.1.
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(i) E : (h1, h2, 8, prs Py, P2) < (M1, M2, 5, pr, Py, P2) is reproduced by the 6 x 6 unit matrix
iy Cy : (ha, Ry, 5, —px, =Py, P2) < (R1, 12, 5, Px, Py, P2) is reproduced by

D(C2) =

OO DO C — O
[ne T e B e B - B e ]
OO — OO0
OOLOOD
[ Bl e e T ce i )
— OO0

(l") ay . (hz’ hla 5, p_ts '_'Pyn Pz) ~ (h], h21 S5, P.r» Py, Pz) iS reprOduccd by

D{oy) =

OO0 oo =0
fom B e B e e i e el
oo O =00
[ B e B e B R el
[ i e B e R e i )
— OO OQ

(iv) o) : (1, k2, S, —Px. Py, Pz) < (11, ha, S, px, Py, P;) is reproduced by

D(O':,) =

OO OO O -
oo oo— 9O
oo —~=00O
DOvl—-OOO
[ B e B e i ol B v}
—_ O oo o0

(a) To confirm the correct representation of C2oy = o, We write

010 0 000100 00
100 0 0O0ff1 000 00
601 0 0O0[[l00 10 00

Dcablol =145 6 6 -1 o olloo o1 0o
000 0 -1 0fl000O0-120

000 o o 1]{lo0oo0oo0 0 1
100 © 0 O]

010 000

oo 1 o000} __
=10 0 0 —1 0 ol =P@

000 010

0 00 00 1]
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(b) Similarly, to confirm the correct representation of oyo, = Cz, we write

0100 0C|[too 000
1 000 ©0O0|{01 0 0020
o010 o0o0flloo1 o000
0001 00|l|l000 -1t 00
0000 -1 0|/|]000 010
0000 0 1f[o00 00 I
0 1 0 0 0 0]
I 00 0 0O
001 0 00
=lo 00 -1 o ofl =P
000 0 —10
000 0 0 1]

(a) The characters of the representatives are the sums of their diagonal elements:

E Ch Oy o,

6 0 2 4

(b} The characters are not those of any one irreducible representation, so the representation is reducible.

(c) The sum of the characters of the specified sum is

E Cz oy o!

3A, 3 3 3 3
B i -1 i -1
2B, 2 -2 -2 2
3JA;+B| +2B; 6 0 2 4

which is the same as the original. Therefore the representation is 3A) + B| + 2B;.

Representation |

D(C)D(Cay =1 x 1 =1=D(Cg)

and from the character table is either A; or A;. Hence, either D(oy) = D(og) = respec-
tively.

Represeniation 2

D(C3}D(Cy) = 1 x (=1) = =1 = D(Ce)

and from the character table is either B, or Ba. Hence, either D(o,) = —D{oy) = III or D(oy) =

—Day) = respectively.
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A quick rule for determining the character without first having to set up the matrix representation is
to count | each time a basis function is left unchanged by the operation, because only these func-
tions give a nonzero entry on the diagonal of the matrix representative. In some cases there is a sign
change, (... —f...) « (...f...); then --1 occurs on the diagonal, and so count — 1. The character
of the identity is always equal to the dimension of the basis since each function contributes | to the
trace.

E: all four orbitals are left unchanged; hence x =4
C3: One orbital is left unchanged; hence x =1
Ca: No orbitals are left unchanged; hence x =0

S4: No orbitals are left unchanged; hence x = 0

aq: Two orbitals are left unchanged; hence y =2

The character set 4, 1, 0, 0, 2 spans | A;+T32 [ Inspection of the character table of the group Ty shows
group

that s spans A and that the three p orbitals on the C atom span Ta. Hence, the orbitals of the

C atom may form molecular orbitals with the four Hls orbitals. In Ty, the J orbitals of the central alom
span E + T (character table, final column), and so only the T; set | (dy, dyz, d-¢) | may contribute to

molecular orbital formation with the H orbitals.

The most distinctive symmetry operation is the axis through the central atom and aromatic nitrogens
on both ligands. That axis is also a axis. The group is .

(a) Working through the flow diagram (Figure 12.7) in the text, we note that there are no C,, axes with
n > 2 (for the C3 axes present in a tetrahedron are not symmetry axes any longer), but it does have
C» axes; in fact it has 2 (5 axes perpendicular to whichever Cz we call principal; it has no oy, but it

has 2 o4. So the point group is .

(b) Within this point group, the distortion belongs to the fully symmetric species | A | for its motion is
unchanged by the S4 operation, either class of C3, or aq.

{¢) The resulting structure is a square bipyramid, but with one pyramid’s apex farther from the base
than the other’s. Working through the Aow diagram in Figure 12.7, we note that there is only one
C, axis with n > 2, namely a Cy4 axis; it has no Cz axes perpendicular to the Cy4, and it has no oy,
but it has 4oy. So the point group is .

(d) Within this point group, the distortion belongs to the fully symmetric species . The translation
of atoms along the given axis is unchanged by any symmetry operation for the motion is contained
within each of the group’s symmetry elements.

(a) xyz changes sign under the inversion operation (one of the symmetry elements of a cube); hence it
does not span Ay and its integral M

(b) xyz spans A, in Ty [Problem 12.13] and so its integral
(¢) xyz = —xyzunder z — —z (the oy, operation in Dgp), and se its integral
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P12.16 We shall adapt the simpler subgroup Cgy of the full Dgp, point group. The six m-orbitals span A + By +
E{ + Ez, and are

|

a1 = —=(m+mrm+m+my+ 75+ 1)
V6
1

by = —(m —m +r3 — my + 75 — WG}
V6

1
—— (2w — oy — w3y + 2wy — 5 — W)

ey = \/E

|
E(Nz — w3 + w5 — 7g)

|
—(2m + 72 — w3 — 2y — 75 + 76)

I\J'—H
X

(w2 + w3 — s — 7s)

The hamiltonian transforms as A ; therefore all integrals of the form [ y’H dt vanish unless ¥’ and
¥ belong to the same symmetry species. It follows that the secular determinant factorizes into four
determinants

1
Ay Hypg, :gf(ﬂ'l+"'+JT6)H(TFI+"'+7!'6)d1'=cf+2.6

o
Bi:  Hyp, =g[(m—ﬂz+---)H(Tf| —m2+-)dt =a - 28

E @ Hey@ew=2—8 Hoyweym=a¢—8, Hywew =0

Hence

= (Osolvestoeg = o — B (twice)

Er: Howew =a+ b Huymeby =0+ 8. Hesgajeatry =0

a+f8—¢ 0

H
ence 0 at+pf—c¢

=0solvestoe = + 8 (twice)

P12.18 (a) For a photon Lo induce a spectroscopic transition, the transition moment (ft) must be nonzero. The
transition moment is the integral f w;‘uw; dz, where the dipole moment operator has components
proportional to the Cartesian coordinates. The integral vanishes unless the integrand, or at least
some part of it, belongs to the totally symmetric representation of the molecule’s point group. We
can answer the first part of the question without reference to the character table, by considering the
character of the integrand under inversion. Each component of u has u character, but each state has g
character; the integrand is g % g x u =u, so the integral vanishes and the | transition is not allowed.

(b) However, if a vibration breaks the inversion symmetry, a look at the § character table shows that the
components of & have T character. To find the character of the integrand, we multiply together the
characters of its factors. For the transition to T
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E 12Cs 12C2 20C5 15C;
Ay 1 | I I 1
LGNy 3 %(1+\/§) %(1—\/5) 0 -1
Ty 3 %(1 ++/3) %(1 - /%) 0 -1
Integrand 9 %(3 ++/5) %(3 ~/3) 0 t

The decomposition of the characters of the integrand into those of the irreducible representations is
difficult to do by inspection, but when accomplished it is seen to contain Aj. Therefore the transition to
T, would become allowed. It is easier to use the formula below which is obtained from what is referred
to as the “little orthogonality theorem™ of group theory. (See the Justification in Section 15.5 of the 5th
edition of this text.} The coefficient of A in the integrand is given as

‘9+ 12 [%(3 + JE)] +12 [%(3 - ﬁ)] +20(0) + 15(1)]
=1

1
ca = H;g(C)x(C) = =

So the integrand contains A, and thel transition to Ty would become aliowed | For the transition to G

E 12Cs 12¢3 20C3  15C;

A 1 1 1 1 |
1 1

u(Ty) 3 E(|+«/§) 5(1—J5) 0 —1

G 4 —1 -1 1 0
1 l

Integrand 12 —5(1 + V%) -5 - NG 0 0

The little orthogonality theorem gives the coefficient of A in the integrand as

I12+ 12 [— %(1 +«/§)} +12 [— %(1 —JE)] +20¢0) + 15(0)}
=0
60

1
ca =7 2_&Ox(O=
C

So the integrand does not contain Ay, and thc| transition to G would still be forbidden [

Solutions 1o applications

The point group for the square Hq molecule is Dyp, with # = 16 symmetry species. To find the irreducible
representations or symmetry species spanned by four 5 orbitals, we use the methodology of Section 12.5¢.
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Dan E 2C, O 2C£ 2Cg i 2854 Th 2oy 204
Number of unchanged basis 4 0 0 2 0 0 0 4 2 0
members

The basis representation is obviously a linear combination of the Dy, symmetry species; it is reducible.
Only the E, 2C_;. ,on and 2oy, symmetry elements contribute (The others have factors of zero) to the
number of times symmetry species I” contributes (a(I")) to the representation of the basis.

E 2C; oh 20y

a(Ang)=1—{4-1-1 + 221 + 4.1.1 4+ 2.2.1} =1

a(Azg)=%{4-l-l + 2-2-(-D) + 4-1-1 + 2.2.(-1)} =10

H(Blg)=ﬁ{4l]+221 + 4.1.1 + 2.2-1} =]
aBr)= 4 11+ 22021 + 40T+ 22(=D) =0
a(Eg)=]l—6[4-1-2 £ 220 4+ 4.1-(=2) + 2.2.0) =0
a(A1U)=%[4-l-l b 2:2.1 4 41 (=1) 4 2:2-(=1)} =0
a(Agu)=li6{4-|-1 b 2.2(=1) 4+ 4-1-(=1) + 2-2.1] =0

a(B1u)=%[4-1-l + 221 + 4-1-(=1) + 2.2.(-1)) =0

1

a(Bgu)=E[4-i-l 4+ 2:2.(-1) + 4. 1-(-1}) + 2-2.1} =0
1

a(Eu)=E[4-l-2 + 2-2.0 + 4-1.2 + 2-2.0} =1

The basis spans | Ajg + Bz + Ey |

Can the E, excited state be reached by a dipole transition from the A, ground state? Only if the
representation of the product ¢fjuy; includes the totally symmetric species Ajg. The z component of
the dipole operator belongs to symmetry species Azy, and the x and ¥ components belong to E,. So
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the products we musl consider are E;Ax A, and Ey EuA)g. For z-polarized transitions, the relevant
characters are:

E 20, G 20, 20y i 255 on 20, 20y
E, 20 -2 0 0o -2 0 20 0
Aay 1 1 -l -1 e T 1
Ag L | ! 1 1 I 1 1
EuAzAl, 2 0 -2 0 0 2 0 -2 0 0

To see whether E A2 A, contains Ay, we would multiply the characters of the E As, Ay by
the characters of Ajy, sum those products, and divide the sum by the order /i of the group; since
the characters of A\ are all 1, we can simply sum the characters of EyAgyAng. Since they sum Lo zero,

the product E, A2, A, does not contain Ay, and the | z-polarized transition is not allowed |

For x- or y-polarized transitions:

E 20 G 20 2y i 285 o 200 204
E, 20 -2 0 0 -2 0 20 0
E, 20 2 0 0 -2 0 20 0
Alg 1o . 1 Lo 1 I |
E.EA, 4 0 4 0 0 4 0 4 0 0

Summing the characlers of E,E A |4, yields 16, the order of the group. Therefore the product EyEvAlp

does contain A, and the | transilion is allowed |
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1 3 and vibrational

spectroscopy

D13.2

D13.4

E13.1{b)

Answers to discussion questions

The gross selection rules tell us which are the allowed spectroscopic transitions. For both microwave and
infrared spectroscopy, the allowed transitions depend on the existence of an oscillating dipole moment
which can stir the electromagnetic field into oscillation (and vice versa for absorption). For microwave
rotational spectroscopy, this implies that the molecule must have a permanent dipele moment, which
is equivalent to an oscillating dipole when the molecule is rotating. See Figure 13.17 of the text. In
the case of infrared vibrational spectroscopy. the physical basis of the gross selection rule is that the
molecule have a structure that allows for the existence of an oscillating dipole moment when the molecule
vibrates. Polar molecules necessarily satisfy this requirement, but non-polar molecules may also have a
fuctuating dipole moment upon vibration. See Figure 13.28.

The answer Lo this question depends precisely on what is meant by equilibrium bond length. See the
solution to Problem 13.22 where it is demonstrated that the centrifugally distorted bond length r¢ is
given by the relation

re

o= —7"F—.
| — merpew? k

The angular velocity depends upon the quantum number J through the relation
W =Ji + l)fiQ/mngr:;

thus, the distortion is greater for higher rotational energy levels. But the equilibrium bond length »,
remains constant, if by that term one means the value of r corresponding to a vibrating non-rotating
molecule with / = 0. However, if one describes the vibration of the melecule in a higher rotational
state as having a new “equilibrium” distance r¢, the potential energy of vibration will also be different.
It is lowered by the amount shown in eqn 13.33, that is, —D;J2(J + [)*. A detailed analysis of the
combined effects of rotation and vibration is quite complicated. The treaunent in Section 13.12 ignores
the effects of centrifugal distortion and anharmonicity. See the references under Further Reading for a
more thorough discussion.

Solutions to exercises

The ratio of coefficients A/B is

A Saiv’ 8m(6.626 x 107 s) x (500 x 100s~')? 5
a_ - =773 x 1072 m3
@ =3 (2998 x 108 ms—1) 773 x m s
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(b} The frequency is

h 8w(6.626 —34
514 _ 7 ( x 10 Js)= 62 x 10-2 J m—3s

c " A
V= — —_——= — =
AT B X (3.0x102m)
E13.2(b) A source approaching an observer appears to be emitting light of frequency
v
Vapproaching = 5 “3 15, SECtiOH 133]
T
. |
Since v o« T Aops = (1 —s/c) A
For the light to appear green the speed would have to be
Aobs 3 . 1 520 nm -
=[1- =(2.998 x 10°ms™') x [1— =[6.36 x 107 :
S( A)c( ) 660 nm (636 x 10" ms
or about 1.4 x 10® m.p.h.
(Since s = c, the relativistic expression
1+ (s/e)\'"?
= —— v
Vobs 1 — (/)
should really be used. It gives s = 7.02 x 107 ms™!.)
E13.3(b) The linewidth is related to the lifetime ¢ by
531 em™! 531 cm™!
5= 22 [13.19] so 7= 2t s
T/ps &v
(a) We are given a frequency rather than a wavenumber
- (531 em™1) x (2.998 x 100 ems™!) 3
D=vfc s0 T= 100 % 10651 ps = 1.59 x 10 ps
or
®) t 531 cm™!
= ———n§ = .
21dem-1 ¥ P
E13.4(b) The linewidth is related to the lifetime = by

_ (531em™Y)e

531 em™!
— 50 &y
T/ps

T/ps
(a) If every collision is effective, then the lifetime is 1/(1.0 x 10° s71) = 1.0 x 10775 = 1.0 x 10° ps

. —1 } 1 10 -1
(5.31em™) x (2998 x 107 ems™) _ | o 108 -1 —[160 MHz

5D =
v 10 x 107

Sv =




SPECTROSCOPY 1: ROTATIONAL AND VIBRATIONAL SPECTROSCOPY 241

(b} If only one collision in 10 is effective, then the lifetime is a factor of 10 greater, 1.0 x 10 ps

_ (53tem™!y x (2998 x 1019 cms™h) _
sy = 0% 108 =16x10's7" =|16MHz

E13.5(b} The frequency of the transition is related to the rotational constant by

hv = AE = hcAF = heBEJ{(J + 1) — (J = 1)J] = 2hcBS

where J refers to the upper state (J = 3). The rotational constant is related to molecular structure by

_ h _ h
T 4mwcd T AmemgR2

where [ is moment of inertia, m.yr is effective mass, and R is the bond length. Putting these expressions
together yields

=2B] = ———
Y ¢ 27T Mogr R2

The reciprocal of the effective mass is

o1 12wt (15.9949u)!
m M =mC +mo =
¢ 1.66054 x 10-27 kgu™!

= 8.78348 x 10%° kg~

(878348 x 105 kg™') x (1.0546 x 107> T 5) x (3)

= 11 -1
2r{112.81 x ]0—|2m)2 =|34754x 10" s

Sov

E13.6(b) (a) The wavenumber of the transition is related to the rotational constant by
hev = AE = he AF = heBlJ(J + 1) — (J — 1)J] = 2heBJ

where J refers to the upper state (J = 1). The rotational constant is related to molecular structure by

_ h
" 4wl

where I is moment of inertia. Putting these expressions together yields

- Ky Kt (1.0546 x 10737 5) x (1)
v=28BJ = 0o fl=—=
2l b 27(2.998 x 1010 ecm s~y % (16.93 cm™!)

1=[3307 % 1079 kg m? |

{b) The moment of inertia is related to the bond length by

[\
meﬂ')

N (1.0078 w)~! + (80.9163 u)~!
m =m =
off =R TR 1.66054 x 10-27 kg u~!

I = megR? soR=(

= 6.0494 x 10 kg™
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and R

1(6.0494 x 1020 kg™") x (3.307 x 107% kg m?))'/>

1.414 x 10~ "% =

E13.7(b) The wavenumber of the transition is related to the rolational constant by

hev = AE = e AF = heB[J(J + 1Y = (J — DJ] = 2heBJ

where J refers to the upper state. So wavenumbers of adjacent transitions (transitions whose upper states
differ by 1) differ by
h h
= sof = —
2ncf 2weAv

Av =28

where [ is moment of inertia, mer is effective mass, and R is the bond length.

(1.0546 x 1073 J 5)

So [ =
0= 3729979 x 10® ems—1) x (1.033 cm-1)

=5.420 x 10796 kg m?

The moment of inertia is related to the bond iength by

] 1/2
= chl‘[‘Rz so R = ( )
Hieif

S (189984 u)~! + (34.9688 u)~!

-1 -1 a5 -1
Mo =M Mo = =4.89196 x 1077 k
ef = ME T ey 166054 x 10-7 kgu~! £

and R = {(4.89196 x 107 kg™') x (5.420 x 10746 kg m?)}'/2

= 1.628 x 10-0m =

E13.8(b) The rotational constant is

h h h 172
B= = SO R=| ——
drel  4mc(@moR?) 8mcmoB

where [ is moment of inertia, mer is effective mass, and R is the bond length.

. ( (1.0546 x 10737 5) )”2
T A\87(2.9979 x 100 cm s—!) x (15.9949 u) x (1.66054 x 1027 kg u~1)(0.39021)

=1.1621 x 107"%m = 116.21 pm

E13.9(b) This exercise is analogous to Exercise 13.9(a), but here our solution will employ a slightly different
algebraic technique. Let R = Rog, R = Res, 0 ='%0,C ="2C.

i= i [Comment 13.4]

4 B

1.05457 x 107715
(4} x (6.0815 x 10951

1.05457 x 107 s
{(dir) x (5.9328 x 109 s—1)

1(0C*28) = = 13799 x 107 kg m® = 8.3101 x 107" u m*

[(0CH8) = = 14145 x 107 kg m® = 8.5184 x 1077 u m?
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The expression for the moment of inertia given in Table 13.1 may be rearranged as follows.

Im = mamR? + nemR? — (AR — mcR')?
2 2
= m,oum.’i'2 + mcmR'z — miR2 + 2mamcRR — m(‘:R"

= nip(mp + mC)R2 + mc{mp + mp R+ 2mamcRR

Let inc = m3ag and mg. = magg

Im i q 7 ,

— = —=(mp +mcIR" + (ma + mp)R* + 2maRR {a)

mc Mg

m' mp A 2 ,

= = ;;[T('“B + mg)RT + (ma + mp)R™” + 2maRR (b)
C C

Subtracting

Im ' ma A
— ——={ = | mg+mc)— | = ) (mp +mp) R?
mc  mg e ni

Solving for R?

dm
R — (mc ol ) _ melnt — mcl'n’
r
[(%‘3) (mp + me) — (;_:A) (mp + m&)] mpma(mge — me)
C

Substituting the masses, with ma = mg, mp = mc, mc = Mazg, and m& = Mg

m = (15.9949 + 12.0000 4 31.9721) u = 59.9670 u

m' = (15.9949 + 12.0000 + 33.9679) u = 61.9628 u

g2 — (33.9679 u) x (83101 x 107"7 u m?) x (59.9670 u)
T (12.0000 u) x (15.9949 u) x {33.9679 u — 31.9721 u)

£33.9721 u) x (8.5184 x 10~'? u m?} x (61.9628 u)
(12.0000 u) x (15.9949 u) x (33.9679 u — 31.9721 u)

_ 51.6446 x 10712 m?)
N 383.071

R=1.161Tx 10""m =:Roc

Because the numerator of the expression for R” involves the difference between two rather large numbers
of nearly the saine magnitude, the number of significant figures in the answer for R is certainly no greater
than 4. Having solved for R, either equation (a) or (b) above can be solved for R'. The result is

R'=1559%x107'%m =[155.9 pm |= Rcs

E13.10(b) The wavenumber of a Stokes line in rotational Raman is

= 1.3482 x 107 ¥ m?

l-"Slol\'es‘. = ‘_"i - 28(2-’ + 3) [13423]

where J is the initial (lower) rotational state. So

Dstokes = 20623 cm™! — 2(1.4457 cm™") x [2(2) + 3] =|20603 cm~!
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E13.13(b)
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The separation of lines is 4B,s0 B = "T x (3.5312cm™!) = 0.88280 cm™!

h

1/2
—_— Exercise 13.8
411_'?10“08) {Exercise (a})

Then we use R = (

with megr = Lm(1%F) = § x (18.9984 u) x (1.6605 x 10" kgu™') = 1.577342 x 1072 kg

_ ( 1.0546 x 10734 J s )"2
= \47(1.577342 x 10~ kg) x (2.998 x 101 cm s-1) x (0.88280 cm~)

= 141785 x 107" m =] 141.78 pm

Polar molecules show a pure rotational absorption spectrum. Therefore, select the polar molecules based
on their well-known structures. Alternatively, determine the point groups of the molecules and use the
rule that only molecules belonging to C,,, Cuy, and C; may be polar, and in the case of C, and C,v, that
dipole must lie along the rotation axis. Hence all are polar molecules.

Their point group symmetries are
(a) H20, Cy, (b) H207, Cz, (€) NH3, Cay, (2) N2O, Cooy

show a pure rotational spectrum.

A molecule must be anisotropically polarizable to show a rotational Raman spectrum; all molecules

except spherical rotors have this property. So | CH2Cl2 | l CH;CH;J, and | N>O | can display rotational
Raman spectra; SFg cannot.

The angular frequency is

e\ 172
w= (;) =27y so k=(rv)m=(2r) x 3.0s7")? x (2.0 x 107 kg)

e=[071Nm™]

k12 L\ 2
W= ( ) o = ( ) [prime = *HYCI)

r
Mefl Moy

The force constant, &, is assumed to be the same for both molecules. The fractional difference is

b\ 2 L \/2 L L\ M2
o - w _ (m::ﬁ‘) - (mclT) _ (m::ff) B (meﬁ) Mt 172 |
o X N2 = 1 \ /2 N\ -
(meﬂ') (mcﬁ')

Mot
o —w (??Zcﬂ‘)lfz | = [ myme) {may + mizy) }”2 |
Mg mg +mer (moy X mzg)

_ [ (10078 ) x (34.9688 1) (20140 u) + (36.9651 u) } 12 .
~ 1 (1.0078 u) + (349688 u) ~ (2.0140 u) x (36.9651 u)

= —0.284

Thus the difference is| 28.4 percent
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The fundamental vibrational frequency is

2
w= ( ) =2rv=2acv so0o k= (2JTCD)2mc|T
Hleff

We need the effective mass

mot =myt +my! = (78.9183 u)~" + (80.9163 u)~! = 0.0250298 u™'
f— [27(2.998 x 10!0 cm s™") x (323.2 em™1)]? % (1.66054 x 107 kgu™")

0.0250298 u™!
=

The ratio of the population of the ground state (Np) to the first excited state (M) is

N()_ex —hv —ex —hev
N, P T TP\ T

No —(6.626 x 1073 Js) x (2.998 x 10"%cm s~!) x (321 cm'l))
Mo _ . =(0212
@ 3 XP( (1381 x 10-22 T K-1) x (298K)

No —(6.626 x 1073 5) x (2.998 x 100 cms™1) x (321cm-‘))
b} — =ex =|[0.561
(b) Ny p( (1.381 x 1023 J K1) x (800K)

The relation between vibrational frequency and wavenumnber is

k 1/2 1 k 172 km_] 1/2
w= =2rv=2nch so V=— =%
Meff 2me \ Mefi 2mc

The reduced masses of the hydrogen halides are very similar, but not identical
-1 _ . =l -1
Mope =Mp + My

We assume that the force constants as calculated in Exercise 13.18(a) are identical for the deuterium
halide and the hydrogen halide.

For DF

(20140 w)~! + (18,9984 )~ !
m E-=1
off 1.66054 x 10-27 kg u™!

33071 x 10%kg™!) x (967.04kgs~)}'/?
5= X g ) x( 8N 30023 em-!
2m(2.9979 x 109 cms—1)

For DCl

= 33071 x 10 kg~!

=] (20140 )~ + (34.9688 u)~!
f 166054 % 10-2 kgu™!

. {(3.1624 x 10%kg™") x (515.59kgs~2)}'/? _
= =|21437e¢m™!
Y 27(2.9979 x 10Pcms—1)

=3.1624 x 10%° kg~!
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For DBr

1 _ (20140071 + (809163 u)!

mo = = 3.0646 x 10%¢ kg~
eff 1.66054 x 1027 kg u™" g

26 1 | —2311/2
G {(3.0646 x 10-°kg™") x (411.75kgs™)} _ {18858 e
2m(2.9979 % 1019 cms~1})
For DI

_1 {20140 u)~" + (126.9045 u)~!
mn =
eft 1.66054 x 1027 kg u™!

=3.0376 x 10 kg™!

3.0376 x 10 kg™! 314.21kgs— )12
5= U x g ) x( 8" " 1640, e~
27(2.9979 x 100 ems—1)

E13.19(b) Data on three transitions are provided. Only two are necessary to obtain the value of ¥ and x.. The third
datum can then be used to check the accuracy of the calculated values.

AGW = [ « 0) = D — 2ix, = 2345.15cm™! [13.57]
AG(y =72 « 0) = 2V — 6Dxe = 4661.40 cm™' [13.58]

Multiply the first equation by 3, then subtract the second.

b =(3) x (2345.15cm™") — (466140 cm™') =

Then from the first equation

b — . -1 2374.05 — 2345.1 ~I
ol 2345~15 em™' _ (2374.05 - 2345.15)em™! 6087 x 103
20 (2) x (2374.05cm™ 1)

X data are usually reported as x. v which is

1.0 = 14.45cm™!

AG(r =3 «0) =30 — 12vx. = (3) x (2374.05em™ ") — (12) x (J4.45cm™ ")
= 6948.74 cm™!

which is close to the experimental value.

E13.20(b) AGyprp =5 — 2w + Dxed [13.57]  where AGyy12 = G + 1) — G(v)

Therefore, since
AGyii2 = (1 = 2x)0 — 2ux b

a plot of AG,412 against v should give a straight line which gives (1 — 2x.)v from the intercept at
v = 0 and —2x, " from the slope. We draw up the following table
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v 0] 1 2 3 4

G(v)/em™! 1144.83 337490 552551 7596.66 958835
AG,,H/g/cm“l 2230.07 2150.61 2071.15 1991.69

The points are plotted in Figure 13.1.

2200 |- TS SO RO

AG.,H/g/cm"
0
o
&

2000

v Figure 13.1

The intercept lies at 2230.51 and the slope = —76.65 cm~'; henee xo b = 39.83 em™".
Since i — 2x. i = 2230.5] cm~! it follows that ¥ = 2310.16 cm™!
The dissociation energy may be obtained by assuming that a Morse potential describes the molecule and

that the constant £, in the expression for the potential is an adeguate first approximation for it. Then

L (231016 em™')?
dx.b  (4) % (39.83 cm~ )

D, = — [13.55] = =3350x 10° cm™! =4.15¢eV
4x;

However, the depth of the potential well D, differs from Dy, the dissociation energy of the bond, by the
zero-point energy; hence

I
Do = D; = 5 = (3350 x 10* em™") (4) x @310.16em™")

=[3.235 x 10°cm~" | =[4.01 eV |

E13.21(b} The wavenumber of an R-branch IR transition is
vp =9+ 2B(J + 1) [13.62¢]

where J is the initial (lower) rotational state. So

vp = 2308.09cm™" +2(6511 em™") x (24 1) =|2347.16 cm ™!
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E13.22(b) See
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Section 13.10. Select those molecules in which a vibration gives rise to a change in dipole moment.

It is helpful to write down the structural formulas of the compounds. The infrared active compounds are

(a) CH3CHa; (b) CHy; (¢) CH3 Cl

COMMENT. A more powerful method for determining infrared activity based on symmetry considerations is
described in Section 13.15.

E13.23(b) A nonlinear molecule has 3¥ — 6 normal modes of vibration, where N is the number of atoms in the
molecule; a linear molecule has 3N — 5.

(a)
{b)
(c)

E13.24(b) (a)

(b)

CgHs has 3(12) — 6 =[30] normal modes.
CgHsCHj has 3(16) — 6 = | 42 | normal modes.
HC=C—C=CH is linear; it has 3(6) — 5 = { 13 | normat modes.

A planar AB3 molecule belongs to the D3y, group. Its four atoms have a total of 12 displacements,
of which 6 are vibrations. We determine the symmetry species of the vibrations by first determining
the characters of the reducible representation of the molecule formed from all i2 displacements and
then subtracting from these characters the characters corresponding to translation and rotation. This
latter information is directly available in the character table for the group Day. The resulting set of
characters are the characters of the reducible representation of the vibrations. This representation can
be reduced to the symmetry species of the vibrations by inspection or by use of the little orthogonality
theorem.

Dy E o 203 285 3CE',_ 30y
x (translation) 3 1 0 =2 -1 |
Unmoved atoms 4 4 1 1 2 2
¥ (total, product) 12 4 0 -2 =2 2
x (rotation) 3 -1 0 2 -1 =1
x (vibration) 6 4 0 -2 0 2

x (vibration) corresponds to A| -+ AJ + 2E’.

Again referring to the character table of D3y, we see that E” corresponds to x and y, AJ to z; hence

A% and E’ are IR active | We also see from the character table that £’ and A correspond to the

quadratic terms; hence rA’l and E" are Raman active |

A trigonal pyramidal AB3 molecule belongs to the group Cay. In a manner similar to the analysis
in part (a) we abtain

Civ E 2C3 3o,

x (total) 12 0 2

x (vibration) 6 -2 2

x (vibration) corresponds to 2A; + 2E . We see from the character table that are [R

active and that are also Raman active. Thus all modes are observable in both the IR and
the Raman spectra.
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E13.25(b) (b) The boat-like bending of a benzene ring clearly changes the dipole moment of the ring, for the
moving of the C—H bonds out of the plane will give rise to a non-cancelling component of their

dipole moments. So the vibration is .

(a) Since benzene has a centre of inversion, the exclusion rule applies: a mode which is IR active (such

as this one) must be | Raman inactive |

E13.26(b) The displacements span Ay + Ay + Azg + 2E|u + Eig. The rotations R, and R, span Ejg, and the

translations span Ej, + Ajy. So the vibrations span |Ajg + A2z + Eqy

Solutions to problems

Solutions to numerical problems

$ 1/2
P13.2 8 _z (2” 1”2) [13.17]
A c m
231 11 12

_( 2 L[ @& x (1381 x 1072 K71 x 298 K) x (In2)
T\ 2998 x 108 ms! (m/u) x {1.6605 x 10~%7 kg)
_ 1237 x107°
- {mju)l/2

SA
13435 o ~ -6
(a) For '"HCl, m =~ 36u, s0 T 2.1 x 10
3
127735 ~ . -7
(b) For "“*'I°°Cl, m = 162 u, so T 9.7 x 10

For the second part of the problem, we also need

56 Sv 2 f2kThn2)\'/*? sh [8a
2oL [13.17]= — |— <1
v v c m A A

(a) For HC], v(rotation) = 2Bc =~ (2) x (10.6 cm™') x (2.998 x 10%cms™})
~64x 10"s ' or6.d x 10" He

Therefore, Sv(rotation) == (2.1 % 10~%) x (6.4 x 10/ Hz) =[ 1.3 MHz

P(vibration) = 2991 cm™' [Table 13.2]; therefore

v (vibration) & (2.1 x 107%) x (2991 cm™') ={0.0063 cm™!

(b) For IC], v(rotation) = (2) x (0.1142 cm™") % (2.998 x 100cm s~ 1) = 6.8 x 10°Hz

Sv(rotation) = (9.7 x 1077} x (6.8 x 10° Hz) =| 6.6 kHz

D(vibration) ~ 384 cm™!

5 (vibration) & (9.7 x 107} x (384 cm™") = | 0.0004 cm™!
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COMMENT. ICl is a solid which melts at 27.2 °C and has a significant vapor pressure at 25 °C.

Rotational line separations are 2B (in wavenumber units), 2B8¢ (in frequency unifts), and 2B)"! in

wavelength units. Hence the transitions are separated by | 596 GHZ |,{ 19.9 cm™! | and | 0.503 mm |

Ammonia is a symmetric rotor (section 13.4) and we know that

h
B=—113.30
4frciJ_[ 30]

and from Table 13.1,

MAMB

I, = maRY(1 —cosB)+( )R2(1 +2¢0s0)

i

ma = 1.6735 x 1072 kg, mp = 2.3252 x 107 kg, and m = 2.8273 x 10~ kg with R = 101.4 pm
and # = 106°47, which gives

Il = (1.6735 x 1077 kg) x (101.4 x 107"2m)? x (1 — cos 106°47")

(1.6735 x 107%7) x (2.3252 x 10~ kg?)
+
2.8273 x 10~ kg

x (101.4 x 1072 m)? x (1 + 2cos 106°47")
=2.8158 x 107 kg m®

Therefore,

1.05457 x 10734
- g =994.1m™" =[9.041 cm™! |

B= =
(4) x (2.9979 x 108 ms~1) x (2.8158 x 10~47 kg m?)
which is in accord with the data.
Rotation about any axis perpendicular to the Cg axis may be represented in its essentials by rotation of

the pseudolinear molecule in Figure 13.2(a) about the x-axis in the figure.

[e—Rc—> | —— Ryp, —>|

o O O o

2mym,) 2mc 2mc iy

x Figure 13.2(a)

The data allow for a determination of R¢ and Ry which may be decomposed inte Roe and Rewpy.-

In = 4mpRY 4+ 4mcR2 = 147.59 x 107" kg m?
Ip = 4mpRY + dmcR: = 178.45 x 1074 kg m?
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Subtracting fy from /Ip (assume Ry = Rp) yields

40mp — my)RY = 30.86 x 10747 kg m?
4(2.01417 u — 1.0078 u) x (1.66054 x 107> kg u™') x (RE) = 30.86 x 107 kg m?
R =4.6169 x 107 m? Ry =2.149 x 1070m

R = (147.59 x 107" kg m?) — (4muRE)

4me
(147.59 x 10~47 kg m?) — (4) x (1.0078u) x (1.66054 x 1077 kg u™") x (4.6160 x 1072 m?)

(4) x (12.011u) x (166054 x 10~2Tkgu~")
14626 x 107 m?

Re =1.200 x 107"%m

Figure 13.2(b) shows the relation between Ry, Rc, Ree, and Ren.

Figure 13.2(b)

Re 1209 x 107"m

Ree = = =139 % 1079m =|139.6
CC= os30° 0.8660 % m
Ry —Re 0940 x 10710 - 10 -
Rey = = =1.085 x 107'° =} 1085
CH = s 30° 0.8660 x
Rep = Reu

COMMENT. These values are very close to the interatornic distances quoted by Herzberg in Electronic Spectra
and Electronic Structure of Polyatomic Molecules, p. 666 (Further reading, Chapter 14), which are 139.7 and
108.4 pm respectively.

P13.8 =280+ 1)[13.37] = 2B

Hence, B('HCl) = 10.4392cm !, BEHCI) = 5.3920cm™!
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h
Al

B= {13.24] 1 = megR? [Table 13.1]

2 i h —-44
= e =279927 x 1077k
drcmegB  dmc * sm

(1.007 825u) x (34.96885u)
{1.007825u) + (34.96885u)

merr(HCI) = ( ) x (1.660 54 x 10777 kgu_])
= 162665 x 10727 kg

(2.0140u) x (34.968 85 u}
(2.0140u) + (34.968 85 u)

megr (DCL) = ( ) x {1.66054 x 107> kgu™")

=3.1622 x 107 kg

2.79927 x 10~ kgm
(1.626 65 x 1027 kg) x (1.04392 x 103 m~")

R(HCI) = 128393 x 107"%m = 128.393 pm

279927 x 107*kgm
(3.1622 x 10~ kg) % (5.3920 x 102 m~1)

RCHCI) = 1.2813 x 107 '%m = 128.13 pm

COMMENT. Since the effects of centrifugal distertion have not been taken into account, the nurmber of sig-
nificant figures in the calculated values of R above should be no greater than 4, despite the fact that the data
are precise to 6 figures.

R (HC)) = = 1.64848 x 1070 m?

RY(PHQl = = 16417 x 107 m?

P13.10 From the equation for a linear rotor in Table 13.1 it is possible to show that [y = mamc(R + R +
mampR2 + mymcR2.

Thus, /('6012C328) = (

m('%0)m(*>28) g . { m(POm('®O)R? + m(**$)R"}
m(eonCHg) | X R+ K+ m(16012C325)

16123 oy m(BO)m38) a2 m("2C){m(SO)R? + m(iSHR?)
1C07C s)_(m(I60]2c34S) X (R+R)"+ n(BO12CHS)

m('60) = 15.9949 u, m('2C) = 12.0000u, m(*28) = 31.9721u, and m(**S) = 33.9679 u. Hence,

1('80"2C328) /u = (8.5279) x (R + R')? + (0.20011) x (15.9949R% + 31.9721R"?)

105023 8) /u = (8.7684) x (R + R')* + (0.19366) x (15.9949R* + 33.9679R?)
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The spectral data provides the experimental values of the moments of inertia based on the relation
D = 2eB(S -+ 1) [13.37] with B = hfdmcl [13.24]. These values are set equal to the above equations
which are then solved for R and R" . The mean values of 7 obtained from the data are

1('0"2C¥28) = 1.37998 x 10"¥ kg m?

1(%0'2C348) = 1.41460 x 10 P kg m*

Therefore, after conversion of the atomic mass units to kg, the equations we must solve are

137998 x 107** m? = (14161 x 10726) x (R + R')? + (5.3150 x 1072R?)
+ (10624 x 10720R?)

1.414 60 x 107P m? = (1.4560 x 10_26) % (R+R’)2 + (5.1437 x 10—27R2)
+(1.0923 x 1078

These two equations may be solved for R and R'. They are tedious to solve by hand, but straightforward.
Exercise 13.9(b) illustrates the details of the solution. Readily available mathematical software can be

used to quickly give the result. The outcome is R = | 116.28 pm |and R’ =| 155.97 pm |. These values
may be checked by direct substitution into the equations.

COMMENT. The starting point of this problem is the actual experimental data on spectral line positions.
Exercise 13.9{b} is similar to this problern; its starting point is, however, given values of the rotational constants
B, which were themselves obtained from the spectral line positions. So the results for R and R’ are expected
to be essentially identical and they are.

Question. What are the rotational constants calculated from the data on the positions of the absorption
lines?

The wavenumbers of the transitions with Av = +1 are
1-)2
AGyripp = v = 2(v+ Dx v [13.57] and De = ——[13.55]
dxpv

A plot of AG,1/2 against v + 1 should give a straight line with intercept ¥ at v + 1 = 0 and slope
—2x D,

Draw up the following table

v+1 1 2 3

AG,q1pfem™" 28450 283.00 281.502

The points are plotted in Figure 13.3.
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286

285

[
%]
=

[
&0
)

AGy, 12 /em™!

282

281

v+ 1 Figure 13.3

The intercept is at 286.0, so i = 286 cm™". The slope is —1.50, s0 x. ¥ = 0.750cm™". It follows that

(286 cm™ )2 -
D, = =27300cm~", or 3.38eV
(4} x (0.750cm™1)

The zera-point level lies at| 142.81 cm™! |and so Dg = |3.36 eV | Since

(22.99) x (126.90)
(22.99) + (126.90)

Meff = u=19.464u

the force constant of the molecule is

k= 4172meffc?‘ﬁz [Exercise 13.16(a)]

= (472) x (19.463) x (1.6605 x 10727 kg) x [(2.998 x 100 cms™") x (286 cm™"))?
=

The set of peaks to the left of center are the P branch, those to the right are the R branch. Within the rigid
rotor approximation the two sets are separated by 4B. The effects of the interactions between vibration
and rolation and of centrifugal distortion are least important for transitions with small J values hence
the separation between the peaks immediately to the left and right of center will give good approximate
values of 8 and bond length.

(a) Q(J) = i [13.62b] = 214326 cm™!
(b) The zero-point energy is %ﬁ = 1071.63cm™!. The molar zero-point energy in J mol™! is

Nahc x (1071.63cm™") = Nahe x (1.07163 x 10°m™")

= 1.28195 x 10" Jmol™! = 12.8195 kJ mol ™~
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{c) k=4pipetil

memo ((12.0000 u) x (15.9949 u)

1216
C'%0) = =
w )= e+ mo — \{(12.0000u) + (159949 1)

= 1.13852 x 107 kg

) x (1.66054 x 107> kgu™")

k= dz2c® x (113852 x 107 kg) x (2.14326 x 10°m~")? = [ 1.85563 x 10* Nm™'

(d) 48 =5 7.655¢cm™!

B ==z [4 significant figures not justified]

P J
= —[13.24] = ——— [Table 13.1]
drcl ArcpR=

(e) B

, h h

R -_— =
dmepB  (dme) x (1.13852 x 10726kg) x (191 m™1)

R=113x 10"°m=

P13.16 V(R) = heDe {1 —c~®=R))? [13.54)

= 1.287 x 1070 m?

=2 —9368cm~ xb=14.15cm™!
2rc

1/2 ] -

Mgy ha D v

a= W X = = —
(ZIrch ) ¢ 2nitefre ¢ 4x,

(1.008) x (85.47)

u=1.654x 107 kg
(1.008) + (85.47)

merr{RbH) =

] —_ )

z 936.8 1y2 _

g o O3B Y essem! (192ev)
4y, (4} x (14.15cm™)

D

2 mer )2 [13.54] = 2mcp [ —elf v
aq = . = LIICD
Y\ 2heD, 2Dy

= (27) % (2.998 x 10%cm sy x (936.8 cm™))

1.654 x 10~*kg )”2
x
(2) x (13505 em~1) % (6.626 % 10-3*J5) x (2.998 x 10%cms—1)

1
=9 144 x 10° m~! = 0. L —
9.144 x 10" m 9.44 nm 01094 v

V(R
Therefore, I R) — “ _e—(R—Rl.)/(O.I094 nm)}’l

¢
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with R, = 236.7 pm. We draw up the following table

R/pm S0 100 200 300 400 500 600 700 800

V/(heDe) 204 620 0.159 0193 0601 0828 0929 0971 0.988

These points are plotted in Figure 13.4 as the line labeled J = 0

WRYheD,

0 200 400 600 800 1000
Ripm Figure 13.4

l .
For the second part, we note that B < = and write

2

Vi =V +heBJ(J + | Re
;= +C“(+)xﬁ

with B, the equilibrium rotational constant, Be = 3.020 cm™!.

We then draw up the following table using the values of V calculated above

R/pm 30 100 200 300 400 600 800 1000

% 473 237 118 079 059 039 030 024
v

204 620 0.159 0.193 0.601 0929 00988 1.000
heDe
Vio

275 799 0606 0392 0713 0979 1016 1.016
heD,
V*
—80 487 133 193 0979 1.043 1.13 1.099 1.069
heDe
Vit

64.5 172 291 142 129 124 116 1.1l
heD.

These points are also plotted in Figure 13.4
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(a) Vibrational wavenumbers (U /cm~') computed by PC Spartan Pro™ at several levels of theory are

tabulated below, along with experimental values:

A Ay B>
Semi-empiricat PM3 412 801 896
SCF 6-316G** 592 1359 1569
Density functional 502 1152 1359
Experimental 525 1151 1336

The vibrational modes are shown graphicaltly in Figure 13.5.

Figure 13.5

(b) The wavenumbers computed by density functional theory agree quite well with experiment. Agree-

ment of the semi-empirical and SCF values with experiment is not so good. In this molecule,
experimental wavenumbers can be correlated rather easily to computed vibrational modes even
where the experimental and computed wavenumbers disagree substantially. Often, as in this case,
computational methods that do a poor job of computing absolute transition wavenumbers still put
transitions in proper order by wavenumber. That is, the modeling software systematically overes-
timates (as in this SCF computation) or underestimates (as in this semi-empirical computation) the
wavenumbers, thus keeping them in the correct order. Group theory is another aid in the assignment
of transitions: it can classify modes as forbidden, allowed only in particular polarizations, tc. Also,
visual examination of the modes of motion can help to classify many modes as predominantly bond-
stretching, bond-bending, or internal rotation; these different modes of vibration can be correlated
to quite different ranges of wavenumbers (stretches highest, especially stretches involving hydrogen
atoms, and internal rotations lowest.).

Summarize the six observed vibrations according to their wavenumbers (v/cm™ 1y

IR

870 1370 2869 3417

Raman 877 1408 1435 3407
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(a) If H»O> were linear, it would have 38 — 5 = vibrational modes.

(b) Follow the flow chart in Figure 12.7. Structure 2 is not linear, there is only one C, axis (a ), and
there is a o; the point group is . Structure 3 is not linear, there is only one C,, axis (a Cz), no

o, but two ay; the point group is . Structure 4 is not linear, there is only one C,; axis (a C3),

no oy, no oy; the point group is .

{c) The exclusion rule applies to structure 2 because it has a center of inversion: no vibrational modes
can be both IR and Raman active. So structure 2 is inconsistent with observation. The vibrational
modes of structure 3 span 3A| + Az + 2B;. (The full basis of 12 cartesian coordinates spans
4A| +2A2 4+ 2B + 4B1; remove translations and rotations.) The Cay character table says that five
of these modes are IR active (3A, -+ 2B2) and all are Raman active. All of the modes of structure 4
are both IR and Raman active. (A look at the character table shows that both symmetry species
are IR and Raman active, so determining the symmetry species of the normal modes does not help
here.) Both structures 3 and 4 have more active modes than were observed. This is consistent with
the observations. After all, group theory can only tell us whether the transition moment musr be zero
by symmetry; it does not tell us whether the transition moment is sufficiently strong to be observed
under experimental conditions.

Solutions to theoretical problems

Because the centrifugal force and the restoring force balance,
_ 2.
kire — re) = pwre,

we can solve for the distorted bond length as a function of the equilibrium bond length:

Te

T 1 poijk

re
Classically, then, the energy would be the rotational energy plus the energy of the stretched bond:

gl kre—r)? P Ko —re? P2 (el

T2 2 T u 2k o 2%

How is the energy different form the rigid-rotor energy? Besides the energy of siretching of the bond,
the larger moment of inertia alters the strictly rotational piece of the energy. Substitute ;u'cz for / and
substitute for r. in terms of r. throughout:

JA(1 — pw?fk)? platr?
2per? 2k(] = k)2

So E=

Assuming that pw?/k is small (a reasonable assumption for most molecules), we can expand the
expression and discard squares or higher powers of pw? /k:

P = 2ue? k) | pletr?

E
2ur? 2k

(Note that the entire second term has a factor of paw? /k even before squaring and expanding the denom-
inator, so we discard all terms of that expansion after the first.) Begin to clean up the expression by using
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classical definitions of angular momentum:
2 7
J=lw=urw so w=J/ur
which allows us to substitute expressions involving J for all @ s:

J? e J4
Ex s - +
2ur? urSk 0 2u?r8k

{At the same time, we have expanded the first term, part of which we can now combine with the last
term.) Continue (o clean up the expression by substituting 7/ for 2, and then carry the expression over
to its quantum mechanical equivalent by substituting J(J + 1)4? for J2:

AL _JUE DR U+ D

- =E

E~—
25 25k 21 213%

Dividing by hc¢ gives the rotational term, F(J):

JUADRE U+ JU+ D) U+ DR
2hel 2hef3k T dmdd Awcl3k

F(J) =~

where we have used & = 1/2r 1o eliminate a common divisor of 4. Now use the definition of the
rotational constant,

h 5 - 3167r2c2p.
B=——=FWUO=JJ+DB-F(J+1)yB —
4l k

Finally, use the relationship between the force constant and vibrational wavenumber:

k 1/2 _ L 1
(E) =a)vib=21rv=2n'cv 50 E=m

i 483 ) ) 5 4p3
leaving F(J) ~ BJ(J + 1) — —-J2( + )? = BIUJ + 1) = DJ*(J + )? where| D = — |
vV

P13.24 N  ge~£/T [Boltzmann distribution, Chapters 2 and 16]
Ny o gge~Et/AT o (20 4 1)e~HeBIUHN/AT (g, = 27 + | for a diatomic rotor]

The maximum population occurs when

iNJ - [2_ QJ + 1?2 x (’"—‘_B)]e-ncwuﬂ)/w -0

dJ kT

and, since the exponential can never be zero at a finite temperature, when

hcB
2
Y =2
QI+ x(k )

kT \'?
or when Jipax = ShcB 3
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kT
For ICl, with o= 2077.22 cm™! (inside front cover)
¢

207.22em~"\""* 1
Jome = | =20} _ 2 _[30
e (0.2284 cm-l) 2 30|
For a spherical rotor, Ny o¢ (2J - 1)2e ~HBVHDAT [0 = (27 4 1))

and the greatest population occurs when

Ny gy pa_ B+ 1y’ e—hBIUHIAT _
dJ kT

which occurs when

heB2T + 1Y

42+ 1) = ———
( ) T
kTN

max = | [ — - =
or at Jmax (hCB) 5

207.22 cm™! )"2 1
2

For CHa, Joux = !
Or -5, Jmax (5.24c:m—l

The energy levels of a Morse oscillator, expressed as wavenumbers, are given by:

i 1\? i 1NZ
G(vy = (v+ %) v — (v+ E) Xeb = (v+ 5) v — (v+ 5) v2/4Dc.
States are bound only if the energy is less than the well depth, D,, also expressed as a wavenumber:
1N = 1\2 =2
G(v) <D, or (v+ j) v— (v + 5) v /4D, < De.

Solve for the maximum value of v by making the inequality into an equality:

2 !
(v+3) 52/4De—(v+ 5)ﬁ+De=0.

Multiplying through by 4D, results in an expression that can be factored by inspection into:

2 1
[(b+3)5-20] =0 so v 5=2De/5 and v=|2D/i— |

Of course, v is an integer, so its maximum value is really the greatest integer less than this quantity.

Solutions to applications

(a) The molar absorption coefficient £(U) is given by

£(0) = A()  RTA(D)

= = [13.4, 1.8, and [.15]
[[CO2]  Ixco.p



SPECTRCSCOPY 1: ROTATIONAL AND VIBRATIONAL SPECTROSCOPY 261

where T = 298K, / = 10cm, p = 1 bar, and xco, = 0.021.

The absorption band originates with the 001 « 000 transition of the antisymmetric stretch vibra-
tional mode at 2349 cm™! (Figure 13.40). The band is very broad because of accompanying rotational
transitions and lifetime broadening of each individual absorption (also called collisional broaden-
ing or pressure broadening, Section 13.3). The specira reveals that the Q branch is missing so we
conclude that the transition| AJ = 0 is forbidden l(Section 13.12) for the Degy, point group of COs.
The P-branch (AJ = —1) is evident at lower energies and the R-branch (AJ = +1) is evident at
higher energies. See Figures 13.16(a), {b).

Carbon dioxide IR band

2 T T T | T
1.5
=
2
e 1
A
<<
0.5 -
0 1 I ] 1 1
2280 2300 2320 2340 2360 2380 2400
Wavenumber/cm™! Figure 13.6(a)
Molar absorption coefficient
20 T T T

0 | 1 | 1 |
2280 2300 2320 2340 2360 2380 2400

Wavenumber/cm™! Figure 13.6(b)
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(b)

INSTRUCTOR'S SOLUTIONS MANUAL

160 —12C—160) has two identical nuclei of zero spin so the COy wavefunction must be symmetric
w/r/t nuclear interchange and it must obey Bose-Einstein nuclear statistics (Section 13.8). Con-
sequently, J takes on even values only for the v = O vibralional stale and odd values only for the
v = 1 state. The (v, J) states for this absorption band are (1,J + 1) « (0,J) for / = 0,2.4,...
According to egn 13.61, the energy of the (0, /) state is

5(0.J) = §9 + BI(J + 1),

where 7 = 2349 cm ™!

_ 2MoR*  2(0.01600kgmol~)(116.2 x 1072 m)?

! Na 6.022 x 102 mol™!
=7.175 x 107 kgm? (Table 13.1)
B= '_: [13.24]
8m=cl

_ 6.626 x 107" Js
T 822,998 x 108 ms—1)(7.175 x 10~ kgm?)

=139.02m™" = 0.3902cm™!

The transitions of the P and R branches occur at
vp = —2BJ [13.62b]

and
g =D+ 2B(J+ 1) [13.62¢]

where J =0,2,4,6...

The highest energy transition of the P branch is at I —48; the lowest energy transition of the R branch
is at » + 2B. Transitions are separated by 48 (1.5608 cm™') within each branch. The probability of
each transition is proportional to the lower state population, which we assume to be given by the
Boltzman distribution with a degeneracy of 2J + 1. The transition probability is also proportional to
both a nuclear degeneracy factor (eqn 13.43) and a transition dipole moment, which is approximaltely
independent of J. The former factors are absorbed into the constant of proportionality.

transition probability oc (2J 4 1)g SO/ Me/kT

A plot of the right-hand-side of this equation against J at 298 K indicates a maximum transition
probability at Jpax = 16. We “normalize” the maximum in the predicted structure, and eliminate
the constant of proportionalily by examining the transition probability ratio:

transition probability for Jthstate  (2J + 1ye=SONhe/kT

wransition probability for Jyay state  33¢=S(0-16Mc/RT
_ 27+ 1 ot S =2T2)BRe IRT
33

A plot, Figure 13.6(c), of the above ratio against predicted wavenumbers can be compared 1o the
ratio A(#)/Amax wWhere Apayx is the observed spectrum maximum (1.677). It shows a fair degree of
agreement between the experimental and simple theoretical band shapes.
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Simple theeretical and exp. specira

i T

1 i |
] / N

Y

max A Mo’

. nnnnnﬂﬂHHU LA Hﬂﬂﬂnnnm

2300 320 2340 2360 2380 2400
#em™! Figure 13.6(c)

{(c) Using the equations of justification 13.1, we may write the relationship

I
A= 8(\3)[ [COz1d#t
0

The strong absorption of the band suggests that /» should not be a very great length and that [CO;]
should be constant between the Earth's surface and . Consequently, the integration gives

A =e(N[CO11h

= e()h ["-COZPI Dalton’s law of partial pressures
RT
p and T are not expected to change much for mmodest values of /i so we estimate that p = | bar and
T =288K.
3.3 x 10741 x 10°P,
A=¢g(DMh (3.3 ¢ xl 2)
(8.314J K~ mol™")(288K)

= (0.0138 m—* mole (B
Transmittance = 10~ = |9~ QOB m 7 mobeth 13 3]

The transmittance surface plot, Figure 13.6(d), clearly shows that before a height of about 30 m has
been reached all of the Earth’s IR radiation in the 2320-2380cm ™' range has been absorbed by
atmospheric carbon dioxide.
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|

i

)
J

Transmillance

Figure 13.6(d)

See C.A. Meserole, EM. Mulcahy, I. Lutz, and H.A. Yousif, J. Chem. Ed., 74, 316 (1997).

The question of whether io use CN or CH within the intersteilar cloud of constellation Ophiuchus for
the determination of the temperature of the cosmic background radiaticn depends upon which one has a
rotational spectrum that best spans blackbody radiation of 2.726 K. Given Bo(CH) = 14.90 cm™!, the
rotational constant that is needed for the comparative analysis may be calculated from the 226.9 GHz
spectral line of the Orion Nebula. Assuming that the line is for the '2C!*N isotopic species and J +1
J = |, which gives a reasonable estimate of the CN bond length (117.4 pm), the CN rotational constant
is calculated as follows.

v _ v
2e(J + 1)~ 4c
=1892cm™! (2)

By=v/jc= )

Blackbody radiation at 2.726 K may be plotted against radiation wavenumber with suitable trans-
formation of eqn 11.5.

- 85 heid
plv) = AT ]

Spectral absorption lines of 12C'N and '2C'H are calculated with eqn 16.44,
v(J+1«<Sy=2BJ+1)} J=01273,...

The cosmic background radiation and molecular absorption lines are shown in the graph, Figure 13.7.
It is evident that only CN spans the background radiation.
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Figure 13.7
P13.32 (a) The H; molecule is held together by a two-electron, three-center bond, and hence its structure is
expected to be an equilateral triangle. Looking at Figure 13.8 and using the law of cosines

R? = 2R% — 2R% cos(180° ~ 26)
= 2R%(1 — cos(120°)) = 3R:

Therefore

Rc =R/V3
Ie = 3mR% = 3m(R/~/§)2 = mR?
In = 2mRp = 2m(R/2)* = mR*/2

Therefore

Ic =2Ip

n=my #=130°

Figure 13.8
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k 2h h
drclg  dmemR? 2memR? [ ]

BN Na \'?
R= = ———
(ZJrcmB) (2?TCMHB)

(1.0546 x 10737 8) x (6.0221 x 10 mol~') x (

102my \'?
cm )

2 (2.998 x 108 ms—!) x (0.001 008 kgmol™') x (43.55cm~!)

=8764 x 10" m =

Alternatvely the rotational constant C can be used to calculate R.

h 13

- Arcle " dxcmR?

5 12 FNA 1/2
R = = —
(4JT(‘IHC) (4JTCMHC)

-3
(L%%XIWMJﬂXWDDIXmﬂmmq)x(ﬁmm)

[13.30]

47(2.998 x 108 ms~!} x (0.001 008kgmol™!) x (20.71cm—")

=8.986 x 10" m =

The values of R calculated with either the rotational constant C or the rotational constant B differ
slightly. We approximate the bond length as the average of these two.

.. (87.64 + 89.80) pm _
(R) = 2 =|88.7 pm

1 -2
(1.0546 x 10731 5) x (6.0221 x 102 mol™") x ( 0 m)
cm

h
B = =
2memR? 27(2.998 % 108 ms—1) x (0.00]1 008 kg mol™"} x (87.32 x 1012 m)?

=[#387em"1]

Since mp = 2my, Mepr.p = 2myu /3

o mmmqmm _rmﬁ)m~ _ Ba(H)
(D7) = (merf(D3) U2(Ha) [13.51] = e Da(H3) = e

2521 .6cm™!
= %ﬁT/ZL =|1783.0cm™!
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. 1
Since B and C ¢ —, where m = massof Hor D
m

M 1.008
M—H = 43.55 Cm_l x (m) = 21_80(:m‘—‘l
D .

M 1.008
C(DF) = C(HY) x — =20.71em™' x (

s L9 _[i037en]

B(D}) = B(H}) x



Spectroscopy 2:
electronic transitions

D14.2

D14.4

D14.6

Answers to discussion questions

The Franck—Condon principle states that because electrons are so much lighter than nuclei, an electronic
transition occurs so rapidly compared to vibrational motions that the internuclear distance is relatively
unchanged as a result of the transition. This implies that the most probable transitions vy < v; are vertical.
This vertical line will, however, intersect any number of vibrational levels vr in the upper electronic state.
Hence transitions to many vibrational states of the excited state will occur with transition probabilities
proportional to the Frank—Condon factors which are in turn proportional to the overlap integral of the
wavefunctions of the initial and final vibrational states. A vibrational progression is observed, the shape
of which is determined by the relative horizontal positions of the two electronic potential energy curves.
The most probable transitions are those to excited vibrational states with wavefunctions having a large
amplitude at the intermuclear position Re.

Question. You might check the validity of the assumption that electronic transitions are so much faster
than vibrational transiticns by calculating the time scale of the two kinds of transitions. How much faster
is the electronic transition, and is the assumption behind the Franck—Condon principle justified?

Color can arise by emission, absorption, or scattering of electromagnetic radiation by an object. Many
molecules have electronic transitions that have wavelengths in the visible portion of the electromagnetic
spectrum. When a substance emils radiation the perceived color of the object will be that of the emitted
radiation and it may be an additive color resulting from the emission of more than one wavelength
of radiation. When a substance absorbs radiation its color is determined by the subtraction of those
wavelengths from white light. For example, absorption of red light results in the object being perceived
as green. Scattering, including the diffraction that occurs when light falls on a material with a grid of
variation in texture or refractive index having dimensions comparable to the wavelength of light, for
example, a bird’s plumage, may also form color.

The characteristics of fluorescence which are consistent with the accepted mechanism are: (1) it ceases
as soon as the source of illumination is removed; (2) the time scale of fluorescence, == 10-%s, is typical
of a process in which the rate determining step is a spontaneous radiative transition belween states
of the same multiplicity; slower than a stimulated transition, but faster than phosphorescence; (3) it
occurs at longer wavelength (higher frequency) than the inducing radiation; (4) its vibrational structure
is characteristic of that of a transition from the ground vibrational level of the excited electronic state to
the vibrational levels of the ground electronic state; and (3), the observed shifting and in some instances
quenching of the fluorescence spectrum by interactions with the solvent.
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See Table 14.4 for a summary of the characteristics of laser radiation that result in its many advantages for
chemical and biochemical investigations. Two important applications of lasers in chemistry have been
to Raman spectroscopy and to the development of time resolved spectroscopy. Prior to the invention
of lasers the source of intense monochromatic radiation required for Raman spectroscopy was a large
spiral discharge tube with liquid mercury electrodes. The intense heat generated by the large current
required to produce the radiation had to be dissipated by clumsy water-cooled jackets and exposures
of several weeks were sometimes necessary to observe the weaker Raman lines. These problems have
been eliminated with the introduction of lasers as the source of the required monochromatic radiation.
As a consequence, Raman spectroscopy has been revitalized and is now almost as routine as infrared
spectroscopy. See Section 14.6(b). Time resolved laser spectroscopy can be used to study the dynamics
of chemical reactions. Laser pulses are used to obtain the absorption, emission, and Raman spectrum of
reactants, intermediates, products, and even transition states of reactions. When we want to study the
rates at which energy is transferred from one mode to another in a molecule, we need femtosecond and
picosecond pulses. These time scales are available from mode-locked lasers and their development has
opened up the possibility of examining the details of chemical reactions at a level that would have been
unimaginable before.

Solutions to exercises

According to Hund's rule, we expect one 1, electron and one 27 electron to be unpaired. Hence § = 1

and the multiplicity of the spectroscopic term is . The overall parity isu x g = @ since (apart from
the complete care), one electron occupies a u orbital another occupies a g orbital.

Use the Bee—Lambert law
I
log - = &Il = (=327dm? mol™! em™") x (2.22 x 1073 moldm ™) x (0.15cm)
0

= —0.10889

11 = 107010889 _ 778
1

The reduction in intensity is | 22.2 percent
g [13.2,13.3]
e=——1og — [13.2,13.
T
3 -1
" (6.67 x 10~4 mol dm ™) x (0.35cm)

=787 x 100 cm®* mol ' em™'  [1dm = 10cm]

log 0.655 = 787 dm> mol ™! cm™!

={79 x 10° em? mol™!

The Beer-Lambert law is

I - I
og I g1} so [] o 8 &

—1
T (323dm3 mol~' em~! x (0.750 cm)

(1] log(1 — 0.523) = 1.33 x 10~* moldm™>




E14.5(b}

E14.6(b)

270  INSTRUCTOR'S SOLUTIONS MANUAL

Note: a parabolic lineshape is symmetrical, extending an equal distance on either side of its peak. The
given data are not consistent with a parabolic lineshape when plotted as a function of either wavelength
or wavenumber, for the peak does not fall at the center of either the wavelength or the wavenumber
range. The exercise will be solved with the given data assuming a triangular lineshape as a function of
wavenumber.

The integrated absorption coefficient is the area under an absorption peak

A=f£df)

[f the peak is triangular, this area is
A = L(base) x (height)
= 2[(199 x 1072 m)~" — (275 x 1072 m)™!] x (2.25 x 10 dm* mol™' em ™)

. (1.56 x 10°dm* m~ ' mol~'em™") x (100emm™")

=156 x 10" dm*m~" mol~' cm™ 3
10 dm” m—3

=156 x 10°mmol~™ = 1.56 x [10%dm’ mol~! cm 2

Modeling the 7 electrons of 1,3,5-hexatriene as free electrons in a linear box yields non-degenerate
energy levels of

n2h?

n = a
SmL-

The molecule has six 7 electrons, so the lowest-energy transition is from » = 3 to n = 4. The length of
the box is 5 times the C—C bond distance R. So

4?2 — 3%

Allinew = SRy
[

Modelling the 7 electrons of benzene as free electrons on a ring of radius R yields energy levels of
m.,lhz
m = T

where / is the moment of inertia: / = mcR*. These energy levels are doubly degenerate, excepl for the
non-degenerate ny = (. The six & electrons fill the ny = 0 and | levels, so the lowest-energy transition
isfrommy = lwony =2

@2 —1HRr @22 - 1
ImeR: 8w im.R?

AEring =

Coimnparing the two shows

AR = n NN
finear = 53 BmeR? = S BmcR?

Therefore, the lowest-energy absorption will in energy.
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E14.7(b) The Beer—Lambert law is

1
log — = —¢[Jll =logT
1)

so a plot (Figure 14.1) of log T versus [J] should give a straight line through the origin with a slope m
of —el. Soe = —m/fl.

The data follow
[dye]/(mol dm~?) T log T
0.0010 0.73 —0.1367
0.0050 0.21 —0.6778
0.0100 0.042 —1.3768
0.0500 1.33 x 1077 —6.8761
0 : B H : :
=3.5384% 107 -
=1000; ©
-2 T T SLCTPT-TOPTRY
e o
PO NS ENE NS SO U N S 0 e
PR S SR PN S SRS ORI N  FO
e I
0.00 0.01 0.02 0.03 0.04 0.05 0.06

[dye]/(mol dm) Figure 14.1

The molar absorptivity is

—138dm? mol™!
e= 0 MO 1559 dm? mol™! cm™!
0.250cm

E14.8(b) The Beer—Lambert law is

-1
fog T = —g[Il s =—IlogT
og e[J}f so e T og

—1
£ =
(0.0155 moldm™3) x (0.250 cm)

log0.32 =| 128dm> mol~' cm~!

Now that we have ¢, we can compute T of this solution with any size of cell

T = 1088 = 10—[(I2§de mol~' em~")x(0.0155 moldm~*)x (0.450cm)] _
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The Beer-Lambert law is

1
log T =—¢[J)} so I=—-———log—
0

@ 1= 1  log & = [0010 ]

" (30dm’ mol~ ' em—1) x (1.0 moldm—*)

|
(h) l=- x log0.10 = | 0.033 cm

(30dm* mol~'em=1) x (1.0 moldm™)

The integrated absorption coefficient is the area under an absorption peak

A=fsd\7

We are told that ¢ is a Gaussian function, i.e. a function of the form

2

—x-
£ = Emux €XP 5
at

where x = D — mux and @ is a parameter related to the width of the peak. The integrated absorption
coefficient, then, is

00 2
—X
A= [ Emax SXP (—2) dxy = emaxa/
a

—0d

We must relate a to the half-width ai half-height, x, 2

2 2
X —*1n X172
%anx = Emax €XP ( s ) 50 ln% = p: and a = Ny
1/2 1/2
So A= emuti (f_) = (1.54 x 10*dm® mot™' em™") x (4233em™") x ()
In2 In2

=| 1.39 x 108 dm® mol~! em—2

In SI base units

4 = (1:39 x 10° dm? mol ™ em~2) x (1000 cm® dm™)
B 100cm m~!

=[139 x10° m mol~! |

F; is formed when F1 loses an antibonding electron, so we would expect F;’ to have a shorter bond than
Fz. The difference in equilibrium bond length between the ground state (Fz) and excited state (F:T +e7)
of the photoionization experiment leads us to expect some vibrational excitation in the upper state. The
vertical transition of the photoionization will leave the molecular ion with a stretched bond relative to
its equilibrium bond length. A stretched bond means a vibrationally excited molecular ion, hence a
transition to a vibrationally excited state than to the vibrational ground state of the cation.
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Solutions to problems
Solutions to numerical problems

The energy of the dissociation products of the B state, O(>P) and O(' D) above the v = 0 state of the
ground state is 7760 cm™! + 49363 cm~! = 57 123 cm™!. One of these products, O(' D), has energy
15870 cm™~'above the energy of the ground-state atom, O(*P). Hence, the energy of two ground-state
atoms, 200 P) above the v = 0 state of the ground electronic state is 57 123em™! — 15870cm™! =
41253cm~! = . These energy relations are indicated (not to scale) in Figure 14.2 of the
Instructor’s Solurions Manual.
We write £ = emaxe™" = emaxe—" /2F the variable being  and I being a constant. b is measured
from the band center, at which v = 0, = %:—:mx when 92 = 27 In2. Therefore, the width at half
height is

A}

A2 =2 x (2 n2)'2, implying that " =
81In2

Now we carry out the integration

00 00 \
A= fgdi} = Emaxf e_ulzrdﬁ = Emax(ZF:'r)”z |:f e dx = JT.’UZ:|
—00 —co

ZnAﬁfﬂ 12 T : ~
= Emax b2 = (41112) Emax A2 = 1.0645ema5 AV 2

From Figure 14.50 of the text we estimate gqax = 9.5 dm?mol™'ecm™' and AT 172 = 4760 em~!. Then

A= 1.0645 x (9.5dm’ mol™'em™!) x 4760cm™") =|4.8 x 10*dm* mol~" em—2

The area under the curve on the printed page is about 1288 mm?, each mm? corresponds to about

190.5 cm ! x 0.189 dm® mol~! em™', and so J ed? = 4.64 x 10* dm® mol~! cm™2. The agreement
with the calculated value above is good.

For a photon to induce a spectroscopic transition, the transition moment {g£) must be nonzero. The
Laporte selection rule forbids transitions that involve no change in parity. So transitions to the I, states
are forbidden. (Note, these states may not even be reached by a vibronic transition, for these molecules
have only one vibrational mode and it is centrosymmetric.)

We will judge transitions to the other states with the assistance of the Doy character table. The transition
moment is the integral [ ¥*pvf; dz, where the dipole moment operator has components proportional to
the Cartesian coordinates. The integral vanishes unless the integrand, or at least some part of it, belongs to
the totally symmetric representation of the molecule’s point group. To find the character of the integrand,
we multiply together the characters of its factors. Note that the p; has the same symmetry species as
the ground state, namely A ,, and the product of the ground state and g has the A |, symmetry species;
since the symmetry species are mutually orthogonal, only a state with A, symmetry can be reached
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from the ground state with z-polarized light. The > X" state is such a state, so 23S« L}isallowed.

That leaves x- or y-polarized transitions to the 2l'[g states to consider.

E OOCé 2Cy i oooy 2S¢
Ej’ (A | —1 1 -1 1 —1
oy or y(Ep) 2 0] 2cos¢d -2 0 2cosgh
Mg(Eip) 2 0 2cos¢ 2 0 ~2cos¢
Integrand 4 0 4cos ¢ 4 0 4cos ¢

The little orthogonality theorem (see the solution to Problem 12.18) gives the cocfficient of Ajg in the
integrand as

ca = (1/MZ(O)X(C) = [4+0 + 2(4cos’ @) + 4+ 0+ 2(4cos $)]/co = 0.

So the integrand does not contain Ajg, and the | transition to zl'lg would be forbidden.

The weak absorption at 30 000 cm™! is typical of a carbonyl group. The strong C=C absorption, which
typically occurs at about 180 nm, has been shifted to longer wavelength (213 nm) because of the double
bond and the CO group.

The ratio of the transition probabilities of spontaneous emission to stimulated emission at a frequency
v is given by

Bk k
A= T B[13.11] = — B, where k is a constant and we have v = E.

c3 Al A
Thus at 400 nm

B(400), andat500nom A(500) = LB(SOO)

AWMO0) = 5677 (500)3
A(500) _ ((400)° B(500)\ _ [ 64 5 6
Then, 00y — ((500)3) * (3(400)) = (125) x 107 =510

Lifetimes and half-lives are inversely proportional to transition probabilities (rate constants) and hence

_ l * _ i} -9 —4
1T = §) = s—a(§" = §) = 2 x 109 x (L0 x 10 $) =[2 x107%s|

The laser is delivering photons of energy

he (6626 x 1073 Js) x (2.998 x 108ms™")
E=hy = — = =4.07 x 107"
Y= 488 x 10-°m x !

Since the laser is putting out 1.0 mJ of these photons every second, the rate of photon emisssion is:

_ L0 x 1073 75!

=77 "7 5% 10Ys7!
207 x 10-19] * S



SPECTROSCOPY 2: ELECTRONIC TRANSITIONS 275

The time il takes the laser to deliver 10° photons (and therefore the time the dye remains fluorescent) is

108

= = —10
1= seomeT = 4% 107" sor Oans)

Solutions to theoretical problems

P14.14 (a) Ethene (ethylene) belongs to Day. In this group the x, y, and z components of the dipole moment
transform as Bay, B2y, and B, respectively. (See a more extensive set of character tables than in
the text.} The 7 orbital is By, (like z, the axis perpendicular to the plane) and 7* is B3, Since

B3z x By = Byy and Bay x Bayw = Ay, the transition is {and is y-polarized).

(b) Regard the CO group with its attached groups as locally Czy. The dipole moment has components that
transform as A (z), B (x), and B2 (y), with the z-axis along the C=0 direction and .x perpendicular to
the Ry CO plane. The n orbital is p,. (in the R2CO plane), and hence transforms as B2. The = * orbital
is py (perpendicular to the RoCQ plane}, and hence transforms as B;. Since Iy x I} = By x Ba = Ag,

but no component of the dipole moment transforms as Az, the transition is} forbidden |.
P14.16 W= —e[ Yrpexir, dx

L 1/2
From Problem 9.15, 119 = —ej Yixfode = —e [Z(mEk)l/z}

8 mev 2k l kN2
H . = X =|=||2mv=1 —
ence, f 3he? 2mek)V/? 3 v (mc )

Pi14.18 (a) Vibrational energy spacings of the state are determined by the spacing of the peaks of A.

From the spectrum, b = 1800 cm ™.

{b) Nothing can be said about the spacing of the upper state levels {without a detailed analysis of the
intensities of the lines). For the second part of the question, we note that after some vibrational
decay the benzophenone {which does absorb near 360 nm) can transfer its energy to naphthalene.
The latter then emits the energy radiatively.

P14.20 {a) The Beer—Lambert Law is:
A= long0 = g[J)l.
The absorbed intensity is:
Ibs=Ilp—1 so [=Iy— Ips.

Substitute this expression into the Beer—Lambert law and solve for /-

log =¢e[Il so o — lus = Io x 10701

ID - ]ubs

and I =|fo x (1 — 10~V |
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{b) The problem states that /y(¥) is proportional to ¢¢ and to s (U}, 50:
1(Bp) o pelo() x (1 — 10501,

—&[3i

If the exponent is small, we can expand 1 — 10 in a power series:

1076 = M1 =V~ | — eI 10+ -+,

and  Ii(Pp) rfj;rlg(ﬁ)e[l]tln 10

Solutions to applications

There are three isosbestic wavelengths (wavenumbers). The presence of two or more isosbestic points is
good evidence that only two solutes in equilibrium with each other are present. The solutes here being
Her{CNS)g and Her(OH)g.

The following table summarizes AM! calculations (an extended Hiickel methed) of the LUMO-
HOMO separation in the 11-¢is and 11-rrans molecule (7) model of retinal. The —46.0° torsional
angle between the first two alternate double bonds indicates that they are not coplanar. In contras,
the C11C12C13C14 torsion angle shows that the C11C12 double bond is close to coplanar with
neighboring double bonds. The aromatic character of the alternating 7-bond system is evidenced by
contrasting the computed bond lengths at a single bond away from the -system (C1—C2}, a double
bond (C11—C12), and a single bond between doubles (C12—C13) within the Lewis structure. We
see a typical single bond length, a slightly elongated double bond length, and a bond length that
is intermediate between a single and a double, respectively. The latter lengths are characteristic of
aromaticity.

Conformation 11-trans (5) 11-cis (5)
ArH® kI mol™! 725.07 738.1
ErumoleV —5.142 —5.138
Enomo/eV —10.770 —10.888
A EfeV (a) 5.628 {b) 5.750
Afnm {a) 2203 (b) 215.6
C5C6C7CS torsion angle/® —44.5 —46.0
CI11CI2C13C14 torsion angle/® 179.7 —165.5
C1—C2/pm 1532 153.2
Cl1—C12/pm 137.3 136.7
C12—CI3/pm 1.420 1.421

(¢) The lowest #* <«  transition occurs in the ultraviolet with the 11-cis transition at higher energy
(higher frequency, lower wavelength). It is apparent that important interactions between retinal and
a surrounding opsin molecule are responsible for reducing the transition energy to the observed
strong absorption in the 400 to 600 nm visible range.
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Cl1

Immonium N

Figure 14.2
The concentration of the hypothetical pure layer is
n P { atm _3 -3
Oi]= — = 2 = =446 x 107 moldm
[031= ¥ = %7 = 008206 am® ammol K1) x 273K)

So for 300 DU

A =gcl = (476dm> mol ' em™!) x (0.300cm) x (4.46 x 107 moldm ™) =
and for 100 DU

A =ecl = (476 dm> mol~' cm™') x (0.100cm) x (4.46 x 10”2 moldm ™) =
The reaction enthalpy for process (2) is

AH® = ArH®(CD) + AfHP{OCIONY 4+ ArH® (e7) — AHT(CL09)
50 ArHZ(CLO) = A¢HZ(Cl) + ArHT(OCIOH) + AfH® (e7) — AH®

ArH® (C1205) = (121.68 + 1096 + 0) kI mol ™' — (10.95eV) x (96.485kIeV™")
= 161 kI mol™!

We see that the ClaQ2 in process (2) is different from that in process (1), for its heat of formation is

28 kJmol~! | greater. This is consistent with the computations, which say that CIQQCI is likely to be
the lowest-energy isomer. Experimentally we see that the Cla0; of process (2), which is not CIO0CI,
is not very much greater in energy than the lowest-energy isomer.
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Answers to discussion questions

Before the application of a pulse the magnetization vector, M, points along the direction of the static
external magnetic field 8y. There are more o spins than 8 spins. When we apply a rotating magnetic
field ) at right angles to the static field, the magnetization vector as seen in the rotating frame begins
to precess about the ) field with angular frequency w) = y ). The angle through which M rotates is
& = y i, where t is the time for which the %, pulse is applied. When ¢ = /2y 8,,8 = 7 /2 = 90°,
and M has rotated into the xy plane. Now there are equal numbers of o and 8 spins. A 180° pulse applied
foratime 7 /y %), rotates M antiparallel to the static field. Now there are more 8 spins than e spins. A
population inversion has occurred.

The basic COSY experiment uses the simplest of all two-dimensional pulse sequences: a single 90°
pulse to excite the spins at the end of the preparation pericd, and a mixing period containing just a
second 90° pulse (sce Figure 15.46 of the text).

The key to the COSY technique is the effect of the second 90° pulse, which can be illustrated by consid-
eration of the four energy levels of an AX system (as shown in Figure 15.12). At thermal equilibrium,
the population of the ¢ A aX level is the greatest, and that of A SX level is the smallest; the other two
levels have the same energy and an intermediate population. After the first 90° pulse, the spins are no
longer at thermal equilibrium. If a second 90° pulse is applied at a time fy that is short compared to the
spin—lattice relaxation time 7 the extra input of energy causes further changes in the populations of
the four states. The changes in populations will depend on how far the individual magnetizations have
precessed during the evolution period.

For simplicity, let us consider a COSY experiment in which the second 90° pulse is split into two
selective pulses, one applied to X and one to A. Depending on the evolution time /;, the 90° pulse that
excites X may leave the population differences across each of the two X transitions unchanged, inverted,
or somewhere in between. Consider the extreme case in which one population difference is inverted and
the other unchanged (Figure 15.50). The 90° pulse that excites A will now generate an FID in which
one of the two A transitions has increased in intensity, and the other has decreased. The overall effect is
that precession of the X spins during the evolution period determines the amplitudes of the signais from
the A spins obtained during the detection period. As the evolution time ¢, is increased, the intensities of
the signals from A spins oscillate at rates determined by the frequencies of the two X transitions.

This transfer of information between spins is at the heart of two-dimensional NMR spectroscopy and
leads to the correlation of different signals in a spectrum. In this case, information transfer tells us
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that there is a scalar coupling between A and X. If we conduct a series of experiments in which
is incremented, Fourier transformation of the FIDs on £; yields a set of spectra /{v|, v3) in which the
A signal amplitudes oscillate as a function of f;. A second Fourier transformation, this time on /|,
converts these oscillations into a two-dimensional spectrum /vy, 12). The signals are spread oul in 1)
according to their precession frequencies during the detection period. Thus, if we apply the COSY
pulse sequence to our AX spin system (Figure 15.46), the result is a two-dimensional spectrum that
contains four groups of signals centered on the two chemical shifts in v and va. Each group will show
fine structure, consisting of a block of four signals separated by Jax. The diagonal peaks are signals
centered on (6484 ) and (8x8x) and lie along the diagonal v = 4. They arise from signals that did not
change chemical shift between 11 and #2. The cross peaks (or off-diagonal peaks) are signals centered
on (§58x) and {(6x84) and owe their existence to the coupling between A and X. Consequently, cross
peaks in COSY spectra allow us to map the couplings between spins and to trace out the bonding
network in complex molecules. Figure 15.52 shows a simple example of a proton COSY spectrum of
isoleucine.

The ESR spectra of a spin probe, such as the di-terr-butyl nitroxide radical, broadens with restricted
motion of the probe. This suggests that the width of spectral lines may correlate with the depth to which a
probe may enter into a biopolymer crevice. Deep crevices are expected to severely restrict probe motion
and broaden the spectral lines. Additionally, the splitting and center of ESR spectra of an oriented sample
can provide information about the shape of the biopolymer-probe environment because the probe ESR
signal is anisotropic and depends upon the orientation of the probe with the external magnetic field.
Oriented biopolymers occur in lipid membranes and in muscle fibers.

Solutions to exercises

For '9F, 2 — 262835, g = 52567
1N

&z
U=UL=%; with y=%

giunB _ (5.2567) x (5.0508 x 1077 JT~") x (16.2T)
o (6.626 x 10=34Is)

=649 x 103s™! =[649MHz |

Ey, = —yh@Bm; = —girunBimy

Hence, v =

nmy=1,0,-1
Epm, = —(0.404) x (5.0508 x 10727 IT~!y % (11.50 T)my

= — (23486 x 1072 J) m

—235%x 10737, 0, +2.35 x 10-%J|
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E15.3(b) The energy separation between the two levels is

7 r—1 o1
AE = hv where v:y_.fe_?=(l.93x10 T s ™)y x (154T)
T 2T

=4T3x 10757 =

E15.4(b) A 600 MHz NMR spectrometer means 600 MHz is the resonance field for protons for which the magnetic
field is 14.1 T as shown in Exercise 15.1(a). In high-field NMR it is the field not the frequency that is
fixed.

(@) A "N nucleus has three energy states in a magnetic field corresponding to my; = +1,0, —1. But
AE(+1 = 0) = AE(0 — —1)

AE = E,,,; —Ey = —yh@m; — (—yhdmy)

= —yhB{m; —my) = —yhBAy,
The allowed transitions correspond to A,,, = %1; hence

AE = hv = yh®B = g un B = (0.4036) x (5.051 x 10'271'1‘-‘) x (14.1T)

=|288 x 10726]

(b) We assume that the electron g-value in the radical is equal fo the free electron g-value, g. = 20023.
Then

AE = hv = gopd [37] = (2.0023) x (9.274 x 10721 T™1) x (0.300T)
=]5.57 x 107}

COMMENT. The energy level separation for the electron in a free radical in an ESR spectrometer is far greater
than that of nuclet in an NMR spectrorneter, despite the fact that NMR spectrometers normally operate at
much higher magnetic fields.

E15.5(b} AE = hv = yhd = grun? [Solution to Exercise 15.1(a))

hv  (6.626 x 1073 JHz™!) x (150.0 x 108 Hz)

BiltN (5.586) x (5.051 x 10~27]7T 1)

E15.6(k) In all cases the selection rule Am; = %1 is applied; hence (Exercise 15.4{b}(a)}

Hence, % =

kv _6.626x10-34mz-' p

= = X
gren 5.0508 x 10-27 )T~ g

v v
= (13119 x 1077) x ®T= (0.13119) x @T
81 8

B
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We can draw up the following table

l@/T I4N |9F 3lp

&1 0.40356 5.2567 2.2634
(a) 300 MHz 97.5 7.49 17.4
(b) 750 MHz 244 18.7 43.5

COMMENT. Magnetic fields above 20 T have not yet been cbtained for use in NMR spectrometers. As
discussed in the solution to Exercise 15.4(b), it is the field, not the frequency, that is fixed in high-field NMR
spectrometers. Thus an NMR spectrometer that is called a 300 MHz spectrometer refers to the rescnance
frequency for protons and has a magnetic field fixed at 7.05 T.

The relative population difference for spin —% nuclei is given by

&N Ny —Ng _ yh&# _ g1und®
2kT

N~ Ne+Ng 24T
_ 1.405(5.05 x 10771 T-) &
~ 2(1.381 x 10-BTK!) x (298K)

SN _ =

(a} For0.50T - = (8.62 x 1077) x (0.50) =|4.3 x 1077
SN _ —

(b) For2.5T ~ =(8.62x 1077y x (2.5) =22 x 107

SN _ _

~ = (8.62 x 1077) x (15.5) =| 1.34 x 107

The ground state has

[Jusrification 15.1]

=8.62 x 1077 (#/T)

{(¢) For 155T

1 1
m!=+-2— =aespin. i’?H:"E:JBSPin
Hence, with
8N = N, — Ng

8N No—Ng Ny — NgemBENT
N = Ng+Ng  No+ Ny SENT
1 —e BEAT (1 - AE/KT)  AE
T | e AEAT -1

[Justification 15.1]

BE _ gin B
AT~ 2T

(for AE < kT

sN = NeiunB _ Nhv
UT 2T

Thus, 8N o« v

SN(800MHz)  (800MHz)
SN(60MHz) ~ (60MHz)
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This ratio is not dependent on the nuclide as long as the approximation AE <« kT holds.
v—u°
UO

(a) §= x 100 [15.8]

Since both v and v© depend upon the magnetic field in the same manner, namely

Srung
V=T

and
h u

B,
o w [Exercise 15.1(a)]
{3

§is of both 2 and v.

(b) Rearranging [15.18], v — v® = 1°8 x 107 and we see that the relative chemical shift is

v —v°(800MHz) (800 MHz)
= = -13
v — v9{60 MHz) (60 MHz) -

COMMENT. This direct proportionality between v — v°® and v° is one of the major reasons for operating an
NMR spectrometer at the highest frequencies possible.

E15.9(b) Bloc = (1 —0) B

|AZBloe] = H(AG)|Z = |[§(CH3) — §(CH2)]| %
=11.16 —3.36| x 1078 =2.20 x 107%%

(@ & =19T,| A%l = (220 x 107°) x (19T) =[42 x 1075 T]
() B =16.5T,|ABioc| = (220 x 1075) x (16.5T) =[3.63 x 107° T

E15.10(b) v—1° =18 x 1076
|Av] = (v — v°)(CHz) — (v — v°)(CH3) = ¥(CHa) — v(CH3)
= v°[8(CHa) — 8(CH3)] x 1076

(3.36 — 1.16) x 107%° =220 x 1076,°
(@ v =350MHz |Av| = (2.20 x 107%) x (350 MHz) = 770 Hz [Figure 15.1]

(b)  ° =650MHz |Av| = (2.20 x 107%) x (650 MHz) = 1.43kHz

—> 6.97Hz
o~ 6.97Hz

il 10

770Hz
at 350MHz Figure 15.1

At 650 MHz, the spin-spin splitting remains the same at 6.97 Hz, but as Ay has increased to 1.43 kHz,
the splitting appears narrower on the § scale.
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The difference in resonance frequencies is

Av = (u" x 10-6) AS = (3505*') x (6.8 — 5.5) = 4.6 x 10°s~

The signals will be resolvable as long as the conformations have lifetimes greater than

T =(2nA8)”!

The interconversion rate is the reciprocal of the lifetime, so a resolvable signal requires an inter-
conversion rate less than

rate = (2w A8) = 2x (4.6 x 1075~ ) =[29x 105!

7
V= ___3!le [Solution to exercise 15.1(a)]
1

vC'P) _ gC'P)
"w(H) T g('H)

2.2634
or v('P) = —5557 500 MHz = | 203 MHz

1
The proton resonance consists of 2 lines (2x§+l) and the 3P resonance of 5 lines

Hence

1
[2 X (4 X 5) + 1]. The intensities are in the ratio 1:4:6:4:1 (Pascal’s triangle for four equivalent

5.5857

2.2634
than the proton region. The spectrum is sketched in Figure 15.2.

spin % nuclei, Section 15.6). The lines are spaced = 2.47 times greater in the phosphorus region

Proton
resonance

Phosphorus
resonance

1 \ ' 1 Figure 15.2

Look first at A and M, since they have the largest splitting. The A resonance will be spiit into a widely
spaced triplet (by the two M protons); each peak of that triplet will be split into a less widely spaced
sextet (by the five X protons). The M resonance will be split into a widely spaced triplet (by the two
A protons); each peak of that triplet will be split into a narrowly spaced sextet (by the five X protons).
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AsMaXs Jam > Jax > Iux

A protons M protons X protens

— — Jax

{(a) _| — Jam — Jam
L L[| |||

(b) | Inx | Jux T
1 [

The X resonance will be split into a less widely spaced triplet (by the two A protons); each peak of that
triplet will be split into a narrowly spaced triplet (by the two M protons). (See Figure 15.3.)

Only the splitting of the central peak of Figure 15.3(a) is shown in Figure 15.3(b).

E15.14(b) (a) Since all JyF are equal in this molecule (the CHa group is perpendicular to the CF; group), the H
and F nuclei are both chemically and magnetically equivalent.

(b) Rapid rotation of the PH3 groups about the Mo—P axes makes the P and H nuclei chemically and
magnetically equivalent in both the cis- and trans-forms.

E15.15(h) Precession in the rotating frame follows

vB
v = —

or w| = y.@]
27

Since w is an angular frequency, the angle through which the magnetization vector rotates is

SILN
h

ok () x (1.0546 x 107¥1]s) _
So By = = =940 x10* T
i gIunN! (5.586) x (5.0508 x 10~27JT-1) % (12.5 x 10-6s) a
a 90° pulse requires 5 x 12.5us =|6.25 us

hv _ hic
BeMB  BeiBh

(6.626 x 1073 J5) x (2.998 x 108 ms~") =
= =|13T
(2) x (9.274 x 10-241T-1) x (8 x 10~ m)

E15.17(b) The g factor is given by

0 =yPt=

.@]!

E15.16(b) & =

h h 662 1073]
go L, b SOE08X S = 71448 x 107" THz™' = 71.448 mT GHz ™'
up%’  up 92740 x 10-HJT-

71.448 mT GHz™! x 9.2482 GHz
= =|2.0022
g 330.02 mT
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The hyperfine coupling constant for each proton is , the difference between adjacent lines in
the spectrum. The g value is given by

Iy (71.448 mT GHz™") x (9.332 GHz)
- - =(1.992
8= % 334.7mT

If the spectrometer has sufficient resolution, it will see a signal split into eight equal parts at &= 1.445 +
1.433 £ 1.055 mT from the center, namely

| 328.865, 330.975, 331.735, 331.755, 333.845, 333.865, 334.625, and 336.735 mT

If the spectrometer can only resolve to the nearest 0.1 mT, then the spectrum will appear as a sextet with
intensity ratios of 1:1:2:2:1:1. The four central peaks of the more highly resolved spectrum would be
the two central peaks of the less resolved specirum.

{a) If the CH> protons have the larger splitting there will be a tripler (1:2:1) of quartets (1:3:3:1).
Altogether there will be 12 lines with relative intensities 1(4 lines), 2(2 lines), 3(4 lines), and 6(2
lines). Their positions in the spectrum will be determined by the magnitudes of the two proton
splittings which are not given.

(b) If the CD2 deuterons have the larger splitting there will be a quintet (1:2:3:2:1) of septets
(1:3:6:7:6:3:1). Altogether there will be 35 lines with relative intensities 1(4 lines), 2(4 lines),
3(6 lines), 6(8 lines), 7(2 lines), 9(2 lines), 12(4 lines), 14(2 lines), 18(2 lines),and 21(1 line). Their
positions in the spectrum will determined by the magnitude of the two deuteron splittings which are
not given.

The hyperfine coupling constant for each proton is , the difference between adjacent lines in
the spectrum. The g value is given by

J ] j
g= — 0B =—— L —71.448mT GHz™"'
Hpé HBE  UB

_ (71448mTGHz ') x (9.312GHz) _
@) #= o004 =1332.3mT
: Hz™') x (33.88
b @ (L44BMTG 2200 ;:( GHz) _ oo

Two nuclei of spin give five lines in the intensity ratio 1:2:3:2:1 (Figure 15.4).

I l | First nucleus with f = 1

“| " | second nucleus with /=1

| 2 3 2 I Figure 15.4

The X nucleus produces four lines of equal intensity. Three H nuclei split each into a 1:3:3:1 quartet. The
three D nuclei split each line into a septet with relative intensities 1:3:6:7:6:3:1 (see Exercise 15.20(a)).
(See Figure 15.5.)
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XH, IHI I||l Illl IHI

ol all Al e

Solutions to problems
Solutions to numerical problems

I 1
T 2mdv (2r) x ((52 —4.0) x 107%) x (60 x 106 Hz)

T
Az 2.2 ms, corresponding to a jump rate of 4505~

When v = 300 MHz

I
T 27) % {(5:2 - 4.0) x 1076] x (300 x 106 Hz)

o = 0.44 ms
corresponding to a jump rate of 2.3 x 10% s !. Assume an Arrhenius-like jumping process (Chapter 22)

rate oc e~ Ea/RT

T —E,
Then, In w = Eq (l — l)
rate(T} R T T
8314) K- mol~! x In 23210°
RIn('/r) 8 mol™" x In

1 1 1 20 -

T 280K 300K

and therefore £, =

=l -

The three rotational conformations of FaBrC—CBrCl; are shown in Figure 15.6. In conformation 1.
the two F atoms are equivalent. However, in conformations II and IIl they are non-equivalent. At
low temperature, the molecular residence time in conformation I is longer (because this conformation
has the lowest repulsive energy of the large bromine atoms) than that of conformations II and 111, which
have equal residence times. With its longer residence time, we expect that the NMR signal intensity
of conformation I should be stronger and we can conclude that it is the low-temperature singlet. It is a
singlet because equivalent atoms do nol have detectable spin—spin couplings.

Br Cl a

Cl Cl Br Cl l Br

1 H 1 Figure 15.6
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The fluorines of conformations II and [II are non-equivalent, so their coupling is observed at low-
temperature. Fluorine has a nuclear spin of 1/2, so we expect a doublet for each fluorine. These are
observed with strong geminal coupling of 160 Hz. As temperature increases, the rate of rotation between
I and 111 increases and the two fluorines become equivalent in these conformations, though remaining
distinct from I. The doublets collapse to singlets. With a further temperature increase to —30°C, and
above, the rate of rotation about the C—C bond becomes so rapid that the residence times of the three
conformations becoine equal. The very short residence times produce an average NMR signal that is a
singlet and the fluorines appear totally equivalent.

The spectra shown in Figure 15.63 of the text for conformations IT and 1II show both spin—spin coupling
and differences in chemical shift. The spin—spin splitting is 160 Hz. The difference in chemical shift can
be estimated from the separation between the doublet centers, A

A=+ 8H12

A is estimated from the figure to be 210 Hz. This yields for v, the chemical shift,
Sv = (A-"’ _JZ)I/Z

= (210% — 16052 Hz =~ 140 Hz

Collapse to a single line will occur when the rate of interconversion satisfies

1 A
k= = 2 2= [15.29]
T 2
T % 200s!
= 2|4 x 102s7]
V2

The relative intensities, /, of the lines at —80 °C can be used 1o estimate the energy difference (Ey — E1)
between conformation I and conformations II and III. We assume that the relative intensities of the
lines are proportional to the populations of conformers and that these populations follow the Boltzmann
distribution (Chapters 2 and 16). Then

I e—E],fRT

- = = e En—EN/RT
n ¢

/
Ey—E = RTIn (—‘
Iy

=37 x 10* Tmol™" =|3.7kJ mol~!

This energy difference is nol, however, the rolational energy barrier between the rotational isomers.
The latter can be estimated from the rate of interconversion between the isomers as a function of
temperature. That rate of interconversion is roughly 4 x 10%s~! at —30°C. At —60°C. as estimated
from the line width at that temperature [13.19], it is roughly 1/3 of that value, or ~ 1.3 x 10%s7L.
Assuming that the rate of interconversion satisfies an Arrhenius type of behavior, & & e~5/R7  where
E, is the rotational energy barrier,

K=30°0) _ o |5 (wtx-mie))
k(—60°C)

) =8.314J K™ mol™" x (273 — 80) K In(10)
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Rin3 4 —1 -
E, = : ; = 1.6 x 10*Jmol~" =| 16 kJ mol™!

(2131( a 2431()

This value is typical of the rotational barriers observed in compounds of this kind.

P15.6 (a) The Karplus equation [15.27] for 3Ty is a linear equation in cos ¢ and cos 2¢. The experimentally
determined equation for 3 Jgnsu 18 a linear equation in 3Jun. In general, if F(f) is linear in £, and if
f(x) is linear in x, then F(x) is linear. So we expect 3 Jgnsa to be linear in cos ¢ and cos 24. This is
demonstrated in (b).
(b) 3J5usa/Hz = 78.86(CJun/Hz) + 27.84
Inserting the Karplius equation for 3 Jun we obtain
3 fsnsn/Hz = 78.86{A + Bcos¢ + Ccos 2¢} + 27.84. Using A =7,B = —1, and C = 5, we obtain

3Jsasn/Hz = 580 — 79 cos ¢ + 395 cos 2¢ |

The plot of >Jspsn is shown in Figure 15.7.

Vicinal tin coupling constant

1200

g
<
T [ T 11

800

600

3 Jsnsn/Hz

400

200

llllllllllllllill

[=
w
o
[=)]
(=]

90 120 150 180
$idegrees Figure 15.7

(c) A staggered configuration (Figure 15.8) with the SnMes groups frans to each other is the preferred
configuration. The SnMej repulsions are then at a minimum.
hv _ (714478 x 107" T) x (v /H7)

15.40] =
r@o [ Bo

P15.8 g=

_(7.14478 x 10711 T) x (9.302 x 10%) _ 0.66461
- Bo T BT

0.664 6T 0.664 6T
_ 066461 —[2.002
81 = 033364 =[1992] g1 = 033104
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SniMe,

R SnMe, H  Figure 15.8

Construct the spectrum by taking into account first the two equivalent "N splitting (producing a

1:2:3:2:1quintet [) and then the splitting of each of these lines into a|l:4:6:4: 1 quintet

by the four equivalent protons. The resulting 25-line spectrum is shown in Figure 15.9. Note that Pas-
cal's triangle does not apply to the intensities of the quintet due to '*N, but does apply to the quintet due
to the protons.

0.112m|T
R

L0.148 mT} N(1)

~

For CgHy', @ = Qp with @ = 2.25 mT [15.43]. If we assume that the value of 0 does not change from
this value {(a good assumption in view of the similarity of the anions), we may write

Figure 15.9

_a_ a
P=07 225mT

Hence, we can construct the following maps

NO; NOs NO,

NO;
0.005 0.200 0.021  0.050 0.050

0.076 0005 0048 NO, 0050 0.050
0.076 0.200
NO;
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Solutions to theoretical problems

P15.14 (a) The table displays experimental '>C chemical shifts and computed* atomic charges on the carbon
atom para to a number of substituents in substituted benzenes. Two sets of charges are shown, one
derived by fitting the electrostatic potential and the other by Mulliken population analysis.

Substituent OH CH; H CF3 CN NO»
3 130.1 128.4 128.5 128.9 129.1 129.4
Electrostatic chargefe  —0.1305  —0.1273  —-0.0757 —0.0227 —0.0152 —0.0541
Mulliken charge/e —0.1175 —0.1089 —0.1021 —0.0665 —0.0805 —0.0392

*Semi-empirical, PM3 level, PC Spartan Pro™

000

-0.02 o

-0.04 -

-0.06 & Mulliken

Charge

-0.08 o - < Electrostatic

-0.10

—0.12
[#]

o5
<

—0.14
128.0 1285 1290 1295 1300 1305

d Figure 15.10

(b) Neither set of charges correlates well to the chemical shifts. If one removes phenol from the data
set, a correlation would be apparent, particularly for the Mulliken charges.

{c) The diamagnetic local contribution to shielding is roughly proportional to the electron densily on
the atom. The extent to which the para-carbon atom is affected by electren-donating or withdrawing
groups on the other side of the benzene ring is reflected in the net charge on the atom. If the diamag-
netic local contribution dominated, then the more positive the atom, the greater the deshielding and
the greater the chemical shift § would be. That no such correlation is observed leads to several pos-
sible hypotheses: for example, the diamagnetic local contribution is not the dominant contribution
in these molecules (or not in all of these molecules), or the computation is not sufficiently accurate
to provide meaningful atomic charges.

P15.16 Equation 15.39 may be written
@ = k(| —3cos’ )

where £ is a constant independent of angle. Thus

4 2
(.@)cx[ (1—300529)sin9d9[ dep
0 0
-1
ocf (1 d3x3)d.xx27r [x =cosf,dx = —sin@ dA]
|

o {x —.3(3)‘1_l =0
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1
[l + (wp — w)?‘ 1.2]

We have seen (Problem 15.17) that, if G o< cos wot, then [ {w) o
which peaks at & = wyg. Therefore, if
G(t) x acosw)t + bcoswat

we can anticipate that

a b

+
[+ (w —@)t? |+ (wr — w)?e?

flw) o

and explicit calculation shows this to be so. Therefore. /{e) consists of two absorption lines, one peaking
at @ = ) and the other at w = w>.

Solutions to applications

Methionine- 105 is in the vicinity of both typtophan-28 and tyrosine-23 but the latter two residues are
not in the vicinity of each other. The methicnine residue may lay between them as represented in the
figure.

L. . H .. C—q
methionine residue |
N OH
HN
S
..... N,
H
I
..... N ¢
. \0
..... C==0 tyrosine residue
lryptophan residue Figure 15.11

At, say, room temperature, the tumbling rate of benzene, the small molecule, in a mobile solvent, may be
close to the Larmor frequency, and hence its spin—lattice relaxation time will be short. As the temperature
increases, the tumbling rate may increase well beyond the Larmor frequency, resulting in an increased
spin-lattice relaxation time.

For the large oligopeptide at room temperature, the tumbling rate may be well below the Larmor fre-
quency, but with increasing temperature it will approach the Larmor frequency due to the increased
thermal motion of the molecule combined with the decreased viscosity of the solvent. Therefore, the
spin-lattice relaxation time may decrease.
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The first figure displays spin densities computed by molecular modeling software {(ab initio, density
functional theory, Gaussian 98™).

0.409 O

0.

—0.082
0.299 0.271
~0.135 -0.129

0.369 H

CH,4 H

-0.024 H

(b)

Weusev =

First, note that the software assigned slightly different values to the two protons ortho to the oxygen
and to the two protons meta to the oxygen. This is undoubtedly a computational artifact, a result
of the minimum-energy structure having one methyl proton in the plane of the ring, which makes
the right and left side of the ring slightly non-equivalent. (See second figure.) In fact, fast internal
rotation makes the two halves of the ring equivalent. We will take the spin density at the ortho
carbons to be 0.285 and those of the mera carbons Lo be —0.132. Predict the form of the spectrum by
using the McConnell equation (15.43) for the splittings. The two ortho protons give riseto a 1:2:1
triplet with splitting 0.285 x 2.25mT = 0.64 mT; these will in tumn be split by the two meza protons
into 1:2:1 triplets with splitting

0.132 x 2.25mT = 0297 mT = 0.297 mT.

And finally, these lines will be seen to be further split by the three methy! protons into 1:3:3:1
quartets with splittings 1.045 mT. Note that the McConnell relation cannot be applied to calculate
these latter splittings, but the sofiware generates them directly from calculated spin densities on
the methyl hydrogens. The computed splittings agree well with experiment at the ortho positions
(0.60 mT) and at the methyl hydrogens (1.19 mT), but less well at the mera positions (0.145 mT).

¥n Bioe
2r

=W (- o)y @ [15.17]
2w

where Z is the applied field.

Because shielding constants are quite small (a few parts per million) compared to 1, we may write for
the purposes of this calculation

_m%
T 2n

vy —vg = l00Hz = m (BL — %r)
2

27 % 100s™!
YN

B — PBr =

27 % 10051

- -6
= T Tl 2 X 10T

=235uT
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The field gradient required is then

Note that knowledge of the spectrometer frequency, applied field, and the numerical value of the chemical
shift (because constant) is not required.



Statistical

1 6 thermodynamics 1: the
concepts

D16.2

D16.4

D16.6

E16.1(b)

Answers to discussion questions

See Figure 16.11 and 16.13, [Hlustration 16.4, Self-test 16.6 in the text and the solution to
Exercise 16.8(a)

The simple zipper model for the conversion of a polypeptide helical (/) chain to a random coil (c) begins
with nucleation whereby an / residue makes an independent transition to a ¢ residue with a probability
that depends upon os where @ < | and s is the stability parameter. After the nucleation conversion, only
residues adjacent to a ¢ undergo the / 10 ¢ transition and they do so non-cooperatively with a probability
that depends upon the stability parameter. The Zimm-Brag model allows for multiple nucleation sites.

Identical particles can be regarded as distinguishable when they are localized as in a crystal lattice where

we can assign a set of coordinates to each particle. Strictly speaking, it is the lattice site that carries the
set of coordinates, but as long as the particle is fixed to the site, it too can be considered distinguishable.

Solutions to exercises

Ne_ﬁfi )
n = where g = Z e—PEj
4 J
Thus
—[E;
mo_ ¢ Be2 — e—Blea—F1) _ g—FAE _ o —OE/KT
" e—Bel

1
Given 22 = 2, Ae = 300cm™!
1| 2

lem™!

k=(l. 6x 1072 JK™! -
(138066 x “(1.9864“0-231

) =0.69506cm™ ' K~!

M2 _ o—ne/kT
"

n
In (—“—) = —Ae/kT

n
T— —Ag _ Ag

- kln(na/m) - kln(m /i)
300cm™! _
om =6227K ~{623K

= (0.69506cm—! K="} In(2)
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E16.2(b B " ] v
20) @ A=h (2mn) [16.19] = & (Zmrsz)

E16.3(b)

E16.4(b}

E16.5(b}

= (6.626 x 107> ]s)

1/2
y 1
((2;:) % {39.95) x (1.6605 x 10~27kg) x (1.381 x 10~ JK~1) x T)
_ 276pm
S T/R

1% (1.00 x 1070 m?) x (T/K)>/? ” )
b = — [16.19] = =476 x 102(T/K)*?
®) g= 7516l (276 x 10-19m)> x 107/K)

(i) T = 300K, A=1.59x10-”m=, q=,
(i) T = 3000K, A:, q=

Question. At what temperature does the thermal wavelength of an argon atom become comparable to
its diameter?

The translational partition function is

Vv
Qe = F(ZkTmnP”
X

o gxe _ { Mxe 3/2_ 131.3u 3/2_ 1379
- T L4.0030 - :

qHe MNHe

g= ) ge P =243e7F1 4 2e7F0
levels

_hev 1.4388(v/em™)

Tar T T/K

Thus 4 = 2 4 3¢~(14388x1250/2000) | 5, —(1.4388x1300/2000)

=24 1.2207 + 0.7850 =

Ndg N d
E=U-U{0)=—-—— = ——— (2 + 37 # 4277
0) Py p dﬂ( +3e™7 + 227
N s
= —— (—3818_‘{15' — 2gzc“ﬂ£2) — % (31-’(3_"”‘“' +2ve—ﬁh{|:1)
q q
_ [ Nahey l3(1250cm”') % (e—u.4333x|250/2mm))
4.000

+2(1300em™") x (e—(l.4388x1300/20{}0)) ]

Nl
:( A ’C) x (2546 cm™")

4.006
=(6.022 x 107 mol™!) x (6.626 x 1073*Js) x (2.9979 x 10'%cms™") x (2546 cm™")/4.006

=|7.605 k] mol~!



E16.6(b)

E16.7(b)
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In fact there are two upper states, but one upper level. And of course the answer is different il the
question asks when 15 percent of the molecules are in the upper level, or if it asks when 15 percent of
the molecules are in each upper state. The solution below assumes the former.

The relative population of states is given by the Boltzmann distribution

"2 —AE ex —hev ] m —hev

— =exp|l — | = 50 In— =

m P\ T P\ T m kT
—hev

kin(na/ny)

Thus T =

Having 13 percent of the molecules in the upper level means

2n2 0.15 na
_— = —= = (.088
n I —-0.15 50 n

nd T — —{6.626 x 1073 Js) x (2.998 x 100 cms™') x (360cm™")
- (1.381 x 10723 JK-1) % {In0.088)

=|213K

The energies of the states relative to the energy of the state with m; = 0 are —yy %, 0, + yn 1.5, where
ynh =204 x 107¥7 IT~'. With respect (o the lowesl level they are 0, yy b, 2y hi.

The partition function is

g= Y o EwltT

states

where the energies are measured with respect to the lowest energy. So in this case

hag —2yNh B
q=l+exp( TT )+exp(—{;—)

As 2 is increased at any given T, g decays from g = 3 toward ¢ = 1 as shown in Figure 16.1(a}.

Figure 16.1(a}

The average energy (measured with respect to the lowest state) is

Y ctutes Estatc ™27 | 4y exp (—ywhB/KT) + 2B exp (—2ynhB/KT)

EY = =
) q | + exp (—ynhB/KT) + exp (—2mhB/KT)
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The expression for the mean energy measured based on zero spin having zero energy becomes

_ B — ynhB exp (—2ynhB/kT) _ whB (1 — exp (—2ynhBIET))
T 14 exp (—ynhRBIKT) + exp (=2ynhB/KTY 1+ exp (—ynhB/ET) + exp (—2yn B /kT)

As 4 is increased at constant T, the mean energy varies as shown in Figure 16.1(b).

Figure 16.1(b)

The relative populations (with respect to that of the lowest state) are given by the Boltzmann factor

_AE —NhB Y
EXp F = exp T or exp T

wh® (204 x 10771T7") x (20.0T)
koo 1381 x 10-3 JK!
so the populations are

—295 x 103K = 2(—2.95 x 1073 K) =
{(a) exp (T) =10.997 and cxp( (0K ) =(0.994
—2.95 % 1073K
)  exp (9—2’;8—) =[0.99999
2(-295 x 1077 Ky
and exp( 798 ) =|0.99998

(a) The ratio of populations is given by the Bolizmann factor

Note that =295x 073K

" _ exp (—AE) _ e BOK/T g M s00K/T
"y kT "

(1) At1.0OK
ny —25.0K 19 x 10-11
— =X = l.
m O PATo0K
% —ep(Too ) = (1921072
a2 =
an exp( T00K ) 93 x

n
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(2y At250K

"o —-25.0K n =500K
1 exp( 50K ) -0.368 and exp( 50K ) 0.135

i

(3) At 100K

ns —-25.0K N3 —50.0K
= — Y =|07 —= = =10.607
ew (oo ) g 2 = exp (ot )

H) Hy

{b) The molecular partition function is

g = Z efE_\mc/kT =1 +e—25.0K/T +e——50.0K/T

states

At 25.0 K, we note that e”230K/T = =1 43 e —300K/T — o2

g=1+e! +e~?={1503

(¢) The molar internal energy is

Na (8
Um = U (0) — —2 (ﬁ) where f = (KT) ™!
q \9p
N
S0 Um = Un(0) — —2(=25.0K)k (¢ 250K/T 4 2¢=S00K/T)
q
At250K

(6.022 x 10¥ mol™") x (—25.0K) x (1.381 x 10723 JK~1

Um - Um(o) = 1503

x (e._I + 2e_2)
=

(d) The molar heat capacity is
al/, a1
Cvm = (—’“) = NaQ5.0K)k— — (e—25-°K/T + 26300 KfT)
v aT ¢q

250K y
= NA(25.0 K}k x ( . (e—ZS.OK/f + 46750.011:/?)
gT

_L (e—zs.m(/r +2€—50.0K/T) g
g* ar

ag 250K , _
where ﬁ — T',! (e 250K/T + 2e SD.OK/T)
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25 =250K/T —50.0K /T2
0 Cypm = Na(25.0K)"k e~25.0K/T | 4o-S00K/T (e M+2e )
' T?g q
AL25.0K
_(6.022 x 10% mol™!y % (25.0K)% x ¢1.381 x (0B JK
vam = (25.0K)2 x (1.503)
—1 —232
. 5 e 42 ')')
e e — ———
x ( + 1503
=(3.531K~" mo1~!
(e) The molar entropy is
Um — Um0
m= m m( )+NAklnq
T
At25.0K
8.3 I mol ™!
Sy = =2 O 6,022 x 102 mol™') x (1381 x 10" 7K~y In 1.503
25.0K
=|6.921K"! mol~!
ng _ geTfAT —AefkT _ 3.~heB/KT
E16.9(b) E = W = gjc =3¢
mny |
Set — = — and solve for T.
o [+
| —hicB
In{-]=In3
o(3) =3+ ()
heB
T %
k(] 4+1n3)
6626 x 1073 s % 2.998 x 10%cms™! x 10.593¢cm™!
- +1.38F x 1023 JK~! x {1 + 1.0986)
=|726 K
E16.10(b} The Sackur—Tetrode equation gives the entropy of a monatomic gas as
§ = ngin SOk here A h
=n n wWnere Ry
pA? ~2kTmm
(a) At100K

6.626 x 107¥ s
A= 172
{2(1.381 x 10-2 JK~") x (100K) x m{131.3u) x (1.66054 x 10~ kgu~1)}

=152x10"""m
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and Sy = (8.3145JK " mol™ " 1In (

={147JK " mol™!

(b) At298.15K

e/2(1.381 x 1073 JK~ 1) x (100K)
(1.013 x 105 Pa) x (1.52 x 10— m)3

6.626 x 104 Js
{2(1.381 x 107 JK1) x (298.15K) x 7(131.3u) x (1.66054 x 10-27 kgu=1)}'"*
=8822x 107" m

A=

and

5/2 -3y
Sm=(3.3l45.l](_lmol‘1)]n(e (1.381 x 107~ JK )X(298.15K))

(1.013 x 105 Pa) x (8.822 x 10— 12 m)3

= [169.6 1K~ mol~' |
1 1
E16.11(b) 9= 1= = T
. (1.4388cmK) x (321cm™!) _
l = = 0.76976
icpy 600K
| _
Thus g = —————— = 1.863
1 — e—0.76976

The internal energy due to vibrational excitation is

Nee—Be
U-U0=y"c%

Nheve o8 Nhc = 2
T —ehctB  ghcvB _ [ (0.863) x (Nhc) x (321em™")

s _
and hence —= = U—U(O)

he -
= = (0.863 — 1y +In(l.
Nk NAKT +Ing = (0.863) x (kT) x (321ecm™') + In(1.863)

_ (0.863) x (1.4388Kcm) x (321cm™)
- 600 K

= 0.664 + 0.62199 = 1.286

+ In(1.863)

and Sp = 1.2868 ={10.71K~! mol ! |

E16.12(b) Inclusion of a factor of (W)~} is necessary when considering indistinguishable particles. Because of
their translational freedom, gases are collections of indistinguishable particles. The factor, then, must

be included in calculations on| (a) CO2 gas |
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Solutions to problems
Solutions to numerical problems

Although He is a liquid at these temperatures (Tp = 4.22 K), we will test it as if it were a perfect gas
with no interaction potential

pi= 5 = gie™’/q [16.6a]

2

| 172
{2 + n? +n) [16.16); g= -3 A=h(%) [16.19]

= 8mX?

Ground state ny =my =n. =1, g=1

First excited state

ny=ny =13 n.=12
ny=n.=1; ny=2 tg=3

”'y:"_’_:l.; n.l'=2
Vv Vv 3
— - — /2
g = e (2amkT)
1m?

(1em®) x (106 3) x [2r (1.381 x 1072 TK~1)]*¥2 x (mT)+3/2
cm

(6.626 x 10-315)
=228 x 1080kg=>2 K372 nT)*/?

w= ()% (25) ©
Bes1excited = T 2eS 8 X2

6(6.626 x 1072 Js)* 1
8 (1.381 x 10~23JK~"} x (0.01 m)> mT
238 x ]0PkgK
- mT

238 10~90kgk
3e_ m
Plstexcited = (

278 x 1050 kg=/2 K=3/2) x (mT)*?

Isotope m/kg T/K Pistexcited Occupancy = pN = 1022p
4He 664 x 10777 00010 630 1077 6.30 x 10°

20 7.04 x 10722 7

490 2.49 x 10~22 2
*He 501 x 10727 0.0010 9.63 x 10~V 9.63 % 10°

2.0 1.08 x 1072 11

4.0 3.81 x 10722 4
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These results may at first seem to contradict the expected common sense result that the populations of
excited states increase as the temperature increases, but the energy separations of these states is so small
that even a slight increase in temperature promotes the particles to much higher quantum states.

P16.4 S=ktinW or W=e5*%[16.34)
aw _ W8S
W/ rn KAV 7y

ey e3/2
S=nRln NS =nR|{InV+In VA3

( ) R(aln V) nR NR
=n = — = —
T.N aV T.N V NAV

w _ NRW _ NW
AV Jrn  NakV Vv

AW AV pV AV
Y Vil A

@ w
28

L

W V kT V
(1 x 10° Pa) x (20m?) x (I x 107%)
(1.381 x 10~ JK~') x (300K)

fas= ]

Notice that the value of W is much larger than that of AW /W. For example, at the conventional
temperature the molar entropy of helium is 126 J K=" mol~!. Therefore,

pv (1 x 10°Pa) x (20m>) x (126K~ mol™")
S=nSpn=|— |8 =

RT (8315TK~! mol™!) x (298 K)
= 1.02x 10°TK™!

Ry 102 x 10° JK-!

= = 27
= R woB R~ 3ex 10

3 27 27
W = oSk — 736%107 _ 3.20x10

—ey (kT
P16.6 mo_ ﬂ _ 4 « @=AE/T _ 4  e—heBIKT _ 56—{(1.4388x450)/300} _ () 73
ng  goe %7 2 2
The observed ratio is 0.30/0.70 = 0.43. Hence the populations are | not at equilibrium |
P16.8 First we evaluate the partition function

J

g= ge PI169]1 =) ge Pl
i
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1.43877cm K
At3287°C = 3560K, hef = ————— = 4041 x 107
t icB 3560K X cm
g=5+ 74041 10~ cm) = (1 T0em™ 1)) + ge—(4.041 x10~* cm) x (387 em 4y}

+ 33—{(4.&1lxlO'*cm)x(ﬁSS?cm'l)]

= (5) + (7) x {0.934) + (9) x (0.855) + (3} x (0.0707) = 19.445

The fractions of melecules in the various slates are

a—BE; _e—hcﬂﬁ'j
pj= l p [16.7] = BF
5 (7) x (0.934)
pCE) = a5 = 0.257 p(3Fa) = eyt 0.336

9) x (0.855 3) % (0.0707
piry = R T =[03%]  ptr = SR = (oon]

COMMENT. Zf- p; = 1. Note that the most highly populated level is not the ground state.

P16.10 The partition function is the sum over states of the Boltzmann factor

g= Z exp (—%) = Z exp (_%) = Z gexp (_%(_;)

states slates levels

where g is the degeneracy. So, at 298 K

|+ 3e (6.626 x 1073 Ts) x (2.998 x 10'%cms™") x (557.1cm™) +
= X -
4 P (1381 x 10-BJK-1) x (298K)
={1.209
At 1000 K
4 3ex (6.626 x 1073 T3} x (2.998 x 10'%ems™!) x (557.1cm™ 1) N
= P (1381 x 10-BJK-1) x (1000K)

~[5o0)

P16.12  (a) Total entropy, S = 8| + $» = (5.69 + 11.63)JK~! = 17.32JK !
W = eS/k = ol732JK™!/1381x10°H [16.34]
= ol 254x10% _ | g544x107
(b) Total entropy, § = 2mol (9.03JK~' mol~') = 18.06 JK~!

3 -1 —23 -1
W= eS/L — el8.06]K J1.38Lx107“'TK

24 23
= ! 31107 _ 56910

303
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The final temperature is not the average because the molar heat capacity of graphite increases with
temperature. At 208 K. it is 8.54 J K~! mol ™', whereas at 498 K it is 14.64 JK~! mol~".

{(c) At constant internal energy and volume the condition for spontaneity is . Since
Wy > W, | the process part (b) is

Solutions to theoretical problems

P16.14 We draw up the following table

0 & 2 38 4 5 66 Te 8 9 W
8 0 0 0 0 0 0 0 0 1 9
7 1 0 0 0 0 0 0 1 0 72
7 0 1 0 0 0 0 1 0 0 72
7 0 0 1 0 0 | 0 0 0 72
7 0 0 0 1 1 0] 0 0 0 72
6 2 0 0 0 0 0 1 0 0 252
6 0 2 0 0 1 0 0 0 0 252
6 0 O 3 0 0] 0 0 0 ] 34
6 1 0 1] 2 0 0 0 0 0 252
6 1 0 0 0 | 0 0 0 504
6 1 0 1 0 1 0 0 0 0 504
6 0 1 1 1 0 0 0 0 0 504
5 3 0 0 0 0 1 0 0 0 504
5 0 3 1 0 0 0 0 0 0 504
5 2 1 0 0 1 0 0 0 0 1512
5 2 0 1 1 0 0 0 0] 0 1512

5 1 2 0 1 0 ] 0 0 0 1512

5 ] | 2 0 0 0 0 0 0 1512

4 4 0 0 0 1 0 0 0 0 630
4 3 b 0 1 0 0 0 0 ] 2520
4 3 0 2 0 0 0 0 0 0 1260
4 2 2 1 0 0 0 0 0 0 3780
35 0 0 | 0 0 0 0 0 504
3 4 1 1 0 0 0 0 0 0 2520
2 6 0 1 0 0 0 0 0 0 252

2 5 2 0 0 0 0 0 0 ] 756
1 7 1 0 0 0 0 0] 0] 0 72

0 9 0 0 0 0 0 0 1] 0 1

The most probable configuration is the “almost exponentia["] {4,2,2,1,0,0,0,0,0,0} |

P16.16  (a) g=3 gie P45 =1+3eP =11 437
j

atT:%. g=1+31=2104




STATISTICAL THERMODYNAMICS 1: THE CONCEPTS 305

N, N
B Un—Un@ =E= 230 _ Vg ot
g dp q

Na _I.  3RT
= “A(3RTe™) = ={0.5245 R
—ORTe™!) = o

A numerical value cannot be obtained for the energy without specific knowledge of the temperature,
but that is not required for the heat capacity or the entropy.

o — (3Un _(az-:)
YE\%T ), " \ar/,

4 dB 4 | d d
_— = — —_—————— = =k 2 -
Since Gr = 4T X d5 ~ kT2 dp T

_ (9N _ o m 8 “'_ﬂe)
Cv=—kp (aﬂ)v‘ kP GEN")aﬁ( 7

) 2 ( B_ﬁs )
= —kB (3eNaA)— \ ——= &

38 \ 1 +3e-fe

—BEy « (—eYe—PE — e~B5(_3ge—PE
—kﬁ2(3eNA)[(1+3c ) x (—€)e e~P5(—3ge )]

(1 + 3e-#¢)’

n

—~kB*(3eNa) [

—geFe
= —kB2(3eNp) | —————
A l:(l +3e—r55)2:|

_ 3ReZe e
(D)2 (1 + 3e~Pe)°

—ge™fE _ 3ge2F 4 3ee2b¢
(1 + 3e=P¢)’

3Re”! 3R
(1+3e1) e +@G/e)

Note that taking the derivative of 0.5245 RT with regard to T does not give the correct answer. That
is because the temperature dependence of ¢ is not taken into account by that process.

Fore = kT, Cy = ={2.0741K ! mol™!

;—T(0.5245RT) = 0.5245R = 4.361 JK~ ' mol ™!

and this is not the correct value.

The calculation of S does not require taking another derivative, so we can use £ = 0.5245 RT

E
Sm= 7 +RIng=05245R + RIn(2.104) = 10.55T K=" mol™! |

P16.18 (a) The form of Stirling’s approximation used in the text in the derivation of the Boltzmann
distribution is

Inx!=xInx—x[162] or InN!'=NIhN-N



306 INSTRUCTOR'S SCLUTIONS MANUAL
and lnn! = n; Inn; — n; which then leads to [Nis cancelled by — Z,- n,-]

InW=NInN— Zn,-lnn,- [16.3]

¢

IfN! =N, In N!' =N In ¥, likewise In ;! = n; Ins; and eqn 3 is again obtained.

(b) Forlnx! = (x + %) Inx—x+4 é In 27 [Comment 16.2],
Since the method of undetermined multipliers requires only (Further Information 16.1) dln W,
only the terms din »;! survive. The constant term, % In 27, drops out, as do all terms d in V. The
difference, then, is in terms arising from In n;! We need to compare »; In #; to % In #;, as both these
terms survive the differentiation. The derivatives are

G
E(”i Inn;) = 1 + Inn; 22 Inn;flarge #;]

a /1 1
— | =Inn )] = —
on; \2 2n;

Whereas In n; increases as »; increases, 1/2nm; decreases and in the limit becomes negligible. For
ni=1x108Inn; = 13.8,1/2m; =5 x 1077; the ratio is about 2 x 10% which could probably not be
seen in experiments. However, for experiments on, say, 1000 molecules, such as molecular dynamics
simulations, there could be a measurable difference.

Solutions to applications
P16.20 pin _ NV = e EN—sho))/AT) [16.6a]

plho) — Nho)/V
— e—mg(fr—hg)/kT

For p(0) = po,

[Lh) — e—mgh/kr

Po
N(8.0km) _ N(8.0km)/V MOy
NO) T NOYYV
0.032kgmoi )x (981 my ) x(80x 10> m
N(8.0km) [0s] = _[l %H.IISJK“(" mo]‘llx:l'i‘(SK) ]!
N{0)
= for O,
(0.018kg mol—D)x (9.8 ms—2)x(B0x10% m
N(8.0km) [H20] = e_[ %B.ZHSJK" mol = 1% (298 K) )I
N(0) B

= for H.O
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(a)

(b)
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The electronic partition function, gg, of a perfect, atomic hydrogen gas consists of the electronic
energies £, that can be written in the form:

1
E, = (I — —,,)thH, n=1,2,3,..., 00,
n=

where we have used the state n = 1 as the zero of energy (in contrast to the usual zero being at infinite
separation of the proton and electron, egn 10.11). The degeneracy of each level is g, = 2n* where
the n? factor is the orbital degeneracy of each shell and the factor of 2 accounts for spin degeneracy.

= : s —(17 L)e
g = Z 8 e'iEH/AT =2 Z Hn-e n? B

n=1 n=1

where C = heRy [kTphowosphere = 27.301. gE, when written as an infinite sum, is infinitely large

2 . —C: . .
because limy., oo {r2e~(1=0/NCY = lim,,_, so{n?e=C} = e~C limy, 0o (7?) = 00. The inclusion of
partition function terms corresponding to large n values is clearly an error.

States corresponding to large » values have very large average radii and most certainly interact with
other atoms, thereby, blurring the distinct energy level of the state. Blurring interaction most likely
occurs during the collision between an atom in state » and an atom in the ground state n = 1.
Collisional lifetime broadening {eqn 13.18) is given by:

h znh

SE, = — = ,
" ame 2

where z, = collisional frequency of nth state of atomic perfect gas

\/EO'HEP _ N/ianz‘pNA

T My [21.11(b}]

1

8RT\?

¢ = mean speed:(—) =1.106 x 10*ms™" [21.7]
aM

o, = collisional cross-section of nth state (Figure 21.9)
= 7{(r)n + o)’

5 (3r:2 +2
=

2
) (Example 10.2)

Any quantum state within SE of the continuum of an isolated atom will have its energy blurred by
collisions 50 as to be indistinguishable from the continuum. Only states having energies in the range
0 £ E < Ey — 8E will be a distinct atomic quantum state,

The maximum term, Mmax, that should be retained in the partition function of a hydrogen atom is
given by

E”mux = EOO - 5E”rnax
5 2
1 Vand (FrE2) g
(l - )thH = heRy —
L. 2 My

with p = 1.99 x 10~*kgm™? and My = 0.001 kgmol~'.
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The root function of a calculator or mathematical software may be used to solve this equation
for mpax:

for atomic hydrogen of the photosphere

Furthermore, examination of the partition function terms n = 2,3, ..., imayx indicates that they are

negligibly small and may be discarded. The point is that very large » values should not be included
in gg because they do not reflect reality.
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n Figure 16.2
Even at the high temperature of the Sun's photosphere only the ground elecironic state is significantly
populated. This leads us to expect that at more ordinary temperatures only the ground state of atom
and molecules are populated at equilibrium. It would be a mistake to thoughtlessly apply equilibrium
populations to a study of the Sun’s photosphere, however. It is bombarded with extremely high
energy radiation from the direction of the Sun’s core while radiating at a much lower energy. The
photosphere may show significant deviations from equilibrium.

See S. J. Strickler, J. Chem. Ed., 43, 364 (1966).
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To show that ¥; = n — i + | consider the following figure of » positions having an “X" label.
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Starting from the left, there are a total of y. groups of i positions where yy. is limited because an
additional group of { would extend beyond the nth position. There are more groups of i, We may
start from the right and count off groups of ¢ until reaching position yg where yg is limited because
an additional group of  would be identical to the group starting at y. In fact, yg = n—y, +{i — )}.
Consequently,
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We may substitute the above expression into the equation for the degree of conversion, &, that is
given in the box.
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Since dg/q = d{Ing) and ds/s = d(In 5), the expression becomes
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