The rates of chemical
reactions
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Answers to discussion questions
No solution.

The overall reaction order is the sum of the powers of the concentrations of all of the substances
appearing in the experimental rate law for the reaction (eqn 22.7); hence, it is the sum of the individual
orders (exponents) associated with a given reactant (or product). Reaction order is an experimentally
determined, not theoretical, quantity, although theory may attempt to predict it. Molecularity is the
number of reactant molecules participating in an elementary reaction. This concept has meaning only
for an elementary reaction, but reaction order applies to any reaction. In general, reaction order bears
no necessary relation to the stoichiometry of the reaction, with the exception of elementary reactions,
where the order of the reaction corresponds to the number of molecules participating in the reaction;,
that is, to its molecularity. Thus for an elementary reaction, overall order and molecularity are the same
and are determined by the stoichiometry.

The steady-state approximation is the assumption that the rate of change of the concentrations of inter-
mediates in consecutive chemical reactions is negligibly small. It is a good approximation when at
least one of the reaction steps involving the intermediate is very fast, that is, has a large rate constant
relative to other steps. See Section 22.7(b). A pre-equilibrium approximation is similar in that it is
a good approximation when the rate of formation of the intermediate from the reactants and the rate
of its reversible decay back to Lhe reactions are both very fast in comparison to the rate of formation
of the product from the intermediate. This results in the intermediate being in approximate equilib-
rium with the reactants over relatively long time periods (though short compared to the overall time
scale of the reaction). Hence the concentration of the intermediate remains approximately constant
over the time period that the equilibrium can be considered to be maintained. This allows one lo relate
the rate constants and concentrations to each other through a constant (the pre-equilibrium constant).
See Section 22.7(e).

The parameter A, which corresponds to the intercept of the line at 1/7 = 0 (at infinite temperature), is
called the pre-exponential factor or the frequency factor. The parameter E,, which is obtained from the
slope of the line (—E,/R), is called the activation energy. Collectively, the two quantities are called the
Arrhenius parameters.

The temperature dependence of some reactions is not Arrhenius-like, in the sense that a straight line
is not obtained when Ink is plotted against 1/7. However, it is still possible to define an activation
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Energy as

This definition reduces to the earlier one (as the slope of a straight line) for a temperature-independent
activation energy. However, this latter definition is more general, because it allows E; to be obtained
from the slope (at the temperature of interest) of a plot of In & against 1/7T even if the Arthenius plot is
not a straight line. Non-Arrhenius behavior 1s sometimes a sign that quantum mechanical tunnelling is
playing a significant role in the reaction.

The expression & = kiky[Al/(ky + kL [A]) for the effective rate constant of a unimolecular reaction

kll
A — Pisbased onthe validity of the assumption of the existence of the pre-equilibrium A+ A = A*+A.

This can be a good assumption if both &, and k;, are much larger than ky. The expression for the effective
rate-constant, k, can be rearranged to

K |

X~ kks T GA]

Hence, a test of the theory is to plot 1/k against 1/[A], and to expect a straight line. Another test is based
on the prediction from the Lindemann—Hinshe!wood mechanism that as the concentration (and therefore
the partial pressure) of A is reduced, the reaction should switch to overall second order kinetics. Whereas
the mechanism agrees in general with the switch in order of unimolecular reactions, it does not agree in
detail. A typical graph of [ /k against 1/[A] has a pronounced curvature, corresponding to a larger value
of k (a smaller value of 1/k) at high pressures (low 1/[A]) than would be expected by extrapolation of
the reasonably linear low pressure (high 1/[A]) data.

Solutions to exercises

_GIA]__1diB] _dIC]_ 1d[D] 1.00 moldm™s~1, so
di 3 dr di 2 dr

Rate of consumption of A =| 1.0 mol dm~3 s~! l

Rale of consumption of B = | 3.0 mol dm~3 s~ |

Rate of formation of C :[ 1.0 mol dm~3 s~! |

Rate of formation of D = l 2.0 mol dm™2 5! I

d[B
Rate of consumption of B = —_([1;—] =| 1.00 mol dm~% 5! |
| d[B d[C 1d[D d[A
Rate of reaction = —5% —{033 moldm~? 57! | = % = 5% = —%

Rate of formation of C = l 0.33 mol dm—3 s~/ |

Rate of formation of D = 0.66 mol dm=* s~! |

Rate of consumption of A = | 0.33 mol dn~ s~/ l
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The dimensions of & are

dim of v amount x length™ x time™!

(dim of [A]) x (dimof [B])> ~ (amount x length~3)3

= length(’ x amount ™ x time ™!

In mol, dm, s units, the units ol & are | dm® mol~2 s~

dlA] 5 | dlA] 2

= ——— = k[A][B]) so| — = —k[A][B]"

{a) v o [AlIB] so & [A][B]
d[C] d[cy -
N St = —L[ATBI?
(b) v a4 k[AJIB]

The dimensions of & are
dim of v amount x length? x time™" lime="
= = lime
dim of [A] x dim of [B] x (dim of [C]}~! amount x !englh#‘1

The units of & are
d[C
v= % =| k[A]{B](C]™!

The rate law is
v =k[A]* o p* = {po(l — FH}
where a is the reaction order, and f the fraction reacted (so that 1 — f is the fraction remaining). Thus
vi_ (el =/ _ (1A' In(v) /v2) ln(9.71/7.67)
— = = d = = =|2.00
m T et = \T=p) M T TN T (10100
15 1 —0.200

The half-life changes with concentration, so we know the reaction order is not 1. That the half-life
increases with decreasing concentration indicates a reaction order < 1. Inspection of the data shows the
half-life roughly proportional to concentration, which would indicate a reaction order of 0 according to
Table 22.3. More quanlitatively, if the reaction order is 0, then

)

!
fypzocp and %:ﬁ
(2 P

We check to see if this relationship holds
(1

Hya o 3405 p1 555kPa
o - =191 and — = =
iy 1785 2 28.9kPa

so the reaction order is @

The rate law is

o 1dlA)
V=g THA
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The half-life formula in eqn 22.13 is based on the assumption that

dlA]
——4 = kAL

That is, it would be accurate to take the half-life from the table and say

In?2
kf

hp =
where k' = 2k. Thus

- [1:80 x 10°5]
fj = =|1.80 x 10°
1/2 2(2.78 x 10-7 s")

Likewise, we modify the integrated rate law (eqn 22.12b), noting that pressure is proportional to
concentration:

2&r

P=poe”

(a) Therefore, after 10 h, we have

p={(32.1kPa)exp[—2 x (278 x 10 757 ') x (3.6 x 10%s)] = | 31.5kPa

(b) After 50 h,

p=(32.1kPayexp[—-2 x (2.78 x 107757 ") x (1.8 x 10° 5)] = | 29.0 kPa

E22.8(b) From Table 22.3, we see that for A 4+ 2B — P the integrated rate law is

I ] [[A]o([B]o - 2[P])j|

kr = n
[Blo — 2[Aln {[Alo — TPDI(Blo

{a) Substituting the data after solving for &

‘= ! ] [(0.075 x (0.080 — 0.060)]
T (3.6 x 107 5) x (0.080 — 2 x 0.075) x (moldm ) (0.075 — 0.030) x 0.080

=3.47 x 107 3dm*mol~!s~! |

(b) The half-life in terms of A is the time when [A] = [A]p/2 = [P]. so

" [[A]O ([Blo — (2[A]0/2)):|
k{[Blo — 2[Alo) ([AJo[Blo/2)

tiy2(A) =

which reduces to

np(A)=

| n( _ 2[A]0)
k([Blo — 2[Alo) [Blo

I | (2 0.150)
= = x In - —
(3.47 x 10=3dm? mol~' s=!) x (—=0.070 mol dm™?) 0.080

= 85615 =[2.4h]
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The half-life in terms of B is the time when [B] = [Blp/2 and [P] = [Blo/4:

1 [Alo ([B]o - %)
112(B) = — in B
k([Blo — 2[AJn) ([Alo _ [4]0) (Blo

which reduces to

fi2(B) = Z

I 0 ( [Alo/2 )
([Blo — 2[Alo) [Alo — [Blo/4

B I i ( 0.075/2 )
(347 x 10~3dm’ mol~' s=!) x (—0.070 mol dm™3) 0.075 — (0.080/4)
= 1576s =|0.44h

E22.9(b) (a) The dimensions of a second-order constant are

dim of v amount x length™ % time ™!

!
(dimof [AI¥ ~  (amount x length™>)?

= length® x amount™ x time™

In molecule, ™, s units, the units of & are | m3 molecule™' 5!

The dimensions of a third-order rate constant are

dim of v amount x length_3 x time™!

L
(dim of [A])3 (amount x length—3)3

= length® x amount™2 x time™

In molecule, m, s units, the units of & are | m® molecule=2 s~/

COMMENT. Technically, "molecule” is not a unit, so a number of molecules is simply a numbber of individual
objects, that is, a pure number. In the chemical kinetics literature, it is common to see rate constants given
in molecular units reported in units of M2 s=1, m€ =1, em® s~7, etc.

(b) The dimensions of a second-order rate constant in pressure units are

dim of v pressure x time ™!

(dimof p)2 = (pressure)?

In SI units, the pressure unit is N m~2 = Pa, so the units of k are

The dimensions of a third-order rate constant in pressure units are

= pressure_l x time™

dim of v pressure x time™!

(dimofp)} = (pressure)?

In SI pressure units, the units of & are .

E22,10(b) The integrated rate law is

1 1n[i"\]t)([B]o —2[C])
[Blo —2{Ale  ([Aly — [CD[Blg

1

= pressure‘2 x time™

kt =

[Table 22.3]
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Solving for [C] yields, after some rearranging

_ |Alo(Blo{explkt{[Blo — 2[AJo)] — 1)

Cl =
()= By explki (BT — 2[Al0)] - 21ATo
[C]  (0.025) x (0.150) x (eP21x@100xi/s — 1y (3.75 x 1077 x (2011* — 1)
0 T dm=3 . (0.150) x c02IX@O0X175 — 2 % (0.025)  (0.150) x €2921x175 _ (0.050)
75 x 1073 02l
@ (=0 xe — D g -3 _[65 x 107 mol dm~? ]

(0.150) x e0.2l — (0.050)
(b) [C]= 0.150) X 136 _ (0.050) mol dm™ =|0.025 mol dm

E22.11(b) The rate law is

1 d[A]
2 dr

= K[AP

which integrates to

T 2\[A2 (A T4k \[A [a})°

1 1 1
= X -
(4(3.50 % 104 dm® mol 2 s-l)) ((0.021 moldm™*2  (0.077 mol dm-3)2)
=]15%x10%s

E22.12(b) A reaction nth-order in A has the following rate law

d[A] dfA] -
P A 1 _=—d=A .ri'dA
P k[AY so TN kdt =[A] [A]
Integration yields
A l—n _ A f—n
(Al A" _

1—n
Let 1173 be the time at which [A] = [Ala/3.

GlAl)' ™ —[A ™" [Aly ") ™" — 1]
l—n - t—n

SO _k.f[/j; =

3“_] —1 I—n
and 113 = k(:Tl_)[A]O

E22.13(b) The equilibrium constant of the reaction is the ratio of rate constants of the forward and reverse reactions:

k
K:k—r so ks = Kk;.

T

The relaxation time for the temperature jump is (Example 22.4):

T =tk + &(BI+[CD)" so ke=1"" — k(B] +[C])
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Seiting these two expressions for kr equal yields

S ) = T T el T
Kk = o7 —&(BI+ICD so k= BT TTOD
Hence

I
b =
T (3.0 x 10768) x (2.0 x 10746 4+ 2.0 x [0~4 + 2.0 x 10~4) mol dm™>

=83 x 10%dmI mol ' 5!

and & = (2.0 x 1070 mol dm™3) x (8.3 x 108dm* mol™'s=1) = [ 1.7 x 107 7s~!

E22.14(b) The rate constant is given by

—E,
k=Aexp (R—T") [22.31]

soat24°Citis

170 x 1072 dm’ mol™' s™! = Aexp ( _’IE“ )
(8.3145JK 1T mol™1) x [(24 + 273) K]

and at 37°C it is

—E
2.01 x 1072 dm? mol™! 57! :Acxp( ]a )
(83145 JK-Tmol™") x [(37+ 273 K]

Dividing the two rate constants yields

170 x 1072 —E, 1 1
) x —_— e ——
201 x 102~ P\ 83145 1K' mol~! 797K~ 310K
| (1_70x 10—2) ( —E, ) ( 1 1 )
so In = o —— — —
2.01 x 10-2 83145JK-! mol™! 297K 310K
1 Iyt 1.70 x 1072
dE=-(o———-——) In{=—"—— ) x (83145JK~" mol™"
. (297K 310K) b (2.01 x 10-2) x( mol™")

=99 % 10* Jmol™' =[9.9 kI mol~!

With the activation energy in hand, the prefactor can be computed [rom either rate constant value

E. 9.9 x 10* J mol ™!
A = kexp (ﬁ) — (170 x 10~ dm® mol ' s ) x exp( x oMo )

(8.3145J K- mol™!y x (297 K)

=|0.94 dm® mol~! 57!

E22.15(b} (a) Assuming that the rate-determining step is the scission of a C—H bond, the ratio of rate constants
for the tritiated versus protonated reactant should be

kT " hkl!ﬁ I 1 . - ) 1/2
— =e¢ ", whereA={ —— ] x 7" A [22.53 with hev = fuw = Bilk/) 7]
ky 2kpT p'C/H Bt
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The reduced masses will be roughly 1u and 3 u respectively, for the protons and 3H nuclei are far
lighter than the rest of the molecule to which they are attached. So

_ (1.0546 x 107 J5) x (450N m )/
T2 (1381 x 1073 JK-1) x (298 K)

! 1 a7y i
g ((1u)'/2 - (3u)l/2) (166 x 10737 kgu ™™

228

kT 28 ~
S0 k—~e =[0.06=1/16

H

(b) The analogous expression for '®0 and 20 requires reduced masses for C—'%0 and C—'#0 bonds.
These reduced masses could vary rather widely depending on the size of the whole molecule, but in
no case will they be terribly different for the two isotopes. Take '2CO, for example:

_ (16.0u) x (12.0u)

(18.0u) x (12.0u)
16 = =

=7.20u

AP X A ATH)  686u and =
(160 + 12.0)u 4oand M= TR0 + 12.0)u

(10546 x 1073 1) x (1750Nm~H!/2
2 x (1381 x 10" JK~1) x (298K)

1 1 27y —Iy=1f2
x ((6.86u)1/2 — (7-201')”2) x (1.66 x 107" kgu™") /

=0.12

k
[a) LB = e—O.IZ =10.89
kig

Al the other extreme, the O atoms could be attached to heavy fragments such that the effect-

o

ive mass of the relevant vibration approximates the mass of the oxygen isotope. That is, s =
16u and 13 = 18u

k
s0 A 0.19 so 2 —e-019 _[08§3
kg

E22.16(b) L_ ko
' k koky  kapa

Therefore, for two different pressures we have

[analogous to 22.67]

1 | 1 1 -1
- (1.09 % 103Pa 25Pa) % (1.7 x 10735t 22x 10-4s—l)

=[9.9x 1065~ 'Pa~! | =[9.95~!MPa~! |
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Solutions to problems
Solutions to numerical problems
The procedure is that described in solution to Problem 22.1. Visual inspection of the data seems to

indicate that the half-life is roughly independent of the concentration. Therefore, we first try to fit the
data to eqn 22.12b:

n (ﬂ) = —kt
[Alo

A
As in Example 22.3 we plot In ;—]) against time to see if a straight line is obtained. We draw up the

following table (A = (CH3)3CBr}

t/h 0 3.15 6.20 10.00 18.30 30.80
{A]/¢10~2mol dm™>) 10.39 8.96 7.76 6.39 3.53 2.07
Al 1 0.862 0.747 0.615 0.340 0.199
[Alo
[A]
nf — 0 —0.148 —0.292 —0.486 —1.080 —1.613
[Alo
(ﬁ) /(dm3 mol™ ") 9.62 .16 12.89 15.65 28.3 483

In([A]/[Aly)

ifh Figure 22.1

The data are plotted in Figure 22.1. The fit to a straight line is only fair, but the deviations look more like
experimental scatter than systematic curvature. The correlation coefficient is 0.996. If we try to fit the
data to eqn 22.15b, which corresponds to a second-order reaction, the fit is not as good; that correlation
coefficient is 0.985. Thus we conclude that the reaction is most likely . A non-integer order,
neither first nor second, is also possible.
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The rate constant & is the negative of the slope of the first-order plot:

k=00542h"" =|1.51 x 107%~!

At438h

n|l— ] =—(00542h™") x (43.8h) = —2.359
[Alo

[A] = (10.39 x 1072 mol dm™) x ¢ ~>¥% =9.82 x 10~ mol dm~3

Examination of the data shows that the half-life remains constant at about 2 minutes. Therefore, the
reaction is . This can be confirmed by fitting any two pairs of data to the integrated first-order
rate law, solving for & from each pair, and checking to see that they are the same to within experimental
error.

[AlY _ _
In (m) = —kt [22.12b, A = N3Os]

Solving for £,

, _ InQAL/AD
!

At7 = 1.00 min, [A] = 0.705 mol dm~? and

L= In (1.000/0.705)

=0.350min~' =5.83 x 1073s~!
1.00 min min xS

At + = 3.00 min, [A] = 0.399 mol dm > and

_ In{(1.000/0.349)

o -3 -1
— = N = . IO
k 300 min 0.351 min 5.85 x s

Values of k may be determined in a similar manner at all other times. The average value of & obtained is

5.84 x 10~2s~! |. The constancy of &, which varies only between 5.83 and 5.85 x 10~*s~! confirms

that the reaction is| first order |. A linear regression of In[A] against f yields the same result. The half-life
is (eqn 22.13)

In2 0.693 = -
N2 =2 = Spre oyt = 187 = (198 min)

Since both reactions are first-order, we have

d[A]
- = ki [A]+ ka[A] = (b + k2)[A]

so  [A] = [Alge~ M1+ [22 12b with k = k) + ko]
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We are interested in the yield of ketene, CH,CO; call it K:

% = ka[A] = ka[A]pe~ 1R

Integrating vields

[K] I
f d[K] = ka[Alo f e Ritkaliy,
Q

0
_ falAk (1 —e~thithony - k2 ([Alo — {AD)

[K]l=
kl + k& k) + k2

The percent yield is the amount of K produced compared to complete conversion; since the stoichiometry
of reaction (2) is one-to-one, we can write:
(K] ka

%vyield = —— x 100% =
Y (Alo kL + k2

(1 — e~ atkdry o 1009,

which has its maximum value when the reaction reaches completion

ka 4.6557!
% yield = 100% = ——— "~ x 100% =|55.4%
e S itk T Brat a6 s

COMMENT. if we are interested in yield of the desired product (ketene) compared to the products of side
reactions (products of reaction 1), it makes sense to define the conversion ratio, the ratio of desired product
formed to starting material reacted, namely

iK]
[Alo — 1A

which works out in this case to be independent of time

K] _ ka
[Alo—[Al ki +k2

If a substance reacts by parallel processes of the same order, then the ratio of the amounts of products will
be constant and independent of the extent of the reaction, no matter what the order.

Question. Can you demonstrate the truth of the statement made in the above comment?

The stoichiometry of the reaction relates product and reaction concentrations as follows:
[A] =[A)o — 2(B]

When the reaction goes to completion, [B] = [A]g/2; hence [A]lp = 0.624 mol dm~3. We can therefore

tabulate [A], and examine its half-life. We see that the half-life of A from its initial concentration is

approximately 1200 s, and that its half-life from the concentration at 1200 s is also 1200 s. This indicates

a first-order reaction. We confirm this conclusion by plotting the data accordingly (in Figure 22_2}, using
[Alo

In —— = kat
Ay °
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which follows from

d[A]
— = —kalA
ar alAl
1/s ] 600 1200 1800 2400
[B]/{mol dm_3) 0 0.089 0.153 0.200 0.230
[A]/(mol dmfj) 0.624 0.446 0.318 0.224 0.164
n m 0 0.34 0.67 1.02 1.34
[A]

In{fAly/[AD)

Figure 22.2

The points lie on a straight line, which confirms kinetics. Since the slope of the line is
5.6 x 1074, we conclude that ko = 5.6 x 107?57 !. To express the rate law in the form v = k[A] we

note that
1 d[A] _

1 1

and hence k = %k,q =28 x 107%5~!

If the reaction is first-order the concentrations obey

A1\ _

and, since pressures and concentrations of gases are proportional, the pressures should obey

In?% =k

P

1
and n In 22 should be a constant. We test this by drawing up the following table
P

po/Tort 200 200 400 400 600 600
tfs 160 200 100 200 100 200
po/Torr 186 173 373 347 559 520

104(%)111@ 73 713 70 74 71 12
s) p
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The values in the last row of the table are virtually constant, and so {in the pressure range spanned by

the data) the reaction has | first-order kinetics | with k = 7.2 x 1079s~!

P22.12 Using spreadsheet software to evalvate eqn 22.40, one can draw up a plot like that in Figure 22.3. The
curves in this plot represent the concentration of the intermediate [I] as a function of time. They are
labeled with the ratio &, /k2, where k2 = 1 s~! for all curves and &, varies. The thickest curve, labeled
10, corresponds to ky = 10 s, as specified in part a of the problem. As the ratio k) /k2 gets smaller
(or, as the problem puts it, the ratio k2/k) gets larger), the concentration profile for I becomes lower,
broader, and Aatter; that is, [I] becomes more nearly constant over a longer period of time. This is the
nature of the | steady-state approximation | which becomes more and more valid as consumption of the
intermediate becomes fast compared with its formation.

038

o
=3

2
B

(11/(mol dm™)

Figure 22.3

P22.14 (a) First, find an expression for the relaxation time, using Example 22.4 as a model:

Al

o= —2U[A]? + 2kp[A2]

Rewrite the expression in terms of a difference from equilibrium values, [A] = [A]eq +x:

d[A]  d([Algg +x)  dx
== d‘; =a=—2ka([A]cq+x)2+2kh([A2]eq—%I)

dx
3= ~2Ua[A1Z, — Hha[Aleqx — 2kax® + 2kp[Azleq — kp¥ & —(4kalAleq + kp)x

Negiect powers of x greater than x!, and use the fact that at equilibrium the forward and reverse rates
are equal:

ka[AlZ, = kolAzleq

to obtain

dx |
5~ ~WalAlg + kp)x  so - Ay [Aleq + kb
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To get the desired expression, square the reciprocal relaxation time,

] 0
= ~ 16TAT, + Bkako[Aleq + &7 -

introduce [A]i = [Aleq + 2{A2]eq into the middle term,

|
= ~ I6KATR, + 8koko([ATol — 2[Aaleq) + 7

2 16ka[AL%, + Bkakn[Alior — 16kakn[Azleq + &f = | 8kako[Aliar + &7

and use the equilibrium condition again to see that the remaining equilibrium concentrations cancel each
other.

COMMENT. Introducing {Alit into just one term of eqn * above is a permissible step, but not a very
systematic one. It is worth trying because of the resemblance between eqn * and the desired expression: we
would be finished if we could get [Alig inte the middle term and somehow get the first term to disappear!
A more systematic but messier approach would be to express [Aeq in terms of the desired [Aliar by using
the equilibrium condition and [Aliet = [Aleg + 2[A2]eq: sOlve both of those equations for [Az]eq, set the two
resulting expressions equal to each other, solve for [A)eg in terms of the desired [Aiet, and substitute that
expression for [Aleq everywhere in eqn *.

1
{b) Plot — vs. [A]ie1. The resulting curve should be a straight line whose y-intercept is kﬁ and whose
]

slope is Bkaky.

(¢) Draw up the following table:

[Alir/(mol dm™3) 0.500 0352 0251 0.151 0.101

t/ns 2.3 27 33 4.0 53
1/(z/ns)* 0.189 0.137 0.092 0.062 0.036

The plot is shown in Figure 22.4.

The y-intercept is 0.0003 ns~2 and the slope is 0.38 ns=2 dm® mol~!, so

k=3 x 107 x (1077 5) 12 =3 x 10 s )12 =17 x 107!

0.38 x (1079 5" 2dm® mol™!
8 x (1.7 % 107 s~y

and k, = = | 27 x 107 dm? mol ™' 5~/ |

_ ka/dm® mol™' s 27 x 10°

K= | = =|[1.6x10?
ko/s~ 1.7 x 107

COMMENT. The data dsfine a good straight line, as the correlation coefficient A2 = 0.996 shows. That
straight line appears to go through the origin, but the best-fit equation gives a small non-zero y-intercept.
Inspection of the plot shows that several of the data points lie about as far from the fit line as the y-intercept
does from zerc. This suggests that y-intercept has a fairly high relative uncertainty, and so do the rate
constants.
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02

y = 0.3799, k I
0.18 y =0.3799x + 0.0003

o —
o
I

0 0.1 0.2 0.3 0.4 0.5
[A e (molidm’) Figure 22.4

2

1/(t/ns)y”
o

P22.16 Apply the equation derived in P22.5 to the rate constant data in pairs
—RIn{k/k")
((1/Ty = (1/T)

a =

T/K 3003 3003 3412

T'/K 3412 3922 3922

1077 k/(dm® mol~! s~1) 1.44 1.44 3.03

1077 &'/ (dm® mol~! s 1) 3.03 6.9 6.9

E,/(kJ mol~1) 15.5 16.7 18.0

The mean is| 16.7 kJ mol~' | Compute A from each rate constant, using the mean E, and A = kefa/RT
T/K 300.3 3412 3922

1077 k/(dm® mol~' s~ 1) 1.44 3.03 6.9

E./RT 6.69 5.89 5.12

1071 A/(dm? mol~' s~ 1) 1.16 1.10 1.16

The mean is| !.14 x 10'% dm® mol~'s™!

P22.18 The relation between the equilibrium constant and the rate constants is obtained from
k

AGS =—RTIhK =AH® —TA5® and K= o

So K k —AH® . AS® A ex E, — Ea)
= — = ¢X X = —_
e =P\ TR P\ ™% A P\ TR
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Setting the temperature-dependent parts equal yields
AH® =E, —E, =[-42 - (53.3) KImol™! = —57.5k] mol~!

Setting the temperature-independent parts equal yields

o0 (%)= (%)

A
50 A:S® =RlIn (P) = (83145 J K~ mol M In (

1.0 x 10%

W) = —41.1JK~! mol™!
A8 X

The thermodynamic quantities of the reaction are related to standard molar quantities
AH® = A¢H®(CaHg) + AcH® (Br) — AgH ® (CoHs) — A¢H® (HBr)

so ArHZ(CoHs) = AfH®(CaHg) + ArH(Br) — AfH®(HBr) — A H®

and AgH®(CyHs) = [(~84.68) + 111.88 — (—36.40) — (~57.5) k] mol~} =

Similarly

52(CaHs) = [229.60 + 175.02 — 198.70 — (—41.D)] T mol ™' K™ = | 247.0 1 K= mot”! |

Finally
ArG®(CaHs) = [—32.82 + 82.396 — (—53.45) kI mol ™! — AG®
= 103.03kImol™! — A,G®
but

AG® = AH® —TA,S® = =57.5kImol™! — (208K) x (—41.1 x 107> kJK™" mol™")
= 453 kI mol™!

s0 ArG2(CaHs) = {103.03 — (—45.3)] ki mol ™! =| 148.3 kJ mol ™!

Solutions to theoretical problems

P2220  We assume a pre-equilibrium (as the initial step is fast), and write

2
_lar implying that [A] = K'/%[A,]'/?
[Az]

The rate-determining step then gives

v = ‘El—l::]- = ka{A][B] = k2K1f2[A2]|/2[B] = keff[Az]lﬂ[B]

where ko = koK 172,
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P22.22 p = % = k[A][B]

Let the initial concentrations be [A]g = Ag, [Blo = By, and [Plg = 0. Then, when P is formed in
concentration x, the concentration of A changes to Ap — 2x and that of B changes to By — 3x. Therefore

d[P )
%zi_j:k(Ao—ZX)(Bo—k) with x =0ats =0.

I X d.l
jkdr:f
0 o (Ap — 2x) x {Bp — 3x)

X 6 1 |
= fo (230 - 3A0) 8 (3(A0 7% 2Bo - 3x)) &

(=) ([ =i~ | =am)
T\ 2By —34p o x—{1/DAs Jo x—(1/3)By
) 1
kr=(_—1)x I =280} _y, (135
(2Bp — 3Ap) —3A0 —%Bo
- () (222
~ \ 2By —34p Ap(3x — By)

B ( 1 )ln((lr—fio)Bo)
| \ (340 — 2By) Ap(3x — Bg)

P22.24 The rate equations are

dia] _ '

o = ka[A] + &, [B]

d[B

% = ka[A] — K} [B] — kp[B] + &y [C]
d[C] o

F = kb[B] lkb[C:|

These equations are a set of coupled differential equations and, though it is not immediately apparent,
they do admit of an analytical general solution. However, we are looking for specific circumstances under
which the mechanism reduces to the second form given. Since the reaction involves an intermediate, let
us explore the result of applying the steady-state approximation to it. Then

d(B
—5—;—] = k,[A] — K[B] — kp[B] + £ [C] =0
_ klAl+&[C]
and [B] = —kf[ The
Therefore, diAl _ _ _kaks [A] + kaky [

dr K+ e k! + ky
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This rate expression may be compared to that given in the text [Section 22.4] for the mechanism

k ki
~B l:herc A= C:|

g Ky

kaky ., kkg
Ki+ke Tk 4k

Hence, koir =

+ kogre ™ Kerr et
!
Acﬂ' + ke

X
I"cff

The solutions are [A] = ( ) x [Ale [22.23]

and [C] = [Alo — [A]

Thus, the conditions under which the first mechanism given reduces to the second are the con-
ditions under which the steady-state approximation holds, namely, when B can be treated as a
steady-state intermediate |.

Let the forward rates be written as
rn=ki{Al, r=kiBl. r=~k[C]
and the reverse rates as
¥l =k|[B], 1, =kI[C], r3=k[D]
The net rates are then
Ry = ki[A] =k [B]l, Ri= kBl —k3[C), R3=ks[C]—&;[D]
But [A] = [A]p and [D] = 0, so that the steady-state equations for the net rates of the individual steps are
k1[Alo — k| [B] = k2[B] — £5[C] = &3[C)
From the second of these equations we find

ka2[B]
k4 ks

(€l =

After inserting this expression for [C] into the first of the steady-state equations we obtain

(B = kilAlo + k31C1  kilATo + k3 ((k2[BD)/ (k3 + £3))
T Ktk k) + ka2

which yields, upon isolating [B],

ki

Bl =[A
[B) = [Alo x K|+ k2 — (kakl /(K + K3))
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Thus, at the steady state

K kikaks[A
Ri=R;=Ri=[Aloki x {1 — ! _ 1k2k3[Aly

k’l ko rkgké kiké + k;k:; + kzka
k5 Ak

COMMENT. At steady state, not only are the net rates of reactions 1, 2, and 3 steady, but so are the
concentrations [B] and [Cl. That is,

diB , )
T kil — (] +)IB +K3ICT <0

and dfj—?] = ka[B) — (k} + k3)[C1 = 0

In fact, another approach to solving the problem is to scive these equations for [B] and [C].

b dlA] ,
P22.28 2ZAZ2 A TRk —2ky [A)" + 2kp[Aa]
ky

Define the deviation from equilibrium x by the following equations, which satisfy the law of mass
conservation.

(Al =[Alq +2x and  [Az] = [Azleq — %

Then,

w = —2U([Aleq + 260 + 2kp([Az]eq — X)

dx

E = _ka([A]cq + 2-\')2 + kb([AZ]cq —x)= —ku([A]gq + 4[A]cqx + 4-’52) + kb([AZ]cq - x)

- I4ka.\'2 + (ko + W [Aleg)x + kil ATE, — kb[Ag]eq]
= = | o + A Alegds + kAL — Ky Aolug
In the last equation the term containing x” has been dropped because x will be small near equilibrium

and the x? term will be negligibly small. The equation may now be rearranged and integrated using the
following integration, which is found in standard mathematical handbooks.

dw 1
f = — [n(aw + b)

aw -+ b a

d.
f : 3 = - f df + constant
(ko + dku[Aleg)y + kal ALz, — kb[Az]eg

— In(Cky 4 dky[Aleg)x + kAR, — kplA2leg) = — stant
(kb+4kulA]nq) n((kp + 4y ]t.q)\'“ al ]._q bl Z]Lq) 1 + constan

In (’—) = —(ky + halAleg)r where ¥ = (ky + dka[Aleg)x + ko [AT — kolA2)eq

0

V= ),De*(kb+4k:|[A]u| M
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Comparison of the above exponential to the decay equation y = yoe 7 reveals that

|
=
kep + 4o [Aleq

Note that this equation can be used as an alternate derivation of the equation discussed in problem 22.14.
The manipulations use the facts that K = [,l’\g]cq/[‘ﬂ\]?3q = ky/ky and [A)ig = [Aleq + 2[A2]eq by
conservation of mass, which can be used to show that

2k,

2ky
[Alr = [Aleg + E[A]ﬁq E[A]ﬁq + [Aleq — [Alot =0

This quadratic equation can be solved for [A]eq.

kb Ska[A]ml
Jeq ak, ( ky )

1
Substitution of this equation into =5 = (b + 41(;,[A]cq)2 and some algebraic manipulation yields the
T

1
result of problem 22.14: — = kg + Bk kp[Alior-
72

Solutions to applications

The first-order half-life is related to the rate constant by eqn 22.13

. _In2 s k—ln2— In2
12 = k _I[/g_zs.ly

=247 x 1072 y"!

The integrated rate law tells us
[05r] = [¥Srlge™ so  m = mge™"

where m is the mass of %°Sr.

(@) After 18 y: m = (1.00 ug) x exp[—(2.47 x 1072 y~1) x (18 y)] =|0.642 g
{(b) After 70 y: m = (1.00 ug) x exp[—(2.47 x 1072 y=1)} x (70 y)] =|0.177 ug

k k
(@ A——>B—5C
The peak concentration of B, [P],, immediately after administration of the nh dose, each of which
have been administered at the time interval 7, is given by the sum:

[PL, = (Bl +(Bhe ™ +[Ble ™ + o (Bl = (B, S, e

oo e

remainder remainder remainder
contribution of (n—L )y of (n-2)h of 13t
of mh dose dose dose dose
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The residual concentration of B, [R],, just before administration of the (r + 1" dose results from
the first-order elimination of [P], : [R], = [P).e~%T [22.12 a,b],

[+.0]
[Ploo = lim [Pl = [Blo Z ek — [B]g (l NRN e ) where x = 7527 < |
=00
m=0

This may be simplified using the Taylor series: 1 + x + 2= ]lj = 1_—51“'5"_ when x < |

We conclude that| [P)e = [Blo (1 — e_kzt)_l -

"— n
Furthermore, [R], = [Blpe 2" 3 e™"k2f =[[B]g 3 e~ |

m=0 m=|

3 Zpar _ [Bloe™" _ [Blo _ e )
(Rleo = [Plaoe ™" = =0 = 57— = [Bo (e - 1) .

[Plec — [Rloc = [Blo | | —e—fat ! ( ehat _ )—1]

(1-e)
O [(Ry I (R
=[Blo{(1 ) (1 - o) 1]=_

(b} (i) Solving the equation [Pl = [Blo (1 - e‘kﬁ)_l for r gives:

Blo _ | _ kr o ookr_,_ Bl

B
=1 c " e = or —kzr:]n(l_ﬁ)
[Ploo [Pl [Pleo
1 (Blo 1 1
=-r-in{l- =—————In{l-—]=|365h
TR ( [P]w) 00289h~" ( 10) [365h)
Figure 22.5(a) shows peak and residual drug concentrations against the number of administra-

tions. Figure 22.5(b) shows the concentration variation with time. It clearly demonstrates the
peak and residual concentration and the elimination decay between drug administrations.

(i) By using the trace function of the plot, or by directly reading the graph, it is found that [P], is
75% of the maximum value when n = .

f15%max = (n — 1
=(13-1)(3.65h)
=43.8h
{iii) The magnitude of the variation [P], — [R], may be reduced by reducing the drug dosage [Blo.
However, in order to avoid changing [Pl it becomes necessary to reduce v.
(c) For first-order absorption and zero-order elimination of a single dose [Alp:

cl[A]

- =k [A] and [A]l=[Alpe™™' [22.12a,b]
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10 T T T
PLIBly " ieeceneene
e [R],/ [Blo .
0 1 L 1 L
0 10 20 30 40 50
n Figure 22.5(a)

[B] /By

0 50 100 150 200
t/h Figure 22.5(b)

d[B ]
% = i [A] — ka = ki [Aloe ™ — &y

IB] :
f dm]=j°@dﬂm4”—b)m=kdﬂof
0 0 0

(Bl =[Alp (1 — e=47) — kyt

!

I
rmm—bfm
0
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[B]/[Aly

(d)

a8

0.6

04F

0.2}
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[Alg=0.1 mmol dm™?

5 10 15 20 25
rth Figure 22.5(c)

The plot of [BI/[Alp (Figure 22.5(c)) shows rapid absorption of the drug into the blood followed
by the slower, linear elimination that corresponds to zeroth-order elimination. Elimination occurs
within 25 h with these rate constants.

Let {[Blmax, tmax) be the maximum of a curve such as that shown above. To find formulas for this
point, we must examine the curve at the peint for which d[B]/dr = 0.

diB :
T _ taLe v — 1y =0
dr
ka

k
—klfmux — —_ k t — ] 2
¢ kAL o Vme=n (kl[Alo

1 kifa
Imax = Eln( IE'Q]O) R

(Blmax = [Alo (1 = €™ ) — katmar = [Alg (1 _ehE ‘"(“{Q_i“)) ~ Kafmax

_ _'"(rﬁr))_, _ (_ k2 )_
=[Alp (1 e o katmaxy =[Alp | | Al k3 Imax

ka
[B]max = [A]O - E - klfm:lx -

Analysis of NMR lineshapes can be used to infer time scales of protein folding or unfolding steps. Protons
{or other nuclei, for that matter) that have different chemical shifts in folded and unfolded proteins will
yield a single peak if the time scale for interconversion (i.e. for folding or unfolding) is comparable to or
less than the reciprocal of the two peaks’ frequency difference. Monitoring the change from two peaks
(indicating that a sample contains both folded and unfolded proteins, which might be observed at one
temperature} to a broad single peak (indicating fast interconversion, which might be the case at a higher
temperature) can allow the determination of the time constant for the conversion. One advantage of
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NMR over vibrational or electrenic spectroscopy is that the radiation used to probe the system is much
less energetic, and therefore much less likely to alter the folding or unfolding process it is designed to
investigate. The lineshape strategy cannot be used o investigate processes as fast as those accessible by
electronic or vibrational spectroscopy. (cf. Example 15.2.)

P22.36 First, turn egn 22.30 into an expression involving the functional forms given in the data:

a1 dlnk d(I/T dink dlogk
Nk gr2 0K dU/T) B~ _RIN(IO)—E

E, = RT? =— =
dT d(1/Ty dr d(1/T) d(1/T)

_ 4 _ 488N -1 ! _
RIn(10) 3 (11.75 T/K)_ (83145 K™ mol™") In(10)(—5488 K)

105 kJ mol ™!

6,G® = —RTInK = —RT In(10) log K [section 7.2d for A, G®]
At298.15K

1794
AG® = —(8.3145J K~ mol™!) x (298.15K) In(10) (—1.36 + —9)

298.15
A,.G® =| —26.6kImol™!

d In{K) dlog(K)
& _ _ —_
AHE = Rd(l/T) [7.23b] RIn(10) ST
_ d _ 1794y _ o
= Rln(lO)d(]/T) ( 1.36 + —T/K) = —(8.3145TK " mol™ 1) In(10)(1794 K)

=|—-34.3kImol™!

The reaction 1s

0
CHOH
HN HN
J\ ’ + HCHO \—é J\ l
Q N N
H H

The equations for the rate constant k and the equilibrium constant X were obtained under conditions
corresponding to the biological standard state (pH = 7, p = 1 bar; Section 7.2d). Thus the values of
A.G calculated from the equation for K are A,G® values which can differ significantly from A;G® (pH
= 1, p = 1 bar). Prebiotic conditions are more likely to be near pH = 7 than pH = 1 so we expect that
the reaction will still be favorable (K 33> 1) thermodynamically.

Because A.G = A;G® + RT InQ [7.11] and since we might expect @ < 1 in a prebiotic environment,
AG < A.G%. But, as shown in the calculation above, A.G® is rather large and negative (—26.6 kJ
mol~!), so we expect it will still be large and negative under the prebiotic conditions; hence the reaction
will be spontaneous for these conditions. We expect that A H =~ A H% because enthalpy changes
largely reflect bond breakage and bond formation energies.
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T/K Figure 22.6(b)

K/10°

IIIII‘IIIII1IIIII

(b)

A plot of the equation for the rate constant k is shown in Figure 22.6(a) and that for the equilib-
rivm constant in Figure 22.6(b). From a kinetic point of view the reaction becomes more favorable at
higher temperatures; from a thermodynamic point of view it becomes less favorable, but K > 1 at all
temperatures.

{a) The rate of reaction is

v = k[CH4][OH]

—14.1 x 10* T mol™!
= (1.13 x 10° dm? mol"s")xexp( a o )

(8.3145TK " mol™") x (263 K)

x (4.0 x 107 mol dm™>) x (1.5 x 107" mol dm™3) =| 1.1 x 107'6 mol dm™3s~!
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{b) The mass 1s the amount consumed (in moles) times the molar mass; the amount consumed is the rate
of consumption limes the volume of the “reaction vessel” times the time.

m = MvVi = (0.01604 kg mol '} x (1.1 x 107'% mol dm™?s™")

% (4 % 102" dm™) x (365 x 24 x 3600 s)

={22x 10" kgor220 Tg

The initial rate is

vp = (3.6 x 108 dm? mol=3s™!) x (5 x 10™* mol dm *)* x (10™*° mol dm™%)?

= |79 % 10710 mol dm =3 5~!

The half-life for a second-order reaction is

}

hp= ————
KHSOF o

where &’ is the rate constant in the expression

d[HSO}
_% = k'[HSO; 1

Comparison to the given rate law and rate constant shows

K = 2k[H1]? = 2(3.6 x 10° dm’mol =3 s7!) x (10~*> mol dm™3)?

=72 x 1073 dm? mol " !s~!

=|2.8 x 107 s = 3 days
(7.2 x 10~3 dm? mol's~!) x (5 x 10=% mol dm™?) Y

and 1| =




The kinetics of complex
reactions

D23.2

D23.4

Answers to discussion questions

In the analysis of stepwise polymerization, the rate constant for the second-order condensation is assumed
10 be independent of the chain length and to remain conslant throughout the reaction. It follows, then,
that the degree of polymerizalion is given by

)y =1 + ki[Aly

Therefore, the average molar mass can be controlled by adjusting the initial concentration of monomer
and the length of time that the polymerization is allowed Lo proceed.

Chain polymerization is a complicated radical chain mechanism involving initiation, propagation, and
terrmination steps (see Section 23.4 for the details of this mechanism}. The derivation of the overall rate
equation utilizes the steady state approximation and leads to the following expression for the average
number of monomer units in the polymer chain:

() = 24 M]3,

where k& = (1/2)kp (fik) ™'/, with kp, k;, and &, being the rate constants for the propagation, initiation,
and termination steps, and f is the fraction of radicals that successfully initiate a chain. We see that the
average molar mass of the polymer is directly proportional to the monomer concentration, and inversely
proportional to the square root of the initiator concentration and to the rate constant for initiation.
Therefore, the slower the initiation of the chain, the higher the average molar mass of the polymer.

Refer to eqns 23.26 and 23.27, which are the analogues of the Michaelis—Menten and Lineweaver—Burk
equations (23.21 and 23.22), as well as to Figure 23.13. There are three major modes of inhibition that
give rise (0 distinctly different kinetic behavior (Figure 23.13). In competitive inhibition the inhibitor
binds only to the active site of the enzyme and thereby inhibits the attachment of the subsirate. This
condition corresponds to @ > 1 and &' = 1 (because ESI does not form). The slope of the Lineweaver—
Burk plot increases by a factor of « relative to the siope for data on the uninhibited enzyme (@ = &’ = 1).
The y-intercept does not change as a result of competitive inhibition. In uncompetitive inhibition, the
inhibitor binds to a site of the enzyme that is removed from the aclive site, but only if the substrate is
already present. The inhibition occurs because ESI reduces the concentration of ES, the active Lype of the
complex. In this case @ = | (because EI does not form) and ¢’ > 1. The y-intercept of the Lineweaver—
Burk plot increases by a factor of &’ relative to the y-intercept for data on the uninhibited enzyme, but the
slope does not change. In non-competitive inhibition, the inhibitor binds to a site other than the active
site, and its presence reduces the ability of the substrate to bind to the active site. Inhibition occurs at
both the E and ES sites. This condition corresponds to @ > 1 and &’ > 1. Both the slope and y-intercept
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of the Lineweaver—Burk plot increase upon addition of the inhibitor. Figure 23.13¢ shows the special
case of K| = K[’ and @ = o', which results in intersection of the lines at the x-axis.

In all cases, the efficiency of the inhibitor may be obtained by determining Km and vpqy from a control
experiment with uninhibited enzyme and then repeating the experiment with a known concentration
of inhibitor. From the slope and y-intercept of the Lineweaver-Burk plot for the inhibited enzyme
(eqn 23.27), the mode of inhibition, the values of & or «, and the values of KT, or K[’ may be obtained.

The shortening of the lifetime of an excited state is called quenching. Quenching effects may be studied
by meonitoring the emission from the excited state that is involved in the photochemical process. The
addition of a quencher opens up an additional channel for the deactivation of the excited singlet state.

Three common mechanisms for bimolecular quenching of an excited singlet (or triplet) state are:

Collisional deactivation: $*+Q0—>S+Q
Energy transfer: $*+Q—>5+Q*
Electron transfer: $*+Q—>S*+Q" or ST+Qt

Collisional quenching is particularly efficient when Q is a heavy species, such as iodide ion, which
receives energy from S* and then decays primarily by internal conversion to the ground state. Pure
collisional quenching can be detected by the appearance of vibrational and rotational excitation in the
spectrum of the acceptor.

In many cases, it is possible to prove that energy transfer is the predominant mechanism of quenching if
the excited state of the acceptor fluoresces or phosphoresces at a characteristic wavelength. In a pulsed
laser experiment, the rise in fluorescence intensity from Q* with a characteristic time which is the same
as that for the decay of the fluorescence of S* is often taken as indication of energy transfer from S to Q.

Electron transfer can be studied by time-resolved spectroscopy (Section 14.6e). The oxidized and reduced
products often have electronic absorption spectra distinct from those of their neutral parent compounds.
Therefore, the rapid appearance of such known features in the absorption spectrum after excitation by a
laser pulse may be taken as indication of quenching by electron transfer.

Solutions to exercises

In the following exercises and problems, it is recommended that rate constants are labeled with the
number of the step in the proposed reaction mechanism and that any reverse steps are labeled similarly
but with a prime.

The intermediates are NO and NO; and we apply the steady-state approximation to each of their
concentrations

k2 [NOz] [NO3)] — k3 [NO]J[N205] = 0
ki [N20s] — k| [NO7] [NO3] - k2 [NO;] [NO3] =0

1 d[N,O
Ra[e=__£,.§l
2 dt

d—@% = —k) [N20s] + k| [NO2][NO3] — k3[NOJ[N20s)
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From the steady-state equations

k3 [NO] [N2Os) = k2 [NO2] [NO3]

_ Kk [N;0s]
[NO2]1[NO3] = Wtk

Substituting,

d [N20s) ki k| kak) 2k1ka
—— = -k [N3O _ - N =-
% L[Nz 5]+k’l+k2 [N20s] k1+k2[ 20s] Py

[N20s]

kika

Rate =
ate P

[N20O5] = & [N20s5]

o

E23.2(b) % = 24; [Ra] — k2 [R)[R2] + &3 [R'] — 244 [RT?

d|R’ ,
-[E;J = k2 [R1[Ra] — k3 [R']
Apply the steady-state approximation to both equations

2k) [Rz] — k2 [R] [Rz] + &3 [R'] — 2k [RP = 0
k2 [R1TR2) — k3 [R'] =0

k
The second solves to [R'] = k—z[R][Rg]
3

& 12
and then the first solves to [R] = (k_l [Rzl)
4

172
Therefore, d[d‘fﬂ = —k [R2] — k2 [R2] [R] = | & [Rz] — k2 (i—‘) [R2)*?
4

E23.3(b) (a) The figure suggests that a chain-branching explosion at temperatures as low as

700 K. There may, however, be a thermal explosion regime at pressures in excess of 108 Pa.
(b) The lower limit seems to occur when

log(p/Pa) =2.1 so p=10*'Pa=|1.3 x10’Pa

There does not seem to be a pressure above which a steady reaction occurs. Rather the chain-
branching explosion range seems to run into the thermal explosion range around

log (p/Pa) =45 so p=10""Pa=|3 x10%pa

E23.4(b) The rate of production of the product is

d[BH*]
dr

= ky [HAH™] [B]
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HAHT is an intermediate involved in a rapid pre-equilibrium

+ +
[HARY] k_:so [HAH*] = ky [HA’] [H*]
[HA][HY] & k|
BH* 2
and d[BHT] k‘f‘* [HA][H*][B]
a ky

This rate law can be made independent of [H*] if the source of HY is the acid HA, for then H* is given
by another equilibrium
H*)(A~ Ht)?
(HT](AT] _ K, = [H™]

+ _ 172
[HA] = HA] so [HT] = (Ky[HA])

dBH*] | kikaki”?
and =

32
i e [HA]/“[B]

A, appears in the initiation step only.

d[A-]
dr

= —k [A3]

Consequently, the rate of consumption of [Az] is first order in Az and the rate is independent of
intermediate concentrations.

The maximum velocity is &, [E]q and the velocity in general is

ks [S1[Elo Kn + 8]
= k(Elp = 20 o = Ky [Elp = 1
v {Elo Kt + [S] 50 Vmax v [Elo (5] v
042 + 0. -3
v = 042 +0890) moldm™? ) 1o 04 moldmFs~!) = [2.57 x10* moldm™>s~!|

0.890 mol dm >

The quantum yield tells us that each mole of photons absorbed causes 1.2 x 10% moles of A to react;
the stoichiometry tells us that 1 mole of B is formed for every mole of A which reacts. From the yield of
1.77 mmol B, we infer that 1.77 mmol A reacted, caused by the absorption of 1.77 x 1073 mol/ (1.2 x

102 mol Einstein~!) =| 1.5 x 10~ moles of photons

The quantum efficiency is defined as the amount of reacting molecules na divided by the amount of
photons absorbed #ns. The fraction of photons absorbed fops is one minus the fraction transmitted firans;
and the amount of photons emitted sphoon can be inferred from the energy of the light source (power P
times time ¢) and the energy of the photons (hc/A).

_ nahchNy
(1 — fuans) APt

(0.324mol) x (6.626 x 10775} x (2.998 x 10°ms™") x (6.022 x 10% mol™')
T T (120257 x (320% 10-°m) x (87.5W) x (280 min) x (60s min~")

~[om)
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Solutions to problems
Solutions to numerical problems

0O+ Clz = ClIO+Cl p(Cl2) = constant [C]z at high pressure]

Therefore, the reaction is probably pseudo-first order, and
[0] = [Olpe *"

That being so, In 1Ok =kt = k[Chlt =& [Clh] x E
(O] v

where k' = [Cla]4, v is the flow rate, and 4 is the distance along the tube. We draw up the following
table

dfem 0 2 4 6 8 10 12 14 16 18

L0ko
(0]

In 0.27 031 034 038 045 046 050 055 0.56 0.60

The points are plotted in Figure 23.1.

0 10 20

dfem Figure 23.1
k[Cl
The slope is 0.0189, and so (€l _ 6 0189cm-1.
v

(0.0189ecm™") x v
(Cl2]
(0.0[89cmﬁ|) x (6.66 x 10%cms™

1
= - ) ={5.0 x107 dm® mol~! 5~
2.54 x 10~" moldm™

Therefore, k =

(There is a very fast O + ClO — Cl + O3 reaction, and so the answer given here is actually twice the
true value.)
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H; — 2H- initiation, V = Vinit

H.+0; — -OH + -O- branching, v =k [H-1[02]
0-+H, » -OH+H- branching, v = k3 [-O-][H2]
H-+0; — HO»- propagation, v = k3 [H-]10:]
HO; - +-H» - H»O + -OH propagation, v = k4 [HO3-][Hz]
HO; - +wall — destruction termination, v = ks [HO3-]

H . +M — destruction termination, v = kg [H-] [M]

We identify the onset of explosion with the rapid increase in the concentration of radicals which we
initially identify with [H-]. Then

Vrad = Vinit — k| [H-] [O2] + k2 [-O-]1THz2] — k3 [H-][O2] — k¢ {H-] [M]

Intermediates are examined with the steady-state approximation.

4.0
% = ki [H)[O2] — k2 [-O-] [Ha] ~ 0
K H1(02]

O Tee &2
[O-]ss % 1]
Therefore,

ki [H-]1[02]
k2 (Hz}

== vinit — (k3 [O2] + ks [M]) [H']

Vead = Vinit — ki [H-} [O2] -+ k2 ( ) [Ha] — k3 [H-1{02] — ke [H-] {M]

The factor (k3 [O2] + kg [M]) is always positive and, therefore, vy,q always decreases for all values of
[H-]. No explosion is possible according to this mechanism, or at least no exponential growth of [H-] is
observed.

Let us try a second approach for which the concentration of radicals is identified with [-O-].
vd = ky [H-] [O2] — k2 {-O+][Ha]

Using the steady-state approximation to describe [H-], we find that

vinit + k2 [H2][-O']
(k1 + &3) [O2] + ks [M]
_ Vinik1 [O2] kikz [H2][O2]
(ki k) [Oal + k6 IM] | (ki + £3) [O2] + kg [M]

[H-]ss =

— kg [Ha] ¢ [[O']

Vrad

This has the form

d[-O]
Vad = —g— = Ci+{C2 — G3}H[-O]
where (|, Cz, and Cj are always positive. This means that the mechanism predicts exponential growth of
radicals, and explosion, when Cz > (3. This will occur when ki [O2] /((k1 + k3) {O2] + kg [M]} > L.
But this is not possible. So no exponential growth of [-O-] can occur. The proposed mechanism is
inconsistent with the existence of an explosion on the assumption that the steady-state approximation
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can be applied to the intermediates H and -O-. It is, however, unlikely that the steady-state approximation
can be applied to explosive reactions, and this is where the analysis breaks down.

U0 + hv — (UOH”

(UOZH)* + (COOH); — UO3* + Hy0 + CO2 + CO

2MnO; + 5(COOH); + 6H™ — 10C0; + 8H0 -+ 2Mn*t

17.0cm? of 0.212 M KMnQy is equivalent to
3 x (17.0em?®) x (0.212moldm™) = 9.01 x 10™* mol (COOH);

The initial sample contained 5.232 g (COOH})4, corresponding to

5232¢

— Tt 581 x 1072 mol (COOH),
90.04 g mol !

Therefore, (5.81 x 10~2 mol) — (9.01 x 10~3 mol) = 4.91 x 1072 mol of the acid has been consumed.
A quantum efficiency 0.53 implies that the amount of photons absorbed must have been

491 x 1072 mol

—~2
053 93 x 107 mo

Since the exposure was for 300 s, the rate of incidence of photons was

9.3 x 1072 mol

300s x 107" mols

Since 1 mol photons = 1 einstein, the incident rate is | 3.1 x 1074 einstein s~ lor[ 1.9 x 1020 s‘j

M+ hy - M*, I, [M = benzophenone]
M*+Q > M+0Q, k
M* — M + hyy, ky

d(M*
[dt ] =1I; — kr[M¥] — kq[QI(M*] = 0 {steady state]
d hence [M*] L
an ENC: =
kp -+ kg Q]
kel
Then f; = kf[M*] = —— 2
ke + kq [Q]
and so 1 = 1 % [Ql
I Iy kel

If the exciting light is extinguished, [M*], and hence J;, decays as e~*'" in the absence of a quencher.
Therefore we can measure kq/krl, from the slope of 1/J plotted against [Q], and then use 4 t0
determine k.
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We draw up the following table

10° [Q) /M | 5 10

1/1f 2.4 4.0 6.3

The points are plotted in Figure 23.2.

— 4
AR
2 :
0 0.005 0.010
[Q)/(mol dui”) Figure 23.2

The intercept lies at 2.0, and so [, = 1/2.0 = 0.50. The slope is 430, and so

k
—3 — 430dm’ mol™!

kely
in2
Then, since I, = 0.50 and kf = ——,
hyjz
kg =(0.50) x (430dmmol ") x _ 12 ) _[5.1 %105 dm’ mol~' 5~
S 29 x 10-65

RE 1
0 or — = | + (R/Rp)® [23.38]

P23.10 Er =
T R + RO ET

Since a plot of E‘T’l values against R® (Figure 23.3) appears to be linear with an intercept equal to
1, we conclude that eqn 23.38 adequately describes the data. Solving eqn 23.38 for Rg gives Ry =
R(EF' — 1)/6. Ry may be evaluated by taking the mean of experimental data in this expression. The

two data points at lowest R must be excluded from the mean as they are highly uncertain. | Ry = 3.52 nm

with a standard deviation of 0.173 nm.

Solutions to theoretical problems

P23.12 CH3CHO — -CHj + -CHO, ks
-CH3 + CH; - CHO — -CHy + CHa - CHO, £
. CH,CHO — CO+ - CHa, ke

- CH3 + -CH3z — CH3CH3;, kg
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7 T T i T
(o]
Al i
oL _
(o)
| 4 T
Er o
nl |
Q
L .
o]
Q
1 | | | 1
0 2 4 6 g 10
(R/nm)®/10° Figure 23.3
d[CH
[(;r al _ —ky, [CH3] [CH3CHOY]
d [CH;CHO
[_jr_] — —k, [CH3CHO] — ky [CH3CHO] [CH3]
d[CH
% = k, [CH3CHO] — ky [CH3CHO) [CH3} + k¢ [CHaCHOJ — 2k4 [CH3)2 = 0
d [CH,CHO
L;—] — ky [CH3] [CH3CHO] — & [CHCHO] = 0

Adding the last two equations gives

ko \ /2
—ﬂ) [CH;3 CHOJ'/?
2kyg

ky[CH3 CHOY — 2k[CH3]° =0, or [CHi]

Therefore

172
d[Cd:{“] = ky (k—“) [CH3CHOY*/?

2kq
d[CH; CHO k'
[_z“_] — —k,[CH; CHOJ — ko (j) [CHa CHOP?
d

Note that, to lowest order in kg,

d[CH3CHO] k \'? 12
— T Tk — CH3;CHOJ*/?
dr ® (2kd) [CH;CHOI

and the reaction is three-halves order in CH3CHO.
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P23.14  (a) M =M Y AP, = M1 —p) n3 "= [P, = p"~' (1 - p), Problem 23.13]
n
I
=M1 —p)— Z 2p" =M1 - ’“Pa‘f’a; Zp”

i -y Sp Ly Syt S A1)

dp” dp” dp (1 —py?
— MYl +p)
n= W [Pl'OblC]Tl 23. 13]
M. | M(1+4p+pY)
Therefore, :; = —PZP
M, I—r

! 1
b —233, =1-—
(b) () = (23.8], s0p m

My e —60m+ o
Mﬂ
P23.16 d:?] —k[A]2[OH] = —k[A} because [A] = [OH].
[A)
M=—kdt‘ and f %=—kfrdr=—kr
(AP Al LA 0

dx -1
Since f = = ok the equation becomes

—— — —— =2t or [A]=I[Ale(l + 2ki[A]g)"'"?
[A]?  {AJ

By eqn 23.8a the degree of polymerization, {n), is given by

(n) = Al (1 + 2ke[Alo)

P23.18 S pdBl _ L
dt

B adB_ —k[B]?
dr

In the photostationary state £, — k[B]? = 0. Hence,

N
[B] = (f) o [A]Y? [becausel o [A]

The illumination may increase the rate of the forward reaction without affecting the reverse reaction.
Hence the position of equilibrium may be shifted toward products.
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Cls 4 hv — 2CI L
Cl 4+ CHCl3 — CCl3 + HCl ko
CCl3 +Cl; — CClg + Cl k3

2CCl3 + Cl; — 2CCly ka
0 S = 26 [CCL P (1] + ks [CCl] [C2)
(i) d [(;fb] = k7 [Cl] [CHCl4] — k3 [CCl3] [Cla] — 244 [CC]:;],2 [Clx) =0
(iii) % = 2/. — k2 [C1] [CHCI3] + k3 [CClI] [Cla] =0
@ T =, — ks (CCls1 () — ke [CCIP [Cha)

Therefore, I, = k4 [CCl3]? [Cla] [(ii) + (iii)]

which implies that

N2, W2
cChj=(— —a_
(et (k4) ([CIZ])

Then, with (i),

d[CCl4] N I e 2
dr ki’z

When the pressure of chlorine is high, and the initiation rate is slow (in the sense that the lowest powers
of I, dominate), the second term dominates the first, giving
d[CCly] ksl

= CL1"? = | k1P [C1p]'/2
5 a7 (Cla] [Cla]

with k = k3/k‘:/2. It seems necessary to suppose that Cl 4 Cl recombination (which needs a third body)
is unimportant.

Solutions to applications

The rate equation is
dw

— =bN — dN
dr

which has the solution

N(1) = Noelt=I! = NyeX!

A least squares fit to the above data gives
Np = 0.484 x 10° =~ 0.5 x 10°
£ =919 x 1073y~!

R*= (coefficient of determination) = 0.983



450 INSTRUCTOR'S SOLUTIONS MANUAL

Standard error of estimate = 0.130 x 10°
Thus, this model of population growth for the planet as a whole fits the data fairly well.

COMMENT. Despite the fact that the Malthusian modet seems to fit the {admittedly crude} population data it
has been much criticized. An alternative rate equation that takes into amount the carrying capacity K of the
planet is due to Verhulst (18386). This rate equation is

dn N
o2
dt ( k)

Question. Does the Verhulst model fit our limited data any better?

P23.24 We draw up the table below, which includes data rows required for a Lineweaver-Burk plot (1 /v against
1/[S]o). The linear regression fit is found for the plot. See Figure 23.4

[ATP]/(mol dm™3) 060 080 1.4 2.0 3.0
v/(numol dm =3 s~ 1) 081 097 130 147 169
1/{[ATP]/(mol dm~3)} 167 125 0714 0500 0.333
1/{v/(umoldm~3 s~ 1)) 123 103 0769 0.680 0.592
1.4
= Lo y = 0.4796x + 0.4331
o R? = 09996
£
=
=
E 084
=
T 06
0.4 T T T
0 0.5 I 1.5 2

1/{[ATP]Aumol dm )} Figure 23.4

1 /vmax = intercept [23.22]

vmax = 1/intercept = 1/(0.433 umoldm™?s~'} =|2.31 pmoldm™35~! |

kty = Vmax / [Elp [23.200] = (2.31 pmol dm~2 s ~1) / (0.020 mol dm=3) =
ko = ky [23.23] =
KM = vmax % slope [23.22] = (2.31 umol dm™* s ~') x (0.480 5) = I.11 pmo! dm™3

£ =kea / Ky [23.24] = (1155~ 1) /{1.11 pmol dm™3) =| 104 dm*pwmol ! 57! |
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P23.26  (a) The dissociation equilibrium may be rearranged to give the following relationships.

[E7) = Kea[EH)/[HY] [EH31= (EHIH"]/Kes
[ES™] = Kesa[ESHI/[H*] [ESH;) = (ESHIH")/KEsp

Mass balance provides an equation for [EH].

[Elp = [E™] + [EH] + [EHJ ]+ [ES™] + [ESH] + [ESH2)

Ke.a[EH] (EHIH*]  Kesa[ESH] [ESHI{H*]
= —4 " - 4 I[EH - ESH] + —————
mry TEHIF mry TIESHI R

[Elo — {1 + ((H*)/Kess) + (Kesa/[H*])] [ESH]
L+ ((H"1/Kgp) + (Kea/[HT])
_ [Elo — ¢ [ESH]

[0}

([EH] =

The steady-state approximation provides an equation for [ESH],

%Srmk"[EH][S] — K/[ESH] — ky[ESH] = 0

__ka -
[ESH] = ke [EHI[S] = 4y [EH][S]
—kais) { [Ely —c.[ESH]]
2

K5'[S)[Elo/c: (Elo/et

[ESH] = — =
1+ (k' [Slerfe2) 1+ tkmlea/e)/[SD)

The rate law becomes:

v = d[P]/dr = kx[ESH]

!
vlTlc']X

p= — max__
1+ &y, /[8)

kn(Elo
{1+ ((H*)/Kespb) + (Kesa/[HT D)}

! —_—
where v, =

, { 1+ ((H*1/Kep) + (Kea/[H'D
M7+ ((H*1/Kessb) + (Kgs.a/[HT])

(b) Vmax = 1.0 x 107 moldm ™3 s~
Kgsp = 1.0 x 107® mol dm™3

Kesa = 1.0 x 1078 moldm™

The graph (Figure 23.5a) indicates a maximum value of v}, at pH = 7.0 for this set of equilibrium
and kinetic constants. A formula for the pH of the maximum can be derived by finding the point at
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0.1 T T T T T T

08 .

v;nﬂx
10~ mol dm=3¢-!

0.2 7]

1] 2 4 6 8 10 12 14
pH Figure 23.5(a)

!

d
which Lj‘_" = 0. This gives:
d[H™]

[H+]mnx = (KES.nKES.b) 12

Inserting constants, [H ¥ Imax = \/ (1.0 x 10~8mol dm™~?)(1.0 x 10~mol dm~7)

=10 % 107" mol dm™?

which corresponds to|pH=7.0

10-6 mol dm™>s™"
=
L
T
I

0 2 4 6 8 10 12 14
pH Figure 23.5(b)
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(©) vpx = 1.0 % 1078 mol dm™3s~!
Kgsp = 1.0 x 1074 moldm™*

Kesa = 1.0 x 1079 moldm ™

The constants of part (¢} give a much broader curve (Figure 23.5b) than do the constants of part (b). This
refiects the behavior of the term 1 + [H*1/Kgs ,+Kes.a/[F ] in the denominator of the v, expression.
When Kgs, is relatively large, large [H*] values (low pH) cause growth in the values of v{,, . However,
when Kgs, is relatively small, very small [H*] values (high pH) cause a decline in the v, values.

The description of the progress of infectious diseases can be represented by the mechanism

S—=1—-R

Only the ﬁrst step is autocatalytic | as indicated in the first rate expression. If the three rate equations
are added

ds dl  dR _

—t+—4+—=0
dt dr+dr

and, hence there is no change with time of the total population, that is
SH+IN+R@E=N

Whether the infection spreads or dies out is determined by

dl
— =Sl —al
dr

Atr=0,1 = {0) = [ Since the process is autocatalytic I{0) # 0.

al
(—) =1y (rSg — a)
dr t=0

dI dl
If ¢ = rSp (a) < 0, and the infection dies out. If @ < 1§, (—r) > () and the infection spreads
=0 1=0
(an epidemic). Thus

4 < Sp | [infection spreads)
"

a . , .
— > §¢ |linfection dies out]
,

hv clectrontransfer
Q —»C"+Q—————

C ct+ Q
Chlorophyll  Quinone

Direct electron transfer from the ground state of C is not spontaneous. It is spontaneous from the excited
state. The difference between the AG’s of the two processes is given by the expression:

A(AG) = AGes — AGe = Ue — U = —(ULumo — Unomo)
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where UL umo and Uyomo are energies of the LUMO and HOMO of chlorophyll. Since AAG < 0, we
see that electron transfer is exergonic and spontaneous when the electron is transferred from the excited
state of chlorophyll.

The rate of reaction is the rate al which ozone absorbs photons times the quantum yield. The rate at which
ozone absorbs photons is the rate at which photons impinge on the ozone times the fraction of photons
absorbed. That fraction is | — T, where T is the transmittance. T is related to the absorbance A by

A=—logT =¢cl so 1—-T=1—107%
- T=1-— |0|(260:.hn'1 mol=! em=1yx (8% 10~% mol dm )% (10% cm) —0.38

If we let F stand for the flux of photons (the rate at which photons impinge on our sample of ozone),
then the rate of reaction is

(1 x 10" em=2s~") x (1000cm® dm™)

= ¢ (1 —T)F = (0.94) x (0.38
V=S = 0 X ) X T 0 X 105 mol ™) x (105 cm)

=059 x 1073 moldm 3! l

The rate of reaction for this reaction is

v = k[C1}[Os]

a) v = (1.7 x 10"%m’mol~'s ™ )exp(—260 K /220 K) x (5 % 10~ mol dm )
(a)

x (8 x 10~ mol dm‘3)

=21 x 1075 moldm 25|

by v = (1.7 x 10" dm? mol~'s™")exp(~260 K/270 K} x (3 x 107"* mol dm™)

% (8 x 107 ' moldm™ %)

=16 x 10715 mol dm~3 5!




Molecular reaction
dynamics

D24.2

D24.4

D24.6

Answers to discussion questions

A reaction in solution can be regarded as the outcome of two stages: one is the encounter of two reactant
species; this is followed by their reaction in the second stage, if they acquire their activation energy.
If the rate-determining step is the former, then the reaction is said to be diffusion-contrelled. If the
rate-determining step is the latter, then the reaction is activation controlled. For a reaction of the form
A + B — P that obeys the second-order rate law v = k2[A][B], in the diffusion-controlled regime,

kz = 4TZR*DNA

where D is the sum of the diffusion coefficients of the two reactant species and R* is the distance at
which reaction occurs. A further approximation is that each molecule obeys the Stokes—Einstein relation
and Stokes’ law, and then

8RT

by = ——

3n
where 7 is the viscosity of the medium. The result suggests that &2 is independent of the radii of the
reactants.

In the kinetic salt effect, the rate of a reaction in solution is changed by modification of the ionic strength of
the medium. If the reactant ions have the same sign of charge (as in cation/cation or anion/anion reactions),
then an increase in ionic strength increases the rate constant. If the reactant ions have opposite signs (as in
cation/anion reactions), then an increase in ionic strength decreases the rate constant. In the former case,
the effect can be traced to the denser ionic atmosphere (see the Debye—Huckel theory) that forms round the
newly formed and highly charged ion that constitutes the activated complex and the stronger interaction
of that ion with the atmosphere. In (he latter case, the ion corresponding to the activated complex has
a lower charge than the reactants and hence it has a more diffuse ionic atmosphere and interacts with it
more weakly. In the limit of low ionic strength the rate constant can be expected to follow the relation

logk = log k° + 2Azazpl'?
Refer to Figures 24.2 1 and 24.22 of the lext. The first of these figures shows an attractive polential energy
surface, the second, a repulsive surface.

{a) Consider Figure 24.21. If the original molecule is vibrationally excited, then a collision with an
incoming molecule takes the system along the floor of the potential energy valley {trajectory C).
This path is bottled up in the region of the reactants, and does not take the system o the saddle point.
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If, however, the same amount of energy is present solely as translational kinetic energy, then the
system moves along a successful encounter trajectory C* and travels smoothly over the saddle point
into products. We can therefore conclude that reactions with attractive potential energy surfaces
proceed more efficiently if the energy is in relative translational motion. Moreover, the potential
surface shows that once past the saddle point the trajectory runs up the steep wall of the product
valley, and then rolls from side to side as it falls to the foot of the valley as the products separate. In
other words, the products emerge in a vibrationally excited state.

(b) Now consider the repulsive surface (Figure 24.22). On trajectory C the collisional energy is largely
in translation. As the reactants approach, the potential energy rises. Their path takes them up the
opposing face of the valley, and they are reflected back into the reactant region. This path corresponds
to an unsuccessful encounter, even though the energy is sufficient for reaction. On a successful
trajectory C*, some of the energy is in the vibration of the reactant molecule and the motion causes
the trajectory to weave from side to side up the valley as it approaches the saddle point. This motion
may be sufficient to tip the system round the corner to the saddle point and then on to products. In
this case, the product molecule is expected to be in an unexcited vibrational state. Reactions with
repulsive potential surfaces can therefore be expected to proceed more efficiently if the excess is
present as vibrations.

Donor (D) and acceptor (A) must collide before they can react. Consequently, the rate of their reaction
in solution is initially determined by the rate of diffusion of the reacting species. After D and A have
arrived at the critical reaction distance r* (comparable to r, the edge-to-edge distance), the rate constant
for electron transfer is a function of two factors. See Sections 24.11(a) and (b) and eqn 24.81. The first
is the tunneling rate of the electron through an energy barrier that is a function of the ionization energies
of the complexes DA and DA~ The second is the Gibbs energy of activation.

Effective transfer can occur only when the electronic energies in the two complexes match. The electronic
energies are a function of the internuclear separations in DA and DA™ as illustrated in Figures 24.27
and 24.28; therefore, the distance between D and A plays a critical role in determining the rate of electron
transfer. The tunneling rate is determined by the matrix element of the coupling term in the Hamiltonian
which exhibits an exponential dependence on the negative of r, as given by eqn 24.80.

Further Information 24.1 shows how the Gibbs energy of activation is related to the reorganization
energy associated with molecular rearrangements which include the relative reorientation of the D and
A molecules and the relative recrientation of the solvent molecules surrounding DA.

Solutions to exercises

The collision frequency is

21120 (& 8RT\ '/
= % where o = 7d? = dnrand (2) = (W)
2112 8RT\'?  16pNyrin!/2
s0 2= 2P ianr?) _) _ 1opNar'z 77
kT M (RTM)\/2

16 x (100 x 10® Pa) x (6.022 x 102 mol™!) x (180 x 10712 m)? x ()'/?
- [(8.3145 5K~ 'mol™') x (298 K) x (28.01 x 10~3 kg mol~")]!/2

6.64 x 107!




E24.2(b)

E24.3(b)

E24.4(b)
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The collision density is

1 ip (664 x 10°57") x (100 x 10° Pa) 7
Zan = —zN/V = — = =[8.07 x 10¥ m—3s~!
an = Y = T = 21381 % 1021 K1) x (298K) T

Raising the temperature at constant volume means raising the pressure in proportion to the temperature

ZAAC(ﬁ

so the percent increase in z and Zaa due 1o a 10 K increase in temperature is | 1.6 percent j, same a3

Exercise 24.1(a).

The approprniate fraction is given by

—E;
r= "’XP(F)

The values in question are

—15 x 10° T mol™! -
. — = 2
(@ @ f=exp ((3_314511(—' mol~!) x (300 K))

(8.3145T K~ mol™!) x (800K)

4x1073
—150 x 10° I mol™!
®» 0 f=exp( e )=

(8.31457 K T mol ™!} x (300K)
i) f=ex —150 x 103 Tmol ™} _
= P\ 83145 T K- Tmol 1) x (800K) |

A straightforward approach would be to compute f = exp(—E;/RT) at the new temperature and
compare it to that at the old temperature. An approximate approach would be to note that f changes from
fo = exp(—E,/RT)tof = exp (—E./RT(1 + x)), where x is the fractional increase in the temperature.
If x is small, the exponent changes from —E,/RT to approximately (—E;/RT){(1 — x) and f changes
from exp (~Ea/RT) to exp (—Es(1 — x)/RT) = exp (—Ea/RT) [exp (—Ea/RT)] ™" = fofy™. Thus the
new Boltzmann factor is the old one times a factor of f;*. The factor of increase is

@ () f7F = (24 % 10737107300 -

(i) f7* = (0.10)710/8%0 <
) () f37F = (7.7 x 10727)710/300

(i) f® = (1.6 x 10710)=10/800 —

The reaction rate is given by

—15 x 10% T mol ™!
(i) f=exp( x 7 mo )=

172
V= Pa(si—BMT) Np exp{—E,/RT)[D;]{Brz]
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s0, in the absence of any estimate of the reaction probability P, the rate constant is

8kgT\ /2
k=a{ —=="=) Naexp(—E./RT)
T

-23 -1 1/2
= [030 x (107" m)?] x ( 8(1.381 x 1077 JK™) x (450K)))

7(3.930u) x (1.66 x 10-27kgu™'

— 3 l—l
x (6.022 x 107 mol')exp( 200 x 10* Jmo )

(8.3145J K~ mol™") x (450K)

=171 x 107 m¥mol~'s™! =] 1.7 x 10'? dm? mol=! s~ |

E24.5(b) The rate constant is
kg = 4T R*DNy,
where D is the sum of two diffusion constants. So

ka = 47(0.50 x 107%m) x (2 x 42 x 1072 m*s™") x (6.022 x 10 mol™!)

={32 % 107 m? mol~" 5~ |

In more common units, this is

ks =|3.2 x 1019dm? mol~'s~! |

E24.6(b) (a) A diffusion-controlled rate constant in decylbenzene is

_ SRT _ 8 x (83145JK ' mol™") x (298K)

kg = — = | :|l.97x106m3mol"s‘l|
3n 3x (336 x 10 3kgm™'s71)

(b} In concentrated sulfuric acid

8RT 8 x (8.3145JK~'mol™') x (298K)
39 T 3x(27x1073kgm~ sy

ka = =|2.4x 10 m3 mol =" s~! |

E24.7(h) The diffusion-controlled rate constant is

RT 8.3145TK~ ' mol™! 298 K
kd=—8 _ 8x( SIK™ mol )xl( R K) =|I.10x107m3mol"s"1
3n 3% (0601 x 10-3kgm~'s™1)

In more common units, kg =1 1.10 x 10'9dm? moi~! s~! l

The recombination reaction has a rate of
v = ky4[A]{B] with [A] = [B]

so the half-life is given by

1 1
hpy = , =[5.05 x 10785

KIAlo (110 % 10'9dm* mol™ ' s—!) x (1.8 x 10~3 mol dm™?)
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E24.8(b) The reactive cross-section o™ is related to the collision cross-section o by
c*=Po so P=oc"/o.
The collision cross-section o is related to effective molecular diameters by
c=nd* so d= (0'/7'1')”2

2 2
1/2 1/2
Now osp = ndia =7 [%(d}\ + dB)] = %(UA/A + UBfB )

0.*

L i/2 12\ 2
E("AA +°’BB)
T H(0.88)12 + (0.40))/2) x 10-9m]2 —

E24.9(b) The diffusion-controlled rate constant is

L _ BRT _ 8 x (83145K ™) mol™!) x (293K)
T By T 3x(127x 10%kem s )

=512x 10°m* mol™! 5!

. —1
In more common umits, kg = 5.12 x 10° dm?mol ™ s~

The recombination reaction has a rate of

v = kq[A][B] = (5.12 x 10°dm? mol ™' 51} x (0.200 mol dm=?) x (0.150 mol dm™=?)

=| [.54 x 10% mol dm=3s~!

E24.10(b) The enthalpy of activation for a reaction in solution is
A*H = E, — RT = (83145JK ' mol™") x (6134 K) — (8.3145JK ™' mol™!) x (298 K)
= 4.852 x 10* Jmol~" =[48.52 ki mol~ |
The entropy of activation is

kRT?

hG

A
A¥§ =R (l"E - l) where B =

{1381 x 1072 JK~") x (831451 K~ mol ™) x (298 K)2
N (6.626 x 10~3 Js) x (1.00 x 10° Pa)

=154 x 10" m? mol~" s~

B

o R 8.72 x 102 dm? mol ' 5~ -
50 A*S = (B3I145JK 7 "mol” '} x | In 1

(1000dm3 m ™) x (1.54 x 10" m3 mol~' s-1)

=|-3227K"" mol~!|

COMMENT. In this connection, the enthalpy of activation is often referred to as “energy” of activation.

459
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E24.11(b) The Gibbs energy of activation is related to the rate constant by

3
RT

kRT?
hp®

G k
ke = chp( ) where B = so  A¥G=—RTIn f

ky = (6.45 x 103 dm® mol ™' s~ )e VG35 KI/@BKN _ g 47 x 10° dm? mol ' s!

=947m3 mol~!s~!

Using the value of B computed in Exercise 27.13(b), we obtain

AYG = —(83145 x 107 KK mol™") x (298K) x In (

=|46.8 kI mol™!

E24.12(b) The entropy of activation for a bimolecular reaction in the gas phase is

947 m¥*mol~' 57!
1.54 x 10" m3 mol~! 5!

kRT?
hp®

ATS =R (ln% — 2) where B =

(1381 x 107BJK™!) x (83145 VK mol™!) x [(55 + 273)KP
B (6.626 x 10~3*Is) x (1.00 x 10° Pa)

=186 x 10" m*mol~!s™!

B

The rate constant is

—E, E.
ky = Aexp (R_Tn) so A=kexp (ﬁ)

49.6 % 10% Imol™!
(8.3145T K" mol™!) x (328K)

A=(023m*mol™"s™) x exp (

=18x10"m?mol~'s™!

1.8 x 107 m* mol~!s~!
andA*S=(8.314SJK"‘mor')><(1n( x V" m7mol s ) -2

1.86 x [0 m3mol~! s-

=931k~ mol"!|

E24.13(b) The entropy of activation for a bimolecular reaction in the gas phase is

kRT?
hp®

A
AlS=R (ln 3 2) where B =

For the collision of structureless particles, the rate constant is

T 1/2 _
k= NA(—S ) o exp ( AEO)
b7 RT
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so the prefactor is

8kT\ /2 RT\/?
A=NA(—-) le] =4NA(—) a
L M

where we have used the fact that 4 = %m for identical particles and k/m = R/M. So

(8.3145J K" mol™") x (500K)
7 x (78 x 10~3kgmoi™")

172
A =4x(6.022 x 10% mol™') x ( ) x (0.68 x 10~18 m?)

=213 x 10® m* mol~'s!

g o (1381 102 JK~!) x (8.3145JK~! mol ') x (500K)?
B (6.626 x 1034 J 5) x (1.00 x 10° Pa)

=433 x 10" m?* mol~! 57!

B .3 =1 =1
andA*S = (83145JK ™! moi™) x (1n(2'13x 10°m’ mol™" s )_2)

433 x 101! m3 mol™! 5!

=[-80.0JK~" mol"!|

E24.14(b} (a) The entropy of activation for a unimolecular gas-phase reaction is

ATS =R (ln% - 1) where B = 1.54 x 10'! m® mol™! s™! [See Exercise 24.14(a)]
s0 AYS = (8.3145J K~ mol™")
| 2.3 % 10 dm? moi—! 5! .
x n —_
(1000dm* m—3) x (1.54 x 10! m3 mol~! s=1)

={~24.11K~" mol~!

(b) The enthalpy of activation is

AYH = E, — RT =300 x 10° Tmol~! — (8.3145J K~ ' mol™") x (298 K)

=275 x 10°Tmol™! =[27.5 kI mol !

(¢) The Gibbs energy of activation is
A*G = AYH ~ TAS = 27.5kT mol ™' — (298K) x (—24.1 x 1073 K K™ moi™!)
=
E24.15(b) The dependence of a rate constant on ionic strength-is given by

log &y = log k3 + 2Azazpl'?
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At infinite dilution, 7 = 0 and k3 = k3, so we must find

log kS = log kz — 2Azazal'/? = log(1.55) — 2 x (0.509) x (+1) x (+1) x (0.0241)!/?

=0.0323 and |&$ = 1.08dm° mol Zmin~!

Equation 24.84 holds for a donor—acceptor pair separated by a constant distance, assuming that the
reorganization energy is constant:

AG®?E AGT
Inky = —( G) - =t + constant,
4ART 2RT

or equivalently

(AG®)? _ AGE

Inkey = —
et AWkT 2T

-+ constant,

if energies are expressed as molecular rather than molar quantities. Two sets of rate constants and
reaction Gibbs energies can be used to generate two equations {eqn 24.84 applied to the two sets) in two
unknowns: A and the constant.

AGD? AGY AGS?  AGY
(AG,) L =constant:1nkm_g+( 1Gy) 2

Ink + ,
Ne + T T 4AkT T

(BGTY! — (MG | kaa | AGy = AGY

AMKT T ke 24T

(AGYY — (AGS)?

and A = > 5
4 (KT Inker 2 /ker 1) + (AGS — AGP[2))

(—0.665eV)2 — (—0.975eV)? =
A= =[1.53[eV
4(1.381 x 10—33'JK-‘)(298K)l 3.33 x 109

- : -4 v
1.602 % 10-19Jev! D02 % 10° 2(0.975 — 0.665) e

If we knew the activation Gibbs energy, we could use egn 24.81 to compute {Hpa) from either rate
constant, and we can compute the activation Gibbs energy from eqn 24.82:

aig o G+ 2% [(—0.665+ 1.53D) eV]?
- 4 - 4(1.53TeV)

2(Hpa)? [ =3 \'/* —AG
Nowke.z—(L\)(n ) exp( )

=0.122eV.

h 40kT kT
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Wk N2 7 axkT\ AYG
so (Hon) = {5 ) Pl )

1/2
(6.626 x 1073 15)(2.02 x 10°s571) /
{Hpa) = 5

J’T3
(0.122eV)(1.602 x 10712 Jev—")
=[939 x 107247
P( 20381 x 10-BJK-1)(298K) 939 x

E24.17{b) Equation 24.83 applies. In Exercise 24.17(a), we found the parameter 8 to equal 12 nm~1, so:

1 —19 -1 —23 -1 I/4
y (4(1.5316V)(l.602x 1077 JeV~)(1.381 x 107+ JK )(298]‘())

In km/s_l = —fr+constant so constanl = In kc[/s_[ + 8r,

and constant = [n2.02 x 10° + (I12nm~")(1.11 nm) = 25.

Taking the exponential of eqn 24.83 yields:

kc[ — c—ﬁr-i—conslnnl S—I — e—(lZ/nm)(]ASnm)+25 Sfl =14 x 103 S—l i

Solutions to problems

Solutions to numerical problems

P24.2 Draw up the following table as the basis of an Arrhenius plot
T/K 600 700 800 1000
10°K/T 1.67 1.43 1.25 1.00
k/em®mol~'s™ly  46x 102 97x10° 13x10° 3.1 x 108
In(k/em? mol = 51 6.13 9.18 1.8 14.9

The points are plotted in Figure 24.1.

30

>
[=

=)

In(k /em’ mol™' 57"}

0 1.0 2.0
10%/(T/K) Figure 24.1
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The least-squares intercept is at 28.3, which implies that

A/(cm3 mol_ls_l) =eB3=20x 10"

8kT\!2
FromA = Npyo™ (—) [Exercise 24.13(a)]
T

Acxpll . 1
= th e = —m(NO
Na@KT a2 Wi = 3mNO2)

*

_ (Acxpll) (ﬂ)'/2 _ 20 % 10°m3>mol~! 57!
kT (4) x (6.022 x 10¥ mol™)

4N
() x (461) x (1.6605 x 10~ kgu~1y}'/*
(1381 x 10-B1K-") x (750K)

X
=40x%x 107" m? or [4.0x10-3nm?

a® 4.0 x 10_3 nm?' -
= ————>— =[0.007

P= ¢ 0.60nm?

P24.4 Draw up the following table for an Arrhenius Plot

g/°C —24.82 =20.73 -17.02 -13.00 -8.95

248.33 25242 256.13 260.15 26420

T/K
103/(T/Ky 4027 3962 3904 3844 3.785
In(k/s~ 1) —-901 —837 —773 -—7.07 —6.55

The points are plotted in Figure 24.2,

—In(k/s™")

6 1 N N H H
3.7 3.8 39 4.0 4.1

10°/(T/K) Figure 24.2

A least-squares fit of the data yields the intercept +32.6 at 1/7 = 0 and slope —10.33 x 10°K.
The former implies that In {A/s~') = 32.6, and hence that A = 1.4 x 10" s~!. The slope yields

Ea./R = 10.33 x 10* K, and hence E;, = | 85.9kJ mol ™'
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In solution A¥H = E, — RT, so at —20°C

AYH = (85.9kImol™") - (8.314TJK " mol™!) x (253 K)

=|83.8k)mol™!

We assume that the reaction is first-order for which, by analogy to Section 24.4

KT —
Kt=K=—FK*
hv

KT
and k; =k¢Ki=uxh—xK*
v

with AYG = —RT lnffF

. 3 5
Therefore, k; = A e~ Ea/RT _ % e_A#G/RT — % em /RC—MH/RT

and hence we can identify A¥S by writing

k= k’_TeA*S/R e—Ea/RT
1

e = AC_E“/RT

and hence obtain

vanafu ()

=8314JK 'mol~! x |:ln(

(6.626 x 1073 Js) x (1.4 x 10M571)
(1381 x 10~ JK~!) x (253K)

=|+19.1JK~" mol~!|

Therefore, ATG = A*H — TATS = 83.8kImol™! — 253K x 19.1JK 'mol™!

=| +79.0k] mol™!

Figure 24.3 shows that log k is proportional to the jonic strength for neutral molecules.

— log{ki{dm* mol~' min~'}}

i Figure 24.3

465
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From the graph, the intercept at f = 0 is —0.182, so

£° =[0.658dm? mol™! min~!

COMMENT. In comparison o the effect of ionic strength on reactions in which two or more reactants are
ions, the effect when only one is an ion is slight, in rough qualitative agreement with egn 24.69.

Both approaches involve plots of log & versus log v, where y is the activity coefficient. The limiting law
has log y proportional to 7'/2 (where / is ionic strength), so a plot of log k versus /'/? should give a
straight line whose y-intercept is log &® and whose slope is 2Aza zp, where z4 and zp are charges involved
in the activated complex. The extended Debye—Hiickel law has log y proportional to ['/2 /(1 + BI'/2)},
s0 it requires plotting log k versus [1”2/(1 + Bll/z)], and it also has a slope of 2Aza zg and a y-intercept
of log £°. The ionic strength in a 2: | electrolyte solution is three times the molar concentration. The
transformed data and plot (Figure 24.4) follow

[Naz$04] /(molkg™!) 0.2 0.15 0.1 0.05 0.025 0.0125  0.005
k /(dm*?moi~'s™!) 0462 0430 0390 0321 0283 0252 0224
e 0.775 0.671 0.548 0.387 0.274 0.194 0.122
200+ BIYV?) 0.436 0.401 0.354 0.279 0.215 0.162 0.109
log k —-0.335 —0.367 -0.409 —0.493 —0.548 -0.599 —0.650

030 | ¥=—075656+0.96815x £ i b
R? =0.999 ) ) : g
-0.40 :
..... o 2
B [I,’Z
éﬂ -0.50 © 1+ 81172
y= 0.69022 -+ 0.48163x
070 : R?=10.896
0.0 0.2 0.4 0.6 0.8
142 1"
I or 3Em Figure 24.4

The line based on the limiting law appears curved. The zero-ionic-strength rate constant based on it is
k° = 107290 dm*? mol= /257! = 0.204 dm®? mol ~1/% 57!

The slope is positive, so the complex must overcome repulsive interactions. The product of charges,

however, works out to be 0.5, not easily interpretable in terms of charge numbers. The line based on

the extended law appears straighter and has a better correlation coefficient. The zero-ionic-strength rate
constant based on it is

© =107 dm32 mol= 2 57! = 0.175dm*? mol~'/2 5!
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The product of charges works out to be 0.9, nearly 1, interpretable in terms of

a complex of two univalent ions of the same sign }

P24.10 A+A— A Av=-—1
AfS=R(1n A +2) [24.63)
(KT /M) x (RT[p®)
= —(83145JK 'mol™"

4.07 x 10°M~!'s7! (m?/10% dm?)

(1381 x 10~ JK-Nx (300 K)? x(8.3145 ) K~ moi™)
(6.626% 10-39 I 5} x(1.013x 105 Pa)

= (8.3145JK~" mol™!) x [In(2.631 x 107°) + 2]

+2

A%S = —148J K" mol~! |

AYH = E, — 2RT = 65.43kImol~! — 2 x (8.31451 K~ mol™!) x (300K)
1073 kS
x ( : ) [24.60,24.61]

A*H = 6044 K mol~! |

APH = AYU + AT (V)

A Y = ATH — A*(pV) = AYH — AWRT

-3
= (60.44kImol™") — (—1) x (8.3145J K "mo!™") x (300K) x (10 “)

| AtU = 62.9K1 mol™! |

AFG = AYH — TAYS = 60.44kImol™! — (300K) x (—148TK ' moi™!)

1073 %]
x( ; )[24.59]

A*G = 1048k mol”! |

P24.12 Estimate the bimolecular rate constant k;; for the reaction
Ru(bpy)s** + Fe(H20)6™* — Ru(bpy)s** + Fe(H20)6**
by using the approximate Macrus cross-relation:

kia = (kirkaaK)'2.
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The standard cell potential for the reaction is:
E® = E24(Ru(bpy)s™) — EZy(Fe(H20)6™+) = (1.26 — 0.77) V = 0.49V

The equilibrium constant is:

VFE® (1)(96485 Cmol ™! s~1)(0.49 V) 8
K =exp = ex| = =19x10
RT (8.3145] mol~' K—1)(298K)

The rate constant is approximately:

k12 & [(4.0 x 108dm® mol~! s~ (@.2dm? mol~'s~1)(1.9 % 10%)'72,

kyp 2= | 5.6 x 108 dm’ mol~!s~!

Solutions to theoretical problems

Programs for numerical integration using, for example, Simpson’s rule are readily available for personal
computers and hand-held calculators. Simplify the form of eqn 24.40 by writing

kx? A aD\ '/
2 ; *
= —, =kt‘ = —_ D — _]
: 4D ‘ J (no)( k ) U]

Then evaluate

T l I/2 2 l I/Z a
j - .[ (_) c_:-/rc_r dt + (—) e_z-/re_r
0 T T

for various values of k.

O HYAT] 5 YA
.._.._........-..-.—..-.yi e —

Ky =
[HA}yna [HA]

[HA]K,

A2

and log[HT] = log K, + log %%% — 2log y+ = log K, + log {';—f‘? + 241172
Write v = ky[HT][B]

Therefore, [H] =

then

log v = log(k2[B] + log[H™]

= log(k2[B]) + log % +2A1'% + log K,
(BI{HAJK,

=logv°® + 241'72, \°
g [A]

That is, the logarithm of the rate should depend linearly on the square root of the ionic strength,

logv oc I'/2



MOLECULAR REACTION DYNAMICS 469

KT 4
P24.18 ki = = x Le=P2E [Problem 24.17)
q

KT \?

VvV IV R . R
t=glVq g ~(m) q
R, 1027 5 (T/K)3?

o (B/cm~1)3/2

kT\?
V V. V
q=qz‘1y‘]x N(H)

[Table20.4,A = B = C] = 80

vl

Therefore, k) 2= 80 x Y7e #4580 2 80 » 5.4 x 10*s™! [Problem24.15] = 4 x 105~

Consequently, D = (80) x (2.7 x 1075 m?s™!) = |2x107Bm?s~'|if v = v and

9 x 107" m?s~! |if vF = Lv.

P24.20 It follows that, since .4; and { are the same for the two experiments,

o (CH;F3) _ In0.6
g(Ar)  In0.9

[Problem 24.17] =

CHa,F; is a polar molecule; Ar is not. CsCl is a polar ion pair and is scattered more strongly by the polar
CH;F;.

P24.22 We use the Eyring equation (combining eqns 24.53 and 24.51} to compute the bimolecular rate constant

o — KT (RT) Nagoy ( ~ AEO) (RTY2g5, ( —AEg )
y=k— | — ex A ex
h \p®/ g5 qu RT hpququ RT

We are to consider a variety of activated complexes, but the reactants, (H and D;) and their partition
functions do not change. Consider them first. The partition function of H is solely translational:

o _RT A 2o\ o RTQuxTmg)’?
T peAR, H 2w Tmy n peh?

We have neglected the spin degeneracy of H, which will cancel with the spin degeneracy of the activated
complex. The partition function of D3 has a rotational term as well.

o _ RT kT _ RKT?(2mkTinp, )/
90, = peA} ~ ohcBp, 2p®hicBp,

We have neglected the vibrational partition function of Dz, which is very close to unity at the temperature
in question. The symmetry number o is 2 for a homonuclear diatomic, and the rotational constant is
30.44cm™~'. Now, the partition function of the activated complex will have a translational piece that is
the same regardless of the model:

—_ F=% —_
Gt = ¢t qrans X 9CHror X 4t vib

RT 2wk Trmpp,)*/?

o
where 4ct trans = p9h3
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Let us aggregate the model-independent factors into a single term, F where:

o (RTY2GE: s —AEy\ _ 2 cBpmun,M? (- AE
hp*agas, RT ) = KTQumump kT2 P\ "RT
172
5 —AEy
F=MeBp, | —————— ex ( )=2.7| % 10* dm? mol~'s~!
m (2}11%(4)37{37'3!(5) P\ T

where we have taken myp, = Smy and mp, = ding.

Now k2 = F X gct i X Gt yip- The number of vibrational modes in the activated complex is3x3—-6 =3
for a nonlinear complex, one more for a linear complex; however, in either case, one mode is the reaction
coordinate, and is removed from the partition function. Therefore, assuming all real vibrations to have
the same wavenumber ¥

— 2 . 3 .
gt = Gmode (nONlinear) or gy 4. (linear)

where

=1 —heb 4—1028
dmode = exp T = L

if the vibrational wavenumbers are 1000 cm ™. The rotational partition function is

kT 1 (kTN = 12
Gct ot = —— (linear) or — | — ( ) {nonlinear)

ohcB o \ hc ABC

where the rotational constants are related to moments of inertia by

h 2
B= Tmel where [ = Z mr

and r is the distance from an atom to a rotational axis.
(a) The first mode! for the activated complex is triangular, with two equal sides of
s = 1.30(74 pm) = 96 pm
and a base of
b= 1.20(74 pm) = 89 pm

The moment of inertia about the axis of the altitude of the triangle (z-axis) is

R

_ -1

I = 2mp(b/2)* = mub* so A=

To find the other moments of inertia, we need to find the center of mass. Clearly it is in the plane of
the molecule and on the z-axis; the center of mass is the position z at which

> mite — 2) = 0 = 2(2ma)(0 — 2) + mu(H — 2)
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where f is the height of the triangle,
H=I[s>— (b/2)*}}/* = 85pm
so the center of mass is
1=H/5
The moment of inertia about the axis in the plane of the triangle perpendicular to the altitude is
Iy = 22mn)(H/5)? + mu(4H /5) = (dmy /5)H?
h

= dncdmy/5)H?
The distance from the center of mass to the D atoms is

so B =283cm™!

rp = [(H/5)* + (0/2))1'/ = 48pm
and the moment of inertia about the axis perpendicular to the plane of the triangle is

I3 = 22mp)rd + my(dH /5% = 2Qmp)[(H/5)? + (b/2)*] + mu(4H (5)*
Iy = @my/5)(s* + b%)

h
T dwc(dmyu/5)(s2 + b2)

1 7kTNY? o7 o s
QCh-ol"';(E) (ABC) =4l

{The symmetry number ¢ is 2 for this model.) The vibrational partition function is

soC = 12.2cm™'. The rotational partition function is:

et wib = Tode = 1057

So the rate constant is:

ko = F X et o X Getyip =| 137 X 10% dm® mol~! s~

complex (a) A complex (b)
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(b) To compute the moment of inertia, we need the center of mass. Let the terminal D atom be at.x = 0,
the central D atom at x = b, and the H atom at x = & 4 5. The center of mass is the position X at
which

Zm,-(x,- —X)=0=2my(0 = X}+2mub—X)+myls+6—X)

T

5X=3b+s5s0 x=03b+4)/5
The moment of inertia is

I = Z mi(x; — )()2 = 2mHX2 + 2my (b — X)2 +mpy(s+ b — X)2

T

=397 x 107% mkg®
h

4l

and B =

= 7.06cm™". The rotational partition function is

kT
dciro = —pp = 39.4

(The symmeltry number o is | for this model.) The vibrational partition function is
TCtvib = Tnoge = 109
qctvib = 9mode = -

So the rate constant is

k3 = F X qct o X Gt wip = | 1.16 x 108 dm? mol=!s~!

(c) Both models are already pretty good, coming within a factor of 3 to 4 of the experimental result,
and neither model has much room for improvement. Consider how to Lry to change either model
to reduce the rate constant toward the experimental value. The factor F is model-independent. The
factor gt .y, 15 nearly at its minimum possible value, |, so stiffening the vibrational modes will
have almost no effect. Only the factor g¢s , is amenable to lowering, and even that not by much. It
would be decreased if the rotational constants were increased, which means decreasing the moments
of inertia and the bond lengths. Reducing the lengths s and & in the models to the equilibrium bond
length of Ha would only drop &2 to 6.5 x 10% (model a) or 6.9 x 10° (model b) dm® mol~! s~!, even
with a stiffening of vibrations. Reducing the HD distance in model a to 80% of the Hz bond length
does produce a rate constant of 4.2 x 10° dm® mol™" s~ (assuming stiff vibrations of 2000cm™');
such a model is not intermediate in structure between reactants and products, though. It appears that
the rate constant is rather insensitive 1o the geometry of the complex.

Solutions to applications

P24.24 (a) The rate constant of a diffusion-limited reaction is

8RT 8 x (83145JK~"moi™! x (298K) x (10° dm’ m™?)
n 3x (106 x 103 kgm-ts—1)

=623 x 10°dm’ mol~!s~!
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(b) The rate constant is related to the diffusion constants and reaction distance by

k
4 DNy

k= 4JI'R*DNA 50 R* =

277 x 1% dm® mol~! s7!) x (107 m~}dm ™)
dr % (1 x 1079m2s~) x (6.022 x 10¥%mol™")

R*=[37 x 1079 m or 037 nm

For a series of reactions with a fixed edge-to-edge distance and reorganizalion energy, the log of
the rate constant depends quadratically on the reaction free-energy; eqn 24.84 applies: Inky =
—((AG®)2/4XkT) — (A.G® /2kT) + constant,

where we have replaced RT by kT since the energies are given in molecular rather than molar units.

Draw up the following table:

A;G® feV Ka/(10°s71y  InKy/s™!
—0.665 0.657 13.4
—0.705 1.52 14.2
—0.745 112 13.9
—-0.975 8.99 16.0
—1.015 5.76 15.6
—1.055 10.1 16.1

and plot In kg vs. A.G® (see Figure 24.5)

17

16 »

. ™
<15 ™
-
=
~J
L
14 AN N
-
13 AN
1 -1.0 09 038 0.7 0.6

AGIY Figure 24.5

The least squares quadratic fit equation is:

Inke /s ' =323 —21.1(A,G®/eV) — 8.48 — (A,G®/eV) "1 = 0.938
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The coefficient of the quadratic term is:

1 848
arkt ~ ev?’
(V) (1602 x 107 TeV~!)(eV)?

- 4(8.48)kT ~ 2(8.48)(1.381 x 10-23JK~")(298K)’

As a check on the reliablilty of the fit, note that according to eqn 24.84, the coefficient of the linear
termn is:

1211
2%T eV’

\Y 1.602 x 109 Jev—1ev
soT i ( X eV eV o5k,

= 2k(21.1) = 2(1.381 x 10-23 JK~1)(21.1)

which differs by about 8% from the stated temperature of 298 K.

P24.28 The theoretical treatment of section 24.11 applies only at relatively high temperatures. At temperatures
above 130 K, the reaction in question is observed to follow a temperature dependence consistent with
eqn 24.81, namely increasing rate with increasing temperature. Below 130 K, the temperature dependent
terms in eqn 24.8] are replaced by Frank-Condon factors; that is, temperature-dependent terms are
replaced by temperature-independent wavefunction overlap integrals.
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surfaces

D25.2

D25.4

Answers to discussion questions

(a) AES can provide a depth profile or fingerprint of the sample, since the Auger spectrum is character-
istic of the material present. Information about the atoms present and their bonding can be obtained.
The technique is limited to a depth of about 100 nm.

EELS and HREELS can detect very tiny amounts of adscrbate. The incident beam can induce
vibrational excitations in the absorbate that is characteristic of the species and its environment.

RAIRS resolves the problem of the opacity of surfaces to infrared or visible radiation but the spectral
bands observed are typically very weak.

SERS resolves the problem of weak spectral observed in RAIRS. It generally gives a greatly enhanced
resonance Raman intensity. The disadvantages are that it provides only a weak enhancement for flat
single crystal surfaces and the technique works well only for certain metals.

SEXAFS can provide nearest neighbor distributions, giving the number and interatomic distances
of surface atoms

SHG provides information about adsorption and surface coverage and rapid surface changes.

UPS can provide detailed information about the chemisorption process, surface composition, and
the oxidation state of atoms. [t can distinguish between chemical absorption and physical adsorption.

XPS is similar to UPS in the information revealed.
See the references listed under Further reading for more information about these modern techniques
for probing the properties of surfaces.

(b) Consult the appropriate sections of the textbook (listed below) for the advantages and limitations of
each technique,

AFM: 28.2(h) and Box 28.1; FIM: 25.5(b); LEED: 25.2(e); MBRS: 25.7(c); MBS: 25.2(f); SAM:
25.2(c); SEM: 28.2(h); and STM: 25.5(b).

apK
Req = Rinax m

Taking the inverse of the above equation and multiplication by ag gives:

an 1 &g

— =
RCQ RITHD(K Rmnx

This working equation predicts that a plot of ap/Req against ap should be linear if the model is applicable
to the experimental data. The siope of a linear regression fit to the data gives the value of 1 /R e or
Rumax = 1/slope. Likewise, the regression intercept equals 1/Rmax K or K = slope/intercept.
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Heterogencous catalysis on a solid surface requires the reacting molecules or fragments to encounter
each other by adsorption on the surface. Therefore, the rate of the catalysed reaction is determined by
the sticking probabilities of the species on the surface as described by Figure 25.28 of the text.

(a) There are three models of the structure of the electrical double layer. The Helmholtz model, the
Gouy—Chapman model, and the Stern model. We will describe the Stern model which is a com-
bination of the first two and illustrates most of the structural features associated with the double
layer. The electrode surface is a rigid plane of, say, excess positive charge. Next to it is a plane of
negatively charged ions with their solvating molecules, called the outer Helmholtz layer. Adjoining
this region is a diffuse layer with perhaps only a slight excess of negative charge. This region fades
away into the bulk neutral solution. At another level of sophistication, an inner Helmholtz plane is
added, see Section 25.8(a) for a brief description of this layer.

(b} The electrical double layer is present near the electrode surface whether or not current is flowing in
the cell. The Nernst diffusion layer is invoked to explain polarization effects near a working electrode
and is a region of linear variation in concentration between the bulk solution and outer Helmholtz
plane. It is typically 0.1-0.5 mm in thickness without stirring or convection, but can be reduced to
0.00] mm with such agitation The electrical double layer is unaffected by hydrodynamic fow and
is typically about | nm in thickness.

In cyclic voltammetry, the current at a working electrode is monitored as the applied potential difference
is changed back and forth at a constant rate between pre-set limits (Figs 25.45 and 25.46). As the
potential difference approaches E ® (Ox, Red) for a solution that contains the reduced component (Red),
current begins to flow as Red is oxidized. When the potential difference is swept beyond £ € (Ox, Red),
the current passes through a maximum and then falls as all the Red near the electrode is consumed
and converted to Qx, the oxidized form. When the direction of the sweep is reversed and the potential
difference passes through E® (Ox, Red), current flows in the reverse direction. This current is caused by
the reduction of the Ox formed near the electrode on the forward sweep. It passes through the maximum
as Ox near the electrode is consumed. The forward and reverse current maxima bracket £ (Ox, Red}, so
the species present can be identified. Furthermore, the forward and reverse peak currents are proportional
to the concentration of the couple in the solution, and vary with the sweep rate. If the electron transfer
at the electrode is rapid, so that the ratio of the concentrations of Ox and Red at the electrode surface
have their equilibrium values for the applied potential (that is, their relative concentrations are given
by the Nernst equation), the voltammelry is said to be reversible. In this case, the peak separation is
independent of the sweep rate and equal to (59 mV)/n at room temperature, where # is the number of
electrons transferred. IF the rate of electron transfer is low, the voltammeiry is said to be irreversible. Now,
the peak separation is greater than (59 mV)/n and increases with increasing sweep rate. If homogeneous
chemical reactions accompany the oxidation or reduction of the couple at the electrode, the shape of the
voltammogram changes, and the observed changes give valuable information about the kinetics of the
reactions as well as the identities of the species present.

Corrosion is an electrochemical process. We will illustrate it with the example of the rusting of iron,
but the same principles apply to other corrosive processes. The electrochemical basis of corrosion that

occurs in the presence of water and oxygen, is revealed by comparing the standard potentials of the
metal reduction, such as

Fe’t(aq) + 26~ — Fe(s) E°=-044V

with the values for one of the following half-reactions
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In acidic solution
(a) 2H"(aq) 4+ 2~ — Ha(g) E° =0V
(b) 4H (aq) + O2(g) + 4e~ — 2H,0()  E® =+1.23V

In basic solution:
(¢) 2Hz O(l) + Oz(g) + 4e~ — 40H (aq)  E® = +0.40V

Because all three redox couples have standard potentials more positive than E®(Fe?* /Fe), all three can
drive the oxidation of iron to iron(Il). The electrode potentials we have quoted are standard values, and
they change with the pH of the medium. For the first two

E(a) = E®(a) + (RT/F)Ina(H") = —(0.059 V) pH
E(b) = E2(b) -+ (RT/F) Ina(H*) = 1.23V — (0.059 V) pH

These expressions let us judge at what pH the iron will have a tendency to oxidize (see Chapter 7).
A thermodynamic discussion of corrosion, however, only indicates whether a tendency to corrode
exists. If there is a thermodynamic tendency, we must examine the kinetics of the processes involved
to see whether the process occurs at a significant rate. The effect of the exchange current density on
the corrosion rate can be seen by considering the specific case of iron in contact with acidified water.
Thermodynamically, either the hydrogen or oxygen reduction reaction {(a) or (b) is effective. However,
the exchange current density of reaction (b} on iron is only about 1071 A cm ™2, whereas for (a) it is
107% A em~2. The latter therefore dominates kinetically, and iron corrodes by hydrogen evolution in
acidic solution. For corrosion reactions with similar exchange current densities, eqn 25.66 predicts that
the rate of corrosion is high when E is large. That is, rapid corrosion can be expected when the oxidizing
and reducing couples have widely differing electrode potentials.

Several techniques for inhibiting corrosion are available. First, from eqn 25.66 we see that the rate of
corrosion depends on the surfaces exposed: if either A or A’ is zero, then the corrosion current is zero.
This interpretation points to a trivial, yet often effective, method of slowing corrosion: cover the surface
with some impermeable layer, such as paint, which prevents access of damp air. Paint also increases the
effective solution resistance between the cathode and anode patches on the surface.

Another form of surface coating is provided by galvanizing, the coating of an iron object with zinc.
Because the latter’s standard potential is —0.76 V, which is more negative than that of the iron couple,
the corrosion of zinc is thermodynamically favored and the iron survives (the zinc survives because it is
protected by a hydrated oxide layer).

Another method of protection is to change the electric potential of the object by pumping in electrons
that can be used to satisfy the demands of the oxygen reduction without involving the oxidation of the
metal. In cathodic protection, the object is connected 1o a metal with a more negative standard potential
{such as magnesium, —2.36 V). The magnesium acts as a sacrificial anode, supplying its own electrons
to the iron and becoming oxidized to Mg?* in the process.

Solutions to exercises

The number of collisions of gas molecules per unit surface area is

Nap

VL —
Y = 2aMRT) 2
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(a) For N2
) Zw = (6.022 x 102 mol~") x (10.0 Pa)
YT 27 % (28013 x 103 kgmol 1) x (831451 K—' mol™") x (298 K))!/2
=288 x 10¥ m~ 257!
= | 2.88 x10'%9 cm™2 5!
@) z (6.022 x 1023 mol™"} x (0.150 x 1078 Torr) x (1.01 x 10° Pa/760 Torr)
w =

(27 x (28.013 x 10~3 kgmol™!) x (8.3145) K~ mol™}!) x (298 K))'/2

=575x 107 m™ 25!

=575 x10P¥ cm2 5!

(b) For methane
(6.022 x 1023 mol™1) x (10.0Pa)

() Zw= —~ —
(21 x (16.04 x 10-3kgmol™!) x (8.3145J K—~! mol™'} x (298 K))!/2
=381 x 10® m~ 257!
= | 3.81 x10% em™2 5!
@ z (6.022 x 102 mol™!) x (0.150 x 1078 Torr) x (1.01 x 10° Pa/760 Torr)
w =

(27 x (16.04 x 10~3kgmol~!) x (8.3145J K~1 mol~") x (298K))'/2

=7.60x 107" m2s"!

=|7.60 <1012 em=% 5!

E25.2(b} The number of collisions of gas molecules per unit surface area is

Zo = Nap o b ZwAQmMRT)!/?
Y= RaMRT)IT P= NAA
; (5.00 x 1019571

- (6.022 x 108 mol™) x 7 x (1/2 x 2.0 x 1073 m)2
x (27 x (28.013 x 10 kgmol ™) x (8.3145Tmol~! K1) x (525 K))'/?

S EEPTR

E25.3(b) The number of collisions of gas molecules per unit surface area is

Zer = Nap
Y M RD'2

50 the rate of collision per Fe atom will be ZwA where A is the area per Fe atom. The exposed surface

consists of faces of the bee unit cell, with one atom per face. So the area per Fe is

N,e,pc2

_ 2 _ _
A=c¢" and rate =ZwA = M RT)1
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where ¢ is the length of the unit cell. So

(6.022 x 102 mol™') x (24 Pa) x (145 x 10712 m)?
(27 x (4.003 x 10-3kgmol™') x (8.3145J K=" mol™'} x (100K))!/2

[esxie ]

The number of CO molecules adsorbed on the catalyst is

rate =

_ pVNa _ (1.00atm) x (4.25 x 10~ dm?) x (6.022 x 10* mol™!)
~ RT (0.08206 dm® atm K=" mol~') x (273 K)
1.14 x 10%

N =nNp

479

The area of the surface must be the same as that of the molecules spread into a monclayer, namely, the

number of molecules times each one’s effective area

A= Na= (114 x 10%) x (0.165 x 10”8 m?) =

If the adsorption follows the Langmuir isotherm, then

¢ V/Vion
so K= =
1+ Kp p(l—=8) p(l1—V/Vyon)

Setting this expression at one pressure equal to that at another pressure allows selution for Vingn

VI/Vmon _ VZ/Vmon o Pl(Vmon - VI) _ PZ(Vmon — VZ)
p1{l — V1 /Vmen) p2(l — V2 /Vimen) Vi Va2

- 52.4 — 104) kPa
Veron pi—p2 _ ( ) _

T pi/Vi—p2/Va  (52.4/1.60 — 104/2.73) kPacm™>

The mean lifetime of a chemisorbed molecule is comparable to its half-life:

E 155 x 10% Imol™!
fya = 1o €Xp (R_";‘) 2z (10‘14 s) exp ( X mo ) =

(8.3145 T K- mol™") x (500K)

The desorption rate constant is related to the half-life by
t=(in2)/kqg so kg={(n2)/t
The desorption rate constant is related to its Arrhenius parameters by

—F E
kd=Aexp(R—Td) 50 lnkd=lnA—ﬁ
(Ink) — Ink)R (In1.35 —In1) x (8.3145J K~ mol™")
and By = — —7——— = -1 i
Ty =T, (600K)~! — (1000 K)

Eq=|[3.7 x10% I moi™!
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The Langmuir isotherm is

K
g = P S0 p= L
| +Kp K(1—8)
(a) = 0.20 =|0.32kPa
P= (0.777 kPa~ !y x (1 — 0.20) =
0.75
(b) p =[39kpPa

T (0777 kPa ) x (1 — 0.75)

The Langmuir isotherm is

__Kr
T I+Kkp

We are looking for @, so we must first find K or mimgn

K- g _ m/Mmon
p(l —8) - p(l — #o1/mmon)

Setting this expression at one pressure equal to that at another pressure allows solution for nimen

# {Mmon _ M2/ Mmon so Pi{Mmon — 1)) _ P2(Mmen — M2)
P11 —my/mimon)  pa(l — ma/iigmen) ) niy
- 36.0 —4.0)kPa
- pL—pm _ ( ) —0.84mg

pi/my —pafmy ~ (36.0/0.63 — 4.0/0.21) kPamg™!

So 01 = 0.63/0.84 = and 6; = 0.21/0.84 =

The mean lifetime of a chemisorbed molecule is comparable to its half-life

Eq
I;2 = TpeExp ﬁ

3 -1
(@)  At400K: nyp=(0.12x 1072 s)exp 20 x 1071 mol
(83145 K~"mol 1) x (400K)
=49 %1075
3 -1
At800K : 1172 = (0.12 x 10~ s)exp 20 x 107J mol
(8.3145JK~mol™") x (800K)

=124 %1072

3 -1
(b) At400K: 1 = (012 x lO_Izs)exp( 200 x 107 Jmol )

(8.31451K~"mol ™!} x (400K)

=|1.6 x 10*s

200 x 10% Jmol ™!
At800K : ’I/2=(0-12x10"25)exp( 00 x 10 Jmo )

(8.3145JK~'mol™") x (800 K)

=|l4s
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E25.11(b) The Langmuir isotherm is

K g
6= P 50 p= ———
1+ Kp KU —0)

For constant fractional adsorption

K
pK = constant so p K, =p2Ky and pz:pl—]
2

—AgH® K| —AgH® (] 1
But X ccexp —RT soE=exp —r 5"_1_7'_2

= _AadH9 1 L
P2 = prexp R T, Ta
—12.2 % 10* Jmol ! 1 L
e L =-6.50 KP.
(8.86 kPa) x exp (( 2314571 K=" mol-! ) X (2981( 318 K)) -

E25.12(b} The Langmuir isotherm would be

__kp
@ T 1+Kp
(Kp)'/?
b ="
® 1+ (Kp)'72
_ &Kp'?
R VO

A plot of @ versus p at low pressures (where the denominator is approximately 1) would show
progressively weaker dependence on p for dissociation into two or three fragments.

E25.13(b) The Langmuir isotherm is

Kp o p= e
1+kp P ka—-o

For constant fractional adsorption

p2 K
pK = constant so p1K) =Ky and — = —
n K

—AgH® D2 —AgH® ( | 1 )
But K — | so — = — ==
mae exp( RT o CP\T R \T T

1 1yt
and AgH® =R (— - —) m?L,
I T P2

A He_(83145JK_lm01_l)x L——[ _lx lnﬂ
W 180K 240K 1.02 x 103 kPa

= —640 x 10* Tmol™! =|—6.40kI mol™'



482 INSTRUCTOR'S SCLUTIONS MANUAL
E25.14(b) The time required for a given quantity of gas to desorb is related to the activation energy for desorption by
rocex Eq 50 i Ea (] ]
=d doexpl 22 = ==
PA\rT no PP\ \R\T TR

I TR
andEd=R(——— In—
Ty T3

l 1y 1856
Ed=(8.3]4SJK‘1mol")x(— ) x(ln S)

873K 1012K 8445

={2.85 x 10° Jmol~' |

(a) The same desorption at 298 K would take
5 -1
= (1830 5) xcexp ((538154:;(1)(—11[:::1-1) * (29; K~ 37:1 K)) =148 10%]
{b) The same desorption at 1500 K would take
[ = (B.448) x exp (( 2.85 x 10° Jmol ™! ) y ( 1L ))
8.3145J K~! mo!™! 1500K  1012K
[ x ]

E25.15(b) Disregarding signs, the electric field is the gradient of the electrical potential

dAyp A o o 0.12Cm™2 2 .
v .20 _2_72 - =(28x 108V
T d T e mee (38) X (8.854 x 10-2J-1C2m-1) X ™

E25.16(b) In the high overpotential limit

N N _ - n-m  where fo fo= |
J = Joe o RT /=R = Beomv

The overpotential 72 is

; 25.69 mV 72 mAcm™2
m=m+ ani—2=105mV+(—m-—)xln(&)
j

1
fl—a) | 1 -042 17.0mA cm=—2

=[167mv]

E25.17(b) In the high overpotential limit

j=joe' Y so jo = jelem VN

o= (17.0mA cm™2) x l@42-1x(105mV)/2569mV)] _
E25.18(b) In the high overpotential limit

jm el oo L cU-atnom gng = e )
J2
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So the current density at 0.60 V

o = (1.22 mA em™2) x el(1-050) x Q60 V-0.50V)/(0.02569 V)}

Note: the exercise says the data refer to the same material and at the same temperature as the previous
Exercise (25.18(a)}, yet the results for the current density at the same overpotential differ by a factor of
over 5!

E25.19(b) {(a) The Butler—Volmer equation gives

j =j0(e(1—ﬂ’)f11 —e™m

= (2.5 % 10—3 ACm_Z) x (e[]—0.53))((0.30\’)/(0.02569V)] _ e—[(O.SB)x(OJOV)/0.0ZS69\')])

=i034 Acm™?

{b} According to the Tafel equation

j =joet =

=(2.5x |0—3 ACm—_)e{(l—0.53))((0.30\")/(0.02569V)] — 0.34ACITI_2

The validity of the Tafel equation improves as the overpotential increases.

E25.20(b) The limiting current density is

FDe
é

Jlim =
but the diffusivity is related to the ionic conductivity (Chapter 21)

_ ART . cA

= 22? 50 Jlim = E

(L.5molm3) x (10.60 x 1073 Sm? moi™!) x (0.02569 V)
(032 x 10~3m) x (+1)

Jim =

=[13Am~]

E25.21(b) Fortheironelectrode E € = —_(.44V (Table 7.2) and the Nernst equation for this electrode (section 7.7a) is

. RT ( 1 )
EFE=FE" — ——In{ —— v=2
vF [Fez+]

Since the hydrogen overpotential is 0.60 V evolution of Hz will begin when the potential of the Fe
electrode reaches —0.60 V. Thus

02569V
—0.60V = —0.44V + % In[Fe?t]
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—0.16V

In[Felt]= —— — —
n(Fe™ = SoT8v

—125

[Fe’T] =4 x 10~% mol dm™3

COMMENT. Essentially all Fe?* has been removed by deposition befare evolution of Hy begins

E25.22(b) The zero-current potential of the electrode is given by the Nernst equation

1 a(Fe?)

RT I Fel+
E=E°——Fan=E9—fln _o7v - Ly alFe)
v

a (Fe3+) f a (Fe3+)
The Butler—Volmer equation gives

i =j0(e(|—ﬂ)f!1 = e‘“f’?) =j0(e(0.42)fr1 _ e—O.SSfu)

where 1 is the overpotential, defined as the working potential £ minus the zero-current potential E.

E'— 077V + i1 ® (Fe*")
n= — L -n—--:
’ 7 a(FeT)

where r is the ratio of activities; so

1
=E —-077V+-lur,

i=jo (6(0'42)E'/fe[(0'42) #{—0.77V)/(0.02569 V)] r0.42

_ e(—O.SS}E'/fc{(fD.SS) x{—0.77V)/(0.02569 V}]’.—O.SS)

Specializing to the condition that the ions have equal activities yields

J=1(25mAem=2) x [(eODEY x (34T x 107%) — e"OEY « (355 x 107)]|

E25.23(b) Nole. The exercise did not supply values for jo or @. Assuming o = 0.5, only j/j(] is calculated. From
Exercise 25.22(b)

j= jo(e(o.su)s'/f e-(o.smze/f,_o.so _ e OSOES E(o.smfzeff ,.—0.50)
=2jo sinh[%f E-LifE°+im r] .
50, if the working potential is set at 0.50 V, then
i=2jo sinh[%(0.9l V)/(0.02569 V) + } In r]
j [io =2 sinh (8.4§ +11n ,-)

Atr=0.1: j/jo =2sinh(8.48 + 1n0.10) = L5 x 10°mAcm™ =
Atr=1:j/jo = 2sinh(8.48 +00) = 48 x 10°mAcm™2 = |48 Acm 2
Atr=10: j /jo = 2sinh(8.4§+ ln 10) =15x 10°mAcm™? =
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E25.24(b) The potential needed to sustain a given current depends an the activities of the reactants, but the over
potential does not. The Butler—Volmer equation says

j :jo(e(l—ﬂ’]f'r _e"¥n
This cannot be solved analytically for n, but in the high-overpotential limit it reduces to the Tafel equation

(—a)f 1 i 0.02569V 15mA cm™2
! 0 p=——In>-= In 5
(1-a)f Jo 1 =075  40x 102 mAcm”

J=Joe

This is a sufficiently large overpotential lo justify use of the Tafel equation.

E25.25(b} The number of singly charged particles transported per unit time per unit area at equilibrium is the
exchange current density divided by the charge

N="2
c

The frequency f of participation per atom on an electrode is
f=Na
where a is the effective area of an atom on the electrode surface.

For the Cu, Ha|H™ electrode

_jo_10x107%Acm™?
T e 1e2x1079C
f=Na=(62x 10124~ cm_z) x (260 x IO_mcm)2

=142 x 10735~}

For the P(|Ce?™, Ce®* electrode

=[62x 1025 'em?

jo _ 40x1075Aem™

N="1 — =125 10]4 1 ~2
e 1602x10-°C x10" 5! e

The frequency f of participation per atom on an electrode is

f=Na=(25x10"%s7 em™2) x (260 x 107 %em)? =

E25.26(b) The resistance R of an ochmic resistor is

otential
R = p— =

1
current JA
where A is the surface area of the electrode. The overpolential in the low overpotential limit is

J 0 R=

n=— -
Jio fioA
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0.02569V
(a) R =51x10°Q=|51GQ

T (5.0 x 1012 A cm~2) x (1.0 cm?)

® R- 0.02569 V _

T 25 % 10-3 A em 2) x (1.0em?)

No reduction of cations to metal will occur uatil the cathode potential is dropped below the zero-current
potential for the reduction of Ni%* (—0.23 Vat unit activity). Deposition of Ni will occur at an appreciable
rate after the potential drops significantly below this value; however, the deposition of Fe will begin
(albeit slowly) after the potential is brought below —0.44 V., If the goal is to deposit pure Ni, then the Ni
will be deposited rather slowly at just above —0.44 V; then the Fe can be deposited rapidly by dropping
the potential well below —0.44 V.

As was noted in Exercise 25.18(a), an overpotential of 0.6 V or so is necessary to obtain significant
deposition or evolution, so Hs is evolved from acid solution at a potential of about —0.6 V. The reduction

potential of Cd?** is more positive than this (—0.40 V), so Cd will deposit (albeit slowly} from Ccd?t
before Hs evolution.

Zn can be deposited if the HT discharge current is less than about 1 mA em~2. The exchange current,
according to the high negative overpotential limit, is

j = joe™"
At the standard potential for reduction of Zn?* (—0.76 V)

j=(0.79mA cm™2) x e~ [(05) x (-0T6V)/Q02569V)} _ 3 | 109 mA cm™2

Lmuch too large to allow deposition [ (That is, H» would begin being evolved, and fast, long before Zn

began to deposit.)

Fe can be deposited if the H* discharge current is less than about 1 mA ¢cm~2. The exchange current,
according to the high negative overpotential limit, is

j=Jjoe™?
At the standard potential for reduction of Fe?+ (~0.44 V)

j=(1 x 1078 Acm™2) x g HOR X (-04VYQISBEVI . 59 » 1673 Acm™2

| a bit too large to allow deposition | (That is, Ho would begin being evolved at a moderate rate before

Fe began to deposit.)
The lead acid battery half-cells are

Pott +2e” — POt 1.67V
and PbSOs 4 2~ — Pb + O3~ —-036V,
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for a total of E® =|2.03V | Power is
P=1V =(100 % 1073 A) x (2.03V)=|0.203W

if the cell were operating at its zero-current potential yet producing 100mA.

E25.32(b) Two clectrons are lost in the corrosion of each zinc atom, so the number of zinc atoms lost is half the
number of electrons which fiow per unit time, i.e. half the current divided by the electron charge. The
volume taken up by those zinc atoms is their number divided by number density; their number density
is their mass density divided by molar mass times Avogadro's number. Dividing the volume of the
corroded zin¢ over the surface from which they are corroded gives the linear corrosion rate; this affects
the calculation by changing the current to the current density. So the rate of corrosion is

e M _ (20Am™2) x (65.39 x 10~ kgmol ™)
T 2epNa  2(1.602 x 10-19C) x (7133kgm—3) x (6.022 x 1023 mol~")
=95x%x 107" ' ms™!

= (9.5 x 107 ms™) x (10°mmm™") x (3600 x 24 x 3655 y_')

-[ommr]

Solutions to problems
Solutions to numerical problems

P25.2 P

Zw= —F 251
W= 2 12>14]

p/Pa
[@) x (32.0) x (1.6605 x 10~2"kg) x (1381 x 10-2TK™") (300 K)]'/*

= (2.69 x 102 m™ 257"y x p/Pa = (2.69 x 10"¥ cm™2571) x p/Pa

(a) AL100KPa,| Zw =269 x 108 em~2 57! ]

(b) At1.000 Pa,[Zy =269 x 108 em2 5! |

The nearest neighbor in titanium is 291 pm, so the number of atoms per cm? is approximately 1.4 x 10%3

(the precise value depends on the details of the packing, which is hep, and the identity of the surface).
The number of collisions per exposed atom is therefore Zw /(1.4 x 10'% cm™2).

(a) When p = 100kPa, Zyom =|2.0 x10%s7!
(b} Whenp = 1.000Pa, Zyom =|2.0 x 10¥571
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We follow Example 25.1 and draw up the following table (with pressures converted to Torr)

p/Torr 0.19 0.97 1.90 4.05 7.50 11.95
(p/V)/(Torrem™3)  4.52 5.95 8.60 12.6 18.3 254

p/V is plotted against p in Figure 25.1.

p/Torr Figure 25.1

The low-pressure points fall on a straight line with intercept 4.7 and slope 1.8. It follows that 1/V, =
1.8 Torr em™2/Torr = 1.8cm ™3, or Voo = 0.57 cm? and 1 /K V. = 4.7 Torr cm™>. Therefore,

K =
(4.7 Torrem~—3) x (0.57 cm?3)

=0.37Torrt | =| 0.0028 Pa!

COMMENT. It is unlikely that low-pressure data can be used to obtain an accurate value of the volume
corresponding to complete coverage. See Problem 25.6 for adsorption data at higher pressures.

We assume that the data fit the Langmuir isotherm; to confirm this we plot p/V against p and expect a
straight line [Example 25.1]. We draw up the following table

platm 0.050 0.100 0.150 0.200 0.250
p/V /(10 2atmem™3) 4.1 7.52 11.5 147 17.9

The data are plotted in Figure 25.2.
They fit closely to a straight line with slope 0.720 dm~3. Hence

Voo = = 1.39 x 107 dm™ & Vipon
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20 7

(pIYI(1072 atm cm™)

T T T

0 0.05 0.10 0.15 0.20 0.25
pfam Figure 25.2

The number of H; molecules corresponding to this volume is

N pVNa  (1.00atm) x (1.39 x 107> dm*) x (6.02 x 102> mol™"))
H, = =

= : = =3.73 x 10"
" RT (0.0821 dm? atm K—! mol ') x (273K)

The area occupied is the number of molecules times the area per molecute. The area per molecule can
be estimated from the density of the liquid

3y M
A=m (—) [V = volume of molecule = —:|
45 PNa

o

2/3
_ﬂ( 3M )2/3—7: 3 x (2.02gmol ™) !
T \ampNa) T \dm x (0.0708 gem—?) x (6.02 x 1023 mol ™)

=158 x 107 Pcm?

Area occupied = (3.73 x 10'%) x (1.58 x 107" cm?) = (5.9 x 10% cm?) =

COMMENT. The value for V. calculated here may be compared to the value obtained in Problem 25.4. The
agreement is not good and illustrates the point that these kinds of calculations provide only rough value
surface areas.

We assume that the Langmuir isotherm applies.

Kp
= [254] and 1-6=
I+ Kp | + Kp

For a strongly adsorbed species, Kp 3> 1 and 1 — 8 = 1/Kp. Since the reaction rate is proportional
to the pressure of ammonia and the fraction of sites left uncovered by the strongly adsorbed hydrogen
product, we can write

dpNH, kepNH;
ar cPNH- ( ) e
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To solve the rate law, we write
PH, = 3{PoNH; — PNH3 ) [NHa — 3Ny + %Hz]

from which it follows that, with p = pnn;,

—dp  kp = 2k,
d ~ po—p = 3K

This equation integrates as follows

P f
f (l—@) dp=kf dt
Po r 0

PP 4 B2
L po

or

We write F' = (po/1) In (p/po), G = (p—po)/t
and obtain G =k + F' = poF

Hence, a plot of & against F’ should give a straight line with intercept £ at F* = 0. Alternalively, the
difference G — F’ should be a constant, k. We draw up the following table (with pressures converted to

Torr)

tfs 0 30 60 100 160 200 250
p/Torr 100 88 84 80 71 74 72
G/(Torrs™') —-040 -027 -020 -0.14 -0.13 -0.11
F'[(Torr s~y -043 -029 -022 -0.16 -0.5 =0.13
(G — F'}/(Torrs™") 003 00z 002 002 002 002
Thus, the data fit the rate law, and we find | k = 0.02 Torrs™! | = | 0.05kPas~! |

P25.10 Application of the van’t Hoff equation [25.7] to adsorption equilibria yields

dInK — Ay H® o dink —AggH®
= T =
T /g RT? 3/TY /g R

Hence, a plot (Figure 25.3) of In X against 1/T should be a straight line with slope —A¢H ©/R. The
transformed data and plot follow

T/K 28.3 298 308 318
10K 2.642 2.078 1.286 1.085
1000 K/T 3.53 336 3.25 3.14

In K 26.30 26.06 25.58 2541
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64 y= 17824 +2.4134x

2 _
262 R—0946

GO i

InK

25.8

25.6

3.1 32 i3 i4 35 36
1000K /T Figure 25.3

254

The plot is not the straightest of lines. Still, we can extract

_AH® = —(83145Tmol ' K™1) x (241 x 10°K)

=200 x 10°Tmol™! = | —-20.1kJ mol™!

The Gibbs energy for absorption is

—AuG® = —AgH® — TAS® = —20.1 kI mol ™! — (298 K) x (0.146kJ mol ™' K™)

=|63.6kJ mol™!

P25.12 For the Langmuir adsorption isotherm we must alter eqn 25.4 so that it describes adsorption from
solution. This can be done with the transforms

p — concentration, ¢
V — amount adsorbed per gram adsorbent, 5

Langmuir isotherm and regression analysis:

c ¢ 1
s Soo K50
1
— = 0.163 gmmol ™!, standard deviation = 0.017 g mmol !
Soo
1
—— = 35.6 (mmol dm™>) x (gmmol ™),
Soo

standard deviation = 5.9(mmol dm'3) x (g mmol_')

R (Langmuir) = 0.973

0.163 g mmol !

= 3 — = 0.0046 dm’ mmol !
35.6{mmotdm™) x (gmmol™ ")
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Freundlich isotherm and regression analysis:

s=¢c'fe

¢1 = 0,139, standard deviation = 0.0]2

1
— =0.539, standard deviation = 0.003
C2

R (Freundlich) = 0.99994

Temkin isotherm and regression analysis:

s = ¢ Infegac)
c; = 1.08, standard deviation = (.14

cx = (.074, standard deviation = 0.023

R (Temkin) = 0.9590

The correlation coefficients and standard deviations indicate that the | Freundlich isotherm | provides the
best fit of the data.

E=E®+ (RT/zF)Ina(M™)

Deposition may occur when the potential falls to below £ and so simultaneous deposition will occur if
the two potentials are the same: hence the relative activities are given by

RT RT
E®(Sn,Sn*t) + 7F Ina(Sn**) = E®(Pb,Pb*ty + o Ina(Pb*™)

rl

a(Sn*")  [2F\ o 2 5 (2) x (=0.126 + 0.136) V
——— = [ = | (E®(Pb,Pb**) — E®(Sn,Sn**}} = =0.78
8 a(Po*ty (RT) L ) (Sm, Sn"5)) 0.0257V

That is, we require | a(S02") & 2.2a(Pb2") |

) 2RT
E'=E~ IR~ — Ing(l) [25.64a]

- ([/ADZ:
[(1 = (/AfimL)) % (1 = U /ARmR))]

with jflim = cRTA/zF § [25.576] = aA

!
R, =—= ith Ap, = A A
YT kA cAAn Wi " ++
, n 2RT
Therefore, ' = E — - Ing(hH
cAdAp zF
(1 /A%Lofro)

with g(/) = =
[1 - a/aaii )} [1 - U AarAr )]

with ap. = RTc /2 .F8. and ap = RTep/zrFéR
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For the cell Zn|Zn304(aq){|CuS04(aq)|Cu, /=5cm, A=5cm?, c(Mf):c(Mﬁ):lmo] dm™3,
I = R = 2, ALy = 107 S cm2 mol !, ARy = 106 Scm? mol~! = ALy, A = lsof‘ =

160Sem=2mol™". An = (107+160) Scm?mol ™" = 267 S cm® mol ™! for both electrolyte solutions.
We take & =2 0.25 mm [25.57b] and jLo & jro & | mA cm™2. We can also take

E®(a~ 1) = E%(Cu,Cu?"y — E®(Zn,Zn**) = [0.34 — (—0.76)] V = L.10V

Scm _

Rs= 1 =388

(1M) x (267 ScmZmol 1) x (5e¢m?)
_ , I {0.0257V) x (107 Sem? mol™") x (1M) - -
fim =J;;i“m=5 X ( 055 < 10-%m 255 % 107°SVem

2

=55x%x 10> Acm™?

If follows that

—3 04
E'/V = (1.10) — 3.753(1/A) — (0.0257) In (M)

1 —3.6(/A)
_ 1.6 x 10°(7/A)?
= (1.10) = 3.75(I/A) — (0.0257)In | ————F—+7—
(1.10) (I/A) —( )ﬂ( T 3.60/A) )
This function is plotted in Figure 25.4.

1200 4 - 120
1000 - 100
800 - 80
> =
£ 600 - 60 5
o £
400 - - 40
200 20
0 0

1.0 1.2 1.4 1.6 1.8 2.0 2.2
log(f/mA) Figure 25.4

The power is

P=IF

9 4
and so P/W = L10(//A) — 3.73(//A) — 0.0257(//A) In (___1'6 x 10°/A) )

1 —3.6(/A)

This function is also plotted in Figure 25.4. Maximum power is delivered at about and 0.46 V
and is about 40 mW.
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P25.18 Felt +2e~ — Fev=2; E® = —0.447
RT
(a) Ep=E®——nQ [7.29]
vF

e RT 1
vF Felt

. 1073V -3
_ oa4py 25693 x 10 m( mol dm )

2 1.70 x 10-6 moldm?
Eo = —0618V

n1=E — E[25.39]

assuming yp.2+ = 1

17 values are reported in the table below.

vF dnpe _ 2(96485Cmol™") dnge
A dr 9.1 cm? dt

j =j0 (e(l—a)ﬁr _ e—aﬁ:) =J-Oe—afn{eﬁ1 _ l}

(b) i=

= —j[e” — 1} [25.40, 25.41]

.
JC_EI"—I

Jc values are reported in the following table

dipe/dr (1072 mols™!)  —E'/mV  —g/mV  j/(uAem™") je/(uAcm™1?)

1.47 702 84 0.0312 0.0324
2.18 727 109 0.0462 0.0469
3.11 752 134 0.0659 0.0663
726 812 194 0.154 0.154

©  Je=JoeT"[25.40]
Inj. =1njo—afm

Performing a linear regression analysis of the In j; versus 5 data, we find

Injp = 4.608, standard devation = 0.015
af = 0.0413mV, standard devation = 0.000 11
R =0.99994

The correlation coefficient and the standard deviation indicate that the plot provides an excellent
description of the data

jo=e"% or jy=0.00997 pAcm™>

014
= 001413 _ (0.01413mV ™) x (26.693mV)

o
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This problem differs somewhat from the simpler one-electron transfers considered in the text. In place
of Ox + ¢~ — Red we have here

It 43¢~ — In
namely, a three-electron transfer. Therefore eqns 25.33a, 25.33b, and all subsequent equations including
the Butler—Volmer equation [25.41] and the Tafel equations [25.44-25.46] need to be modified by
including the factor z (in this case 3) in the equation. Thus, in the place of eqn 25.33b, we have

AYG, = AYGL(0) + zaF AP

and in place of eqns 2545 and 25.47

Inj =In jo+z(] —a)fn anode
In(—j} =1ln jo - zfn cathode

We draw up the following table

j/(Am™?) —-E/V n/V  InG/Am™?)
0 0388 0O
0.590 0.365 0023 -0.5276
1.438 0.350 0.038 0.3633
3.507 0.335 0.053 1.255

We now do a linear regression of Inj against 5 with the following results (see Figure 23.5)

1.5

Y% T T T T AN TN NN TN RN NN RO R B
0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
n/V Figure 25.5
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2(1 —a)f =59.42V~!, standard deviation = 0.0154
Injo = —1.894, standard deviation = 0.0006

R = 1 (almost exact)

Thus, although there are only three data points, the fit to the Tafel equation is almost exact. Solving for
o from z(1 — a)f = 59.42V~!, we obtain

59.42V~! 59.42v-!
g=1-" =] (—3—) x (0.025262 V)

¥
— 0,496 =

which matches the usual value of & exactly.

jo=e " =10150 Am2

The cathodic current density is obtained from

In{(—jo) =1Injo —zafn n=0.023Vat— E/V = 0.365
=—1.894 — (3 x 0.4996 x 0.023)/(0.025262)
= -3.259

—je = e % = 0.0383 Am~?

0.0384 Am~?

P25.22 At large positive values of the overpotential the current density is anodic.

_j c

i=Jo [e“‘“’f n_emaf ’1] [25.41}
~ joe! =W = j, [25.40]
Inj = Injp+ (1 —a)fn
Performing a linear regression analysis of In j against 5, we find

In{jg/(mA m %)) = —10.826, standard deviation = 0.287
(1 —a)f =19.550 v~ standard deviation = 0.355

R =0.99901
2

jo =786 mAm=? = 12,00 x 10~ mA m~2

19.550 V! 19.550 v—!
o = _——

f (0025693 V)~

The linear regression explains 99.90 percent of the variation in 2 In j against  plot and standard deviations
are low. There are deviations from the Tafel equation/plot.
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Solutions to theoretical problems

A general change in the Gibbs function of a one-component system with a surface is
dG = —8SdT + Vdp + ydo 4 pdn

Let G =G(g)+ G(o) and n=n(g)+ n(g); then
dG(g) = —S(g)dT + V(g)dp + pn(g) dn(g)
dG{a) = —S5(o)dT + y do + p(e)dn(o)

At equilibrium, u{e) = j(g) = p. At constant temperature, dG(o) = y do + pdn(o). Since dG is an
exact differential, this expression integrates to

Glo) = yo + pn(o)

Therefore, dG(o) = o dy + y do + pdn(o) + nl(e)du
But since dG(o) = y d{o) + p dn{e) we conclude that o dy + n(o)du =0
Since di = RT d In p, this relation is equivalent to

_ady o dy
M) =g, = (RT)X(CI lnp)

Now express n{¢) as an adsorbed volume using

PVa
RT*®

and express dy as a kind of chemical potential through

n{ag) =

RT®
p° dr

i

du' =

evaluated at a standard temperature and pressure (T° and p*®), then

"
- (1:_7) x (dll:p) =Va

_ K,V
1+ Kp" 7 Vo
¢ v
P R1=0) " KVeo— V)
dp | Vv Voo
dV T K(Ve + K(Veo — V)2 K(Veo — V)2

T
( )lenp_——Vdp

T () e
--(2) (525
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Therefore, we can adopt any of several forms,

: ((RT /0 )Veo) (RT fer) (RTVoo/0) RTV
dp' = ——— 170 gy V= 2 e = din(l — 8
" Vv —a 0 —g ¢ p n(l —86)
P25.28 J=Jole!! M — 7 1) [25.41]
=jo |1+ —amf + 30—+ = L+afn— jaln¥f? + -
=Jo [ + Yan*t 20y + -]
Gy =Jo | + 301 — 20720 + - ]
2nfew )
{n) =0, because — f coswrde = 0 [—”is the period]
2r Jo w
w 2nfew
(QZ) = %q%, because E-[O cos’ wr df = %
Therefore, | {j} = 1(1 — 2a)%jon;
and () =0 wheno = % For the mean current,
() = 11 — 20)f%joSng
(790 x 107 Acm™2) x (1.0cm?)
=1 Q. V)2
7 % (1 -0.76) x ( 00257 V)2 x (10 mV)
- [724]
FD c .
P25.30 j= (CT) x (1—¢")[2951; 2= 1]1=|jL (1 —ef /RT)

The form of this expression is illustrated in Figure 25.6.

For the anion current, the sign of n° is changed, and the current of anions approaches its limiting value
as ¢ becomes more positive (Figure 25.6).

Cations

Anions  Figure 25.6
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Solutions to applications

Equilibrium constants vary with temperature according to the van’t Hoff equation [7.25] which can be
written in the form

K - @ —(1/Ta
e [cawr®mwm (iﬂ_n]

ra

or
Ky _ | 160x 10*Jmol ™! 1 | _[703
K O Pl831451K-"mol-! \673K TB3K /| =

As measured by the equilibrium constant of absorption, NO is about 40 times more strongly absorbed
at 500 °C than at 400°C.
(a) Gwater = k(RH)”"

With a power law regression analysis we find

k = 0.2289 | standard deviation = 0.0068

I/n = 1.6182, standard deviation = 0.0093; |n =0.6180
R = 0.999508

A linear regression analysis may be performed by transforming the equation to the following form
by taking the logarithm of the Freundlich type equation

l
n

Ink = —1.4746, standard deviation = 0.0068; [k = 0.2289

1
— = ].6183, standard deviation = 0.0093; |n = 0.6180
"

R = 0.999 508

In guater = Ink + — In(RH}

The two methods give exactly the same result because the software package for performing the
power law regression performs the transformation to linear form for you. Both methods are actually
performing a linear regression.

The correlation coefficient indicates that 99.95 percent of the data variation is explained with the
Freundlich type isotherm. The Freundlich fit hypothesis looks very good.

(b} The Langmuir isotherm model describes adsorption sites that are independent and equivalent. This
assumption seems to be valid for the VOC case in which molecules interact very weakly. However,
water molecules interact much more strongly through forces such as hydrogen bonding and mul-
tilayers may readily form at the lower temperatures. The intermolecular forces of water apparently
cause adsorplion siles to become nonequivalent and dependent. In this particular case the Freundlich
type isotherm becomes the better description.

(© voc = | — Guaer  Where rvoc = gvoc/qvocRH =0
rvac = | — k(RH)!/"
| — rvoc = kK(RH)'/"
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To determine the goodness-of-fit, &, and » we perform a power law regression fit of 1 — rvoc against
RH. Results are

k =10.5227| standard deviation = 0.0719

|

— = 1.3749, standard deviation = 0.0601; =0.7273
- , standard deviation :

R =10.99620

Since 99.62 percent of the variation is explained by the regression, we conclude that the hypothesis

that rvoc = | — gwaer may be very useful. The values of R and a1 differ significantly from those of
part {a). It may be that water is adsorbing to some portions of the surface and VOC to others.
_ <
P25.36 ge = —&%°
vF

(@) Hy + 302 — H20;  A,.G° = —237 ki mol™"

Since v = 2,

s — (=237 kI mol™!)

- - [i5Y]
(2) x (9648 kC mol™")

(b) CH4 + 20; — CQO; 4+ 2H,0

AGT = 2A¢G% (H0) + ArG®(CO7) — ArG®(CHy)

=[(2) x (=237.1) + (-394.4) — (=50.7)] kI mol™! = —817.9kJ mol™!

As written, the reaction corresponds to the transfer of eight electrons. It follows that, for the species
in their standard states,

o —(—817.9kImol™")
= =|+106V
(8) x (96.48kCmol™!)
P25.38 Lo = AJoe™" [25.66]

with £ = —-0.62 — (—=0.94) V = 0.32 V [as in Problem 25.37]

Lo = (0.25 x 106 A) x (60.32/43-(0.0257)) e



