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Answers to discussion questions

The symmetry number, o, is a correction factor Lo prevent the over-counting of rotational states when
computing the high temperature form of the rotational partition function. An elementary interpretation
of o is that it recognizes that in a homonuclear diatomic molecule AA the orientations AA” and A'A
are indistinguishable, and should not be counted twice, so the quantity ¢ = &T/hcB is replaced by
g = kT/ohcB with o =2. A more sophisticated interpretation is that the Pauli principle allows only
certain rotational states to be occupied, and the symmetry factor adjusts the high temperature form of
the partition function (which is derived by taking a sum over all states}, to account for this restriction. In
either case the symmetry number is equal to the number of indistinguishable orientations of the molecule.
More formally, it is equal to the order of the rotational subgroup of the molecule. (See Chapter 12.)

The temperature is always high enough for the mean translational energy to be %kT, the equipartition
value {provided the gas is above its condensation temperature). Therefore, the molar constant-volume
heal capacity for translation is C;m = %R.

Translation is the only mode of motion for a monatomic gas, so for such a gas Cyy =32R=
12.47 J K~ mol™". This result is very reliable: helium, for example has this value over a range of
2000 K.

When the temperature is high enough for the rotations of the molecules to be highly excited (when
T > r) we can use the equipartition value k7 for the mean rotational energy (for a linear rotor) to obiain
Cyv.m = R. For nonlinear molecules, the mean rotational energy rises to %kT, 50 the molar rotational heat
capacity rises to %R when T 3 6r. Only the lowest rotational state is occupied when the temperature
is very low. and then rotation does not contribute to the heal capacity. We can calculate the rotational
heat capacity at intermediate temperatures by differentiating the equation for the mean rotational energy
{eqn 17.26a for a linear molecule). The resulling expression is plotted in Figure 17.10 of the texL
Because the translational contribution is always present, we can expect the molar heat capacity of a gas
of dialomic molecules (C;E_m + Cﬁ_m) to change from %R to %R as the temperature is increased above Og.

Molecular vibrations contribute to the heat capacity, but only when the temperature is high enough for
them to be significantly excited. For each vibrational mode, the equipartition mean energy is k7. 50 the
maximum contribution to the molar heat capacity is R. However, it is very unusual for the vibrations to
be so highly excited that equipartition is valid, and it is more appropriate to use the full expression for the
vibrational heat capacity which is obtained by differentiating eqn 17.28. The curve in Figure 17.12 of the
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texl shows how the vibrational heat capacity depends on temperature. Note that even when the temperat-
ure is only slightly above the vibrational temperature, the heat capacity is close Lo its equipartition value.

The total heat capacity of a molecular substance is the sum of each contribution (Figure 17.13 of the
text). When equipartition is valid (when the temperature is well above the characteristic temperature of
the mode T 3 8)y) we can estimale the heal capacity by counting the numbers of maodes that are active.
In gases, all three translational modes are always active and conlribute %R 1o the molar heat capacity. If
we denote the number of active rotational modes by v (so for most molecules at nonnal temperatures
vl’g = 2 for linear molecules, and 3 for nonlinear molecules), then the rotational contribution is %vER.
If the temperature is high enough for v, vibrational modes to be aclive the vibrational contribution to
the molar heat capacity is v R. In most cases vy = 0. It follows that the total molar heat capacity is

Cym = %(3 + v + 2R

The pair distribution function is a statistical method for studying the complex properties of liquids.
It is especially important because, being a Fourier transform of the intensity distribution of scattered
radiation, the function relates directly to experimental observation. Equations, which use both the pair
distribution function and the intermolecular potential, have been derived for the computalion of both
equilibrium thermodynamic properties and the equation of state for model liquids [17.50 and 17.51].
However, the computational demands of these equations make the Monte Carlo method and methods
of molecular dynamics attractive. The Monte Carlo method randomly displaces molecules and accepts,
or rejects, the new molecular configuration with a Boltzmann factor test, which has a potential energy
change exponent. Thermodynamic properties are compuled as a weighted average of the properties of
acceptable configurations. Molecular dynamic methods use Newtonian equations of motion and model
intermolecular potentials to compute the motion of molecules as a function of time. Since molecular
rotational and vibrational motion occur on the order of 10'* Hz, the time increment for calculations is
taken to be about 1073 5 (a femtosecond, fs). Properties are computed as time averages.

Solutions to exercises

Cvm = (3 + v + 23R [17.35]
with a mode active if T > Oy

(@) O3: Cvm=5(3+3+0)R=3R [experimental = 3.7R]
(b) CaHg: Cym = 3(3+3+2x )R =4R [experimental = 6.3R]
(€) CO2: Cvwn =13 +2+0)R= 3R [experimental = 4.5K]

Consultation of the Herzberg references in Further reading, Chapters 13 and i4, turns up only one
vibrational mode among these molecules whose [requency is low enough to have a vibrational lemper-
ature near room temperature. That mode was in C;Hg. corresponding Lo the “internal rotation” of CHa
groups. The discrepancies between the estimates and the experimental values suggesl that there are vibra-
tional modes in each molecule that contribute to the heal capacity—albeit not to the full equipartition
value—that our estimates have classified as inaclive.

The equipartition theorem would predict a contribution to molar heat capacity of 1R for every
translational and rotational degree of freedom and R for each vibrational mode. For an ideal gas.
Com = R+ Cym. So for CO,
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With vibrations

7.5

Crm/R=3(3)+2(}) = Bx4-6=65 and y == =[L1S

Without vibrations Cy m/R = 3 (l) +2 (l) —25 and y =20 ={140
E 2 2 2.5

37.11 J mol~!K!
Experimental y = =

(37.11 — 8.3145) J mot~'K-!

The experimental result is closer to that obtained by neglecting vibrations, but not so close that vibrations
can be neglected entirely.

E17.3(b) The rotational partition function of a linear molecule is [Table 17.3]

R_ 06950  T/K _ (0.6950) x (T/K)
T o (Bfem~-1) 2 x 1.4457

g = 0.2404(T /K)

(a) At25°C: R = (0.2403) x {298) =|71.6
(b) At250°C: ¢R = (0.2403) x (523) =126

E17.4(b) The symmetry number is the order of the rotational subgroup of the group to which a molecule belongs
(except for linear molecules, for which o = 2 if the molecule has inversion symmetry and | otherwise).

(a) COs: full group Degh; subgroup Cz; hence o =

(b) Oj3: full group Cay; subgroup &z, 0 =

(c) SO3: full group Dsy; subgroup (E, C3, C2,3Ca} 0 = IEl
(d) SFg: full group O; subgroup O; o =

(e) AlLClg: full group Dag; subgroup D;; o =

E17.5(b) The rotational partition function of a non-linear molecule is [Table 17.3]

1.0270  (T/K)*? 1.0270 x 2983/2
R = = =17) =|5837]
1 g (ABCJem=)12 7 (2) x (2.02736 x 0.344 17 x 0.293 535)1/2 (o =2] -

The high-temperature approximation is valid if T > g, where

_ he(ABC)!/
B k
_ (6.626x 10734 T ) x {2.998x 10! cm 5™) x [(2.027 36) x (0.344 17) x (0.293 535) cm—7)'7?

1381 x 10~ JK~!
=10.8479 K

E17.6(b) g® = 5837 [Exercise [7.5(b)]

fr
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All rotational modes of SO; are active at 25°C; therefore

3
UR —uRoy=ER = SRT
R

E
S§]=T+Rlnqk

= 3R+ RIn(5837) = | 84.57 J K~ mol~!

(a) The partition function is

q= Z C_E"‘“l‘:/kT = Z ge_Elcch/kT

slates fevels

where g is the degeneracy of the level. For rotations of a symmetric rotor such as CH3CN, the energy
levels are £; = he[BS(J + 1) + (A — BYK?] and the degeneraciesare gy g = 2(27 + 1) if K # 0
and 2} + 1 if K = 0. The partition function, then, is

o0 4
g=1+4 2(21 + 1)e~heBIU+1/RT] (1 +2 Z e—[hcm—a)x!/m)
I=l k=1

To evaluate this sum explicitly, we set up the following columns in a spreadsheet (values for A =
528cm~!, B=52412cm™!, and T = 298.15K)

J J(J + 1) 2.’ + 1 g—hCBJ'(J-I-l)fkT Jterm e—th(A—B)KI/fL'T] K sum J sum

0 0 1 1 I 1 1 1

1 2 3 0.997 8.832 0.976 2953 93832
2 6 5 0.991 23.64 0.908 4710 3347
3 12 7

0.982 43.88 0.808 6381 77.35

82 6806 165 418 % 1073 0079 g x 1077 11.442 749895
83 6972 167 327 % 1070 0.062 2x 10772 11.442 7499.01

The column labeled X sum is the term in large parentheses, which includes the inner summmation.
The J sum converges (to 4 significant figures) only at about J = 80; the X sum converges much
more quickly. But the sum fails to take into account nuclear statistics, so it must be divided by the

symmetry number (¢ = 3). At 298 K, g® =1{2.50 x 10* |. A similar computation at T = 500 K
yields g% =|5.43 x 10% |

(b) The rotational partition function of a nonlinear molecule is [Table 17.3 with B = C]

r_ 10270 (/K 10270 (T/K)*/?
© o (ABC/em™H1/2 3 (5.28 x 0.307 x 0.307)!/2

At298 K, R = 0.485 x 298%/2 =|2.50 x 10°
At 500 K, gR = 0.485 x 500%/2 =|5.43 x 10

The high-temperature approximation is certainly valid here.

g = 0.485 x (T/K)*/?
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E17.8(b) The rotational partition function of a nonlinear molecule is [Table 17.3]

1.0270 (T/K)¥* 1.0270 x (T/K)y/?
R_ 10 (T/X) - 0270 x (T/K) = 1,549 x (T/K)Y?
o (ABC/ecm=3)U/2  (3.1752 = 0.3951 x 0.3505)1/2

a) A125°C, ¢R = 1.549 x (298)%/? =|7.97 x 10°
(b) AL100°C, ¢f = 1549 % (373)¥% = 1.12 x 10*

E17.9(b) The molar entropy of a collection of oscillators is given by

q

Um —Um (0) NA (E)

Sm=T+kan[l7.I]= +RlIng
hcv By 1 1
where (&) = - =keﬁ‘v/T — [17.28], ¢ = T iy [17.19]

and By is the vibrational temperature hev/k. Thus

_ R(BY/T)

AL _e—tIT
m = T C | Rin{l —e )

A

A plot of 8§\, /R versus T /8y is shown in Figure 17.1.
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The vibrational entropy of ethyne is the sum of contributions of this form from each of its seven normal
modes. The table below shows results from a spreadsheel programmed to compute Sy, /R at a given
temperature for the normal-mode wavenumbers of ethyne.

T=298K T =500K
pfem™' Ov/K T/  Sm/R T/v  Sw/R
612 880 0336 0216 0.568 0.554
729 1049 0.284 0.138 0.479 0.425

1974 2839 0.105 0.000 766 0.176 0.0229
3287 4728 0.0630 0.000002 17 0.106 0.000 818
3374 4853 0.0614 0.00000146 0.103 0.000652
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The total vibrational heat capacity is obtained by summing the last column (twice for the first two entries,
since they represent doubly degenerate modes).

(a) AL298 K, Sy, = 0.708R = | 5.88 J mol~! K~ |

(b) At500K, Sy = 1.982R =/ 16.48 I mol~! K~ |

E17.10{(b} The contributions of rotational and vibrational modes of motion to the molar Gibbs energy depend on
the molecular partition functions

Gm — Gn(0) = —RT Ing [17.9; also see Comment to Exercise 17.6(a)]

The rotational partition function of a nonlinear molecule is given by

R (kT 3/2( P )1/2_ 1.0270 { (T/KP N7
T =5\ e ABC T o ABC/cm—3

and the vibrational partition function for each vibrational mode is given by

v 1 hetv 14388 (V/em™1)
= — h = —_=
9= e Wherel = (T7K)
1.0270 298 172
At298K R = =3.35 x 10°
8K 4 2 ((3.553) x (0.4452) » (0.3943)) X

and

GR — GR(0) = —(8.3145] mol'K™") x (298 K) In3.35 x 10°
=—20.1 x 10> I mol™' =|—20.1 kJ mol™!

The vibrational partition functions are so small that we are better off taking

Ing' = —In(1 —e /Ty m e~/

]nq}v’ P e—[1.4388(1110)/298| = 4.70 x 10"3
In q; P e—[l.4388(705)/293| =13132 x 10*2

Ing) ~ e14388(1042)/298) _ g 53 103

50 Gy —GY(0) = —(8.3145Tmol 'K ') x (298 K)

*x (470 x 1077 +332 x 1072 +653 % 107

=—110Imol™" =| —0.110 &J mol ™!
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! for T states

E17.11(b) g= Zgje_ﬂsj’ where g = 25+ 1) x 2 for I1, A, ... states
j r L I

The 2 ¥ term is triply degenerate (from spin), and the I'A term is doubly (orbitally) degenerare. Hence
g=3+2""

At400 K

= 2848

fe = (14388 cm K) x (7918.1 cm™')
- 400K

Therefore, the contribution to G, 1s

Gmn — Gn(0) = —RT Ing [Table 17.4 for one mole]
—RT Ing= —(8.3141 K_I mo]_l) x (400K) x In(3 +2 x e—28.43)

= —(8314TK ™' mol™") x (400K) x (In3) =|3.65 kJ mol~!

COMMENT. The contribution of the excited state is negligible at this temperature.

E17.12(b) The degeneracy of a species with § = % is 6. The electronic contribution to molar entropy is

Un — Un(0
Sm=’“—Tﬂ(—)+Rlnq =Rlng
(The term involving the internal energy is propottional to a temperature-derivative of the partition func-
tion, which in turn depends on excited state contributions to the partition function; those contributions
are negligible.)

Sm=(8.31453mol ™' K™") In6 =| 14.9 Y mol~! K~!

E17.13(b) Use Sy = Rlns [17.52b]

Draw up the following table

¢ m p a b ¢ o m p

5 16 6 6 3 6 6 2 6 6 3 6 1
So/R 0 18 18 18 1.1 18 18 07 18 18 1.1 18 0

where a is the 1,2,3 isomer, & the 1,2,4 isomer, and ¢ the 1,3,5 isomer.

E17.14(b) We need to calculate

s \Y & (T9Br)5° (*'B
k=TT Zm) xe-sm/mT (17,54p) = ImCDrdint Brz) —ao/ar
;o\ Na g2 (Br*'Br)?
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Each of these partition functions is a product
Im=dmd 4 9"
with all g = 1.

The ratio of the translational partition functions is virtually | (because the masses nearly cancel; expli-
cit calculation gives 0.999). The same is true of the vibrational partition functions. Although the
moments of inertia cancel in the rotational partition functions, the two homonuclear species each have
o =250
¢ (PBr2)g" (*'Bra)
R(79R8! =025
gR ("Bt Br)?

The value of AEp is also very small compared with RT, so

K ~[025]

Solutions to problems
Solutions to numerical problems

Ae =g =gupB[1542]
g=1+ e Pe

x2 et

Crm/R= 57 [Problem 17.1}, x =2upBp [g = 2 for ¢lecirons]
Therefore, if B =5.0T,

() x (9274 x 107*JT Y x (50T) _ 672

B (1381 x 10-BJK- "y x T T T/K

(a) T = 50K, x = 0.134, Cy = 4.47 x 1073R, implying that Cy = 3.7 x 1072J K~! mol~". Since
the equipartition value is about 3R [vf = 3,v§ = 0], the field brings about a change of about

(b) T =298 K,x =226x10"2, Cy = 1.3 x 107*R, implying that Cy = 1.1 mJ K=" mol~', achange
of about| 4 x 1073 per cent |

Question. What percentage change would a magnetic field of 1 kT cause?
g=14+5"% (g =2+1]
e=E(J=2)—E(J =0)=61cB [E=hcBJ(J+ 1))

U—U@Q _ lag _ See?*

N g 1+5e#e

dUm

— _pg2{8Um
Cvm = —kp ( % )V [17.31a]
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Se2ple=P¢  180(hcBB)*e~0icBP

Cvm/R = 5 5P = (1 5 50-0WBh )2
hcB 1
e = 1.4388cm K x 60.864 cmn™ = 87.571 K
Hence,
1.380 x 100e~>234 K/T
CV.rn/R =

4+ 5e—525.4 K/T) X (T/K)?'

We draw up the following table

T/K 50 100 150 200 250 300 350 400 450 500
Cvm/R 002 068 140 135 1.04 076 0.56 042 032 0.26

These points are plotted in Figure 17.2.

10 |-
>
—
E
=
]
0.5
0
Figure 17.2
qT
P17.6 Im 9561 x 1072 x (T/K)*? x (M/g mol~")*/? [Table 17.3)
A
= (2.561 x 1072) x (298)%2 x (28.02)%% = 5.823 x 10°
0.6950 T/K 0.6950 208
R
- = = 51.81 [Table 17.3
o @fem Ny 2z 19987 (Table 17.3]
1
A - —_—
¢ =TT [Table 17.3]
et 6.626 x 107 15 % 2.998 x 100 em s™! x 2358 cm™!
wherey = — =
k 1.381 x 10-B3 JK~!
v 1
SO ' = ———zozor = 1.00

] — e—3392K/298K

=3392K
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Therefore

Im

A

= (5.823 x 10%) x (51.8T) x (1.00) = 3.02 x 10®

3 5
Um — Um(0) = ERT +RT = ERT [T > 6r,6R])

Hence

Un — Un(0) g
Sﬁl — m T m + R (]n AT|.: + l

= §R+R[ln3.02 x 10% 4+ 1) = 23.03R =| 191.4J K=" mol~!

The difference between the experimental and calculated values is negligible, indicating that the residual
entropy is negligible.

The vibrational temperature is defined by
kBy = hev,
so a vibration with 8y less than 1000 K has a wavenumber less than

Ky (1381 x 10" J K~y x (1000K)
e~ (6.626 x 10739 Js) x {2.998 x 10! cms—1)

r}:

=6952cm™"

There are seven such wavenumbers listed among those for Cgn: two Ty, a Tay, 2 Gy, and three Hy. The
number of mmodes involved, v§;, must take into account the degeneracy of these vibrational energies

vy =203) + 103) + 1(4) + 3(5) =[ 28]
The molar heat capacity of a molecule is roughly

Cvm = 3B+ V5 + 23R [17.35] = 13 +3+2 x 28)R = 31R = 31(8.3145 Jmol ' K™

={258 1 mol~!' K~!

_ 4m(CHD3)gp(DCh

—BAED [17.54; N factors cancel]
g (CDy)gy, (HCI

Use partition function expressions from Table 17.3. The ratio of translational partition functions is

gm (CHD3)gn(DCD (M(CHD3)M(DCI) M 019.06 x 3746\ 0,064
gL (CDy)gT (HC) — \ M(CD4)M (HCI) ~\20.07 x 36.46 T

The ratio of rotational partition functions is

g*(CHD3)¢*(DCl) _ o(CDy) (B(CDy)/em™ )Y/ 2BHC /em™!
gR(CDYGR(HCH ~ o (CHDs) (A(CHD3)B(CHD;)?/cm~-3)!/2B(DCl)/cm !
12 26337 % 10.59
= =06.24

3 X (263 < 3280)172 x 5.445
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The ratio of vibrational partition functions {call it Q for convenience below) is

0= q¥(CHD3)q"(DCl) 4(2993)¢(2142)g(1003)°¢(1291)>¢(1036)%(2145)

4" (CDy)q" (HCI) 4(2109)g(1092)24(2259)3¢(996)3¢(2991)

1
| — e~ 14388 /(T/K)

where ¢(x) =

We also require AEg, which is equal to the difference in zero point energies

AE 1
1—0 = 5[(2993+2142 +3 x 1003 +2 x 1291 4- 2 x 1036 + 2143)
ic

— (2109 + 2 x 1092 + 3 x 2259 + 3 x 996 4 2991)} cm ™!
= —1053 cm™!

So the exponent in the energy term is

AEp he  AEy 1 1.4388 x (—1053) 1515
—BAEj=—— = —— X — X = - =
kT k he T T/K T/K

Hence,

K = 0.964 » 6.24 x QetVPIATIK = g 2 0et+1313/(T/K)

We can now evaluate K(on a computer), and obtain the following values

T/K 300 400 500 600 700 800 900 1000
K 945 273 132 83 61 49 42 37

The values of K are plotted in Figure 17.3.
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Solutions to theoretical problems

P17.12 A Sackur—Tetrode type of equation describes the translational entropy of the gas. Here

2rm
Bh?

where X is the length of the surface. Therefore,

qT _ (27rm) Xy — 2rmo o = XY

1/2
a =qiq witth:( ) X [16.15]

i BHz
Un — Um(0) = _Na (B_q) = RT [or by equipartition]
q \dp
Un — Un(0
Sm:'-"—-—-—-'-"‘-"-n m( )+R“nqm_lnNA+l)[qm=%]

2
€4m € qm
=R+Rln|— |} =RIn| —
* n(NA) n(NA)

27?62)"0'"1 o
| rin (zEmem) [, 2]
R2NAB n

Call this molar entropy of the mobile two-dimensional film Sg;. The molar entropy of condensation is
the difference between this entropy and that of a (three-dimensional) gas:

ASm = Sm2 — Sm3.

The three-dimensional value is given by the Sackur—Tetrode equation

2em\"? Vv
Sm=RIn{?(=>=]) —
m "[c Wg ) Na

2 2 2 1/2
So 8 = i 0T D oa e (22 (£2) )

eS12(2mm/h2B)32 x (Vm/Na) Vo 27 me

P17.14 Begin with the partition function of an oscillator (Table 17.3)

1
1 —e™*

g= , x=9FV=hcﬁ,B=hw,8

Expressions for internal energy and other thermodynamic functions are in Table 17.4.

ot aee d o Nhwe™ | Nhw
—)V_ N(I—e™) gl —e™! = =

l —e™T ef -1

Cy = (ﬂ) = —kﬁzg [17.31a] = —kﬁzﬁwa—u
v 88 ax

et

- oIV S (R PIVS PR
_k(ﬁhw)N{(er_l)z}_ kN (e"—l)Z]
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Nh
H — H(0) = U — U(0) [¢ is independent of V] = | — w)l
e —
U—-u@ Nixe™
s=Y=YO . RIng = 1 Z__\_ — NkIn(l — &™)

=Nk (,‘_ — In{l — e‘-“))
et — |

A—A)=G—-G(0)=—nRTIng = | NkT In(l —e™)

The functions are plotted in Figure 17.4.

[ — U(0)]/ Nhw

0.01 0.1 1 10 100

Figure 17.4

N e—EJ/kT e—E;/kT
PI7.36 () b = =&

N = gl q

For a linear molecule g; = 2J + | and &; = hcBJ(J + 1) [Sections 13.5(c) and d)]. Therefore,

Ny o o5+ l)e—thJ(J-i-l)/kT
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(b) Jimax occurs when dNy/df = 0.

dN N d [ heBiti 41}
! =——|(2J+1)e ( X )] =0
g dJ

s
heB
2— (2Jmux + 1) (F) (ZJmux + 1) =0
2T\ 2
24 1= —
max. + (th)

kT \'7? 1
Joax = | —— =—_
A (2th) 2

{€) Jmax = 3 because the R branch J = 3 — 4 transition has the least transmittance. Solving the
previous equation for T provides the desired temperature estimate,

hcB
T % — (s + 1)

1 2
(6.626 x 1073 Js) x (3.000 x 108ms~") x (10.593cm™!) x ( 0 Cm) x (7)2
m

—~

2(1.38066 x 10-23JK1

(d) For a spherical rotor g; = (2J + 1)? and &5 = heBJ(J + 1) [Sections 13.5(c) and (d)]. Therefore

Ny o (21 + 1)2e—thJ(J+l)/.ch

Jmax occurs when d¥; /dJ = 0.

dN; N d 5 _(thJl(J+I3)
="l T =0
o~ ga W
heB
22 man + 1) % 2 = Qnax + 12 (;—T) (2max + 1) =0

Divide both sides by 2J 04 + 1:

heB
4—(2J D{—1)=0
( ITli!.X+ ) (kT)

akT\ /2
ﬁ)

P2 AN
T\ heB 2

2JI‘IHIJ( +1= (
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N NKT '
P17.18  (a) U— U= —__" - Z e P = "4 =|nRT (g)
q

au a8 (3U) 1 2 [N —Be.
Cy — =—{ = =—---— — geBe
77 )y = 5r\3), = w5 | ¢ 27

1 ] X
x | - Zsjze"ﬁef 7 (—g) Zsje"ﬂsl
Lq j j

2 [ipn t (e

'kzrlz; ¥
q 2

_U=-um q _ q eq
S_———+ann(ﬁ+])_ w1+

kT
(b) At5000K, == 3475cm™!. We form the sums
c

q= Ze—,ﬂs,- o | g e2I8T0/34TS | 3 -28T0/3475 4 _ | 0167
7

N Sy _ PN B

7= - e T J e

I
= (—3475) x {0+ 218507 2185073475 1 3. 91870 2870345 ...y = 0.1057

2
G2 - (5 e

2
= (ﬁ) x [0 + 218502 ¢~21850/3475 4 3, 218707 ¢~ 21870/3475 .1} = 0.6719

The electronic contribution to the molar constant-volume heat capacity is

cin=s{t- (3]

0.6719 0.1057 2
—1 1 -1 1
= 8.314 | - =54 1
8.314J K mo X[]‘ 167 (l. 167) I 541 1K mo
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The derivation of

_kNB?

c
YT

46

given in P17.19 is completely general. That is, it makes no use of the fact that the energies and degen-
eracies in question were those of a linear rotor. The derivation and therefore the result can apply equally
well to a nonlinear rotor, to electronic energy levels, or to the vibrational energy levels involved in P17.20.

To evaluate contributions of individual excitations to the heat capacity, we re-write ¢(f) in notation
associated with vibrational energy levels

£() = ql D ole(v) — () gy )e MW - % S le(v) — e(vy) e Ae )]

[N v

where the levels are nondegenerate, or at least are treated as such because vibrational modes are treated
one by one. The energy levels are

e(v) = hevv = 8ykv  so  Be(v) = 6yv/T.

The total heat capacity and the contributions of several transitions are plotted in Figure 17.5. For vibra-

tion, one can compute g and the total Cy /R analytically, using expressions from Tables 17.3 and 17.5
respectively:

1 Cvm (Ov\> e /T
q = —— ﬂnd _— = —_— —_—
] —e—®/T R T/ (1 —e Ty

/ total
0.8
0.6
/ 0,1
0.4

0.2

Cy /R

/8 Figure 17.5

RT\'/? G
Cs = (}/_) » ¥V = C;;.m ’ Cp.m =Cym+R
m
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(a) Cvm = ARG+ vg +2v%) = JRB+2) = IR

(3%

+R=1R

=

Cp.m =

7 1.40RT\ /2
y = - =140; hence|c; =
5 M

(1.40RT)'/2
s =
M

1 5
(b} Cvm = ER(3 +2) = ER’ y = 140,

(C) CV,m = %R(S + 3) = 3R

4 4RT\ '/?
Cﬂ.l‘l] = 3R + R = 4R, Y = 3, Ce = (W)

For air, M = 29g mol™!, T &~ 298 K, y = 1.40

12
1.40 4%k 1=t
(‘ ) x 2481 mo )) _[50ms ]

20 x 10~ mol™!

Solutions to applications

P17.24 (a) The heat capacity is
AE
Cy = —kp> (—) [17.31a].
e/ y

First express E as a function of §:

_ Nee Pe
T i peBe
C ak l N
Hence —- = [ =} = —— x (—Ne2ef&) — —E, x (—ee—P2)
“kpr "\ ), T Ve P (0 +e Pe)

Collecting terms over a common denominator yields

2,2,— 2.2,—¢/kT
(Lo Be ey KVBe"e Fe _ RN(IJKT)%e : Z
(1 +eFe)? (1 + e—e/kTy2

kN B?ee—fe
Cy=—"T——
{1 4+ e—Fe)2
Multiply through by e2¢/4T fe2¢/4T

_ KN(1/kTY et
V= @/ T 1 )2

The desired expression uses molar rather than molecular quantities:

N=Ns, R=Nak, and e/k =en/R
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R{&m/RT)2een/RT

s¢ Cym = (1 + /T2
{b) Itis convenient to plot Cy,, (in units of R} as a function of x where x = kT /e = RT /ep,.

Re~l/x

CV.]TI = "_2(1 + e_l/".)z

The molar heat capacity is plotted in Figure 17.6.

0.5

04 1—/

LN

Cy m/R
o

)
D

0 0.5 1 1.5 2 2.5 3
x=RTle,, Figure 17.6

(c) The above plot indicates a maximum heat capacity at about 0.43 R at value for x of about 0.4. The
X — Y trace feature of mathematical software may be used 1o find the more accurate value for x
of 0.417. A formula for the maximum is determined by the criterion that dCy p /dx = 0 at the
maximum.

d(Cvm/R) _ d { e !/
T dx

dx X2(1 +e~lix)?
B e—l/‘,l: 2e—l/.r 2e~2/.r
- ‘\.4(] +e—I/.r)?_ _‘.3(] +e—I/.t)?_ x*(l +e—]/.r)3
—l/jx
_ € -l o —1/xy _ ma—lix
_,t4(l+e“/-")3ll e (1 4e7!/M) — 271
e—l/_r

= el m 2 (20071

Thus, Cv y is a maximum when x = xpy satisfies the equation

I — vy — (1 + 2-1'111'.1:()3_]/'\."1“ =0

This is a transcendental equation so it is necessary to solve for xpy. with a2 numerical method.
XImax May be numerically determined with the numeric solver application of the modern scientific
calculator. The Given/Find solve block of Mathcad can be used or a graph containing plots of
S@)=1l—xandg) = (1+ 2x)e 1 may be prepared. The intercept of f(x) and g(x) determines
Xmax. Alternatively, expand e~'/* in a Taylor series around v = 0.4 within the above equation,
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discard second order and higher terms (linearize}, and solve for x. All methods yield xgp,x = 0.417.
The following presents a Mathcad solution

X=2 Estimate for following Solve Block
Given 1-2.x—(1+2.x)-eV¥=0 x>0 x:=Findx)
x =0.417

P17.26 The standard molar Gibbs energy is given by

(=]

To
G® — G2(0) =RTIn i]—l‘ where 1“;—: - %qRqVqE [17.53]

Translation {(see Table 17.3 for all partition functions):

gu
dm_ _ 2561 x 1072(T/K)*/? (M /g mol~')*/?
A

2

=2.561 x 1072 x (200.0)*/2 x (102.9)*/2 = 1.512 x 107

Rotation of a nonlinear molecule:

e LRI\, w12 10270 (T/K)*?
2=t ()" -
he ABC o (ABC/cm—3)1/2
10 —1y13/2
_ 120 [(200.0) x (2.998 x 1019 cm s~ 1] 2900 x 10°
2 [(13109.4) x (2409.8) x (2139.7) x (108s~1)3/cm~3]!/2
Vibration
l = 1.004
—l4388(u/cm-1) (—1.4388(753)) -
l—exp —_—
200.0
o 14388(542)) = Lo
P 2000
o 14333(310) = 1120
P\™ 2000
q) = = 1.670
4 e 14383(127)
P\ 2000
v _
5 = —14388(646) = 1010
2000
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v_ I
T = | —1.4333(419))
¢ 200.0

= 1.052

6
q" =[]a =2037
i=l

Putting it all together yields
G2 — G5(0) = (8.3145 Imol™' K™') x (200.0K)
x In[(1.512 % 107) x (2.900 x 10*) x (2.037) x (1)]

G® — G2 (0) = 4.576 x 10* Jmol™! =[45.76 kJ mol ™!



8 Molecular interactions

D18.2

D184

D18.6

Answers to discussion questions

When the applied field changes direction slowly, the permanent dipole moment has time to reorientate-—-
the whole molecule rotates into a new direction—and follow the field. However, when the frequency
of the field is high, a molecule cannot change direction fast enough to follow the change in direction of
the applied field and the dipole moment then makes no contribution to the polarization of the sample.
Because a molecule takes about | ps to turn through about 1 radian in a Aluid, the loss of this contribution
to the polarization occurs when measurements are made at frequencies greater than about 10" Hz (in the
microwave region). We say that the orientation polarization, the polarization arising from the permanent
dipole moments, is lost at such high frequencies.

The next contribution to the polarization to be lost as the frequency is raised is the distortion polarization,
the polarization that arises from the distortion of the positions of the nuclei by the applied field. The
molecule is bent and stretched by the applied field, and the molecular dipole moment changes accord-
ingly. The time taken for a molecule to bend is approximately the inverse of the molecular vibrational
frequency, so the distortion polarization disappears when the frequency of the radiation is increased
through the infrared. The disappearance of polarization occurs in stages: as shown in Justificarion 18.3,
each successive stage occurs as the incident frequency rises above the frequency of a particular mode of
vibration.

Aleven higher frequencies, in the visible region, only the electrons are mobile enough to respond Lo the
rapidly changing direction of the applied field. The polarization that remains is now due entirely to the
distortion of the electron distribution, and the surviving contribution to the molecular polarizability is
called the electronic polarizability.

There are three van der Waals type interactions that depend upon distance as 1/7%; they are the Keesom
interaction between rotating permanent dipoles, the permanent-dipole—induced-dipole-interaction, and
the induced-dipole—induced-dipole, or London dispersion, interaction. In each case, we can visualize the
distance dependence of the potential energy as arising from the 1/r? dependence of the field (and hence
the magnitude of the induced dipole) and the 1/r3 dependence of the potential energy of interaction of
the dipoles (either permanent or induced).

The increase in entropy of a solution when hydrophobic molecules or groups in molecules cluster together
and reduce their structural demands on the solvent (water) is the origin of the hydrophobic interaction
that tends to stabilize clustering of hydrophobic groups in solution. A manifestation of the hydrophobic
interaction is the clustering together of hydrophobic groups in biological macromolecules. For example,
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the side chains of amino acids that are used to form the polypeptide chains of proteins are hydrophobic,
and the hydrophobic interaction is a major contributor to the tertiary structure of polypeptides. At first
thoughi, this clustering would seem to be a nonspontaneous process as the clustering of the solute resulls
in a decrease in entropy of the solute. However, the clustering of the solute results in greater freedom
of movement of the solvent molecules and an accompanying increase in disorder and entropy of the
solvent. The total entropy of the system has increased and the process is spontaneous.

Solutions to exercises

A molecule that has a center of symmetry cannot be polar. SO3(D3p) and XeF4(Dyp,) cannot be polar.
(see-saw, Cay)} may be polar.

= (u} + 43 + 2u1pacos8)'/? [18.2a]
= [(1.5)2 + (0.80)> + (2) x (1.5) x (0.80) x (cos 109.5°)]'/*D =
The components of the dipole moment vector are
pe = qini = (4e) x (0) + (=2¢) x (162 pm)
1 + (—2¢) x (143 pm) x (cos 30°) = (—572 pm)e
and py = 3 giyi = (de) x (0) + (=2€) x (0) + (=2¢) x (143 pm) x (5in 30°) = (=143 pm)e

The magnitude is

=l + 1) = (=570)* + (—143)))'7 pm e = (590 pm)e

= (590 x 10~ m) x (1.602 x 10°°C) ={9.45 x 10 Cm |

! —143
and the direction is 0 = tan—' XX = tan™! 5_}2—ng =| 194.0° | from the x-axis (i.e. 14.0° below the
i —572pme

negative y-axis).

The molar polarization depends on the polarizability through

Ny I
Pyp=— —_—
™= e (“ MY

This is a linear equation in T~' with slope

N2 (9£0km

12
m= 2 50 M= N ) = (4.275 x 107 ¢ m) X (m/(m3 mol_]I'())'/2
A

and with y-intercept

N 3e0h
b="A% 0 @ =2 441l x 1075 C2m? I b/ (m? mol ™y
380 NA
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Since the molar polarization is linearly dependent on T~!, we can obtain the slope m and the intercept b

Pw2—Pmi _ (7574 —71.43) cm® mol ™!
7 -1y (3200K)7! - @21.7K)7!

m= =572 x 10° em® mol ™' K

and b =Py —mT~ ' =7574cm? mol™! — (5.72 x 10> em® mol ™" K) x (320.0K)™'

= 57.9cm® mot™!

It follows that

= (4275 x 1072 Cm) x (5.72 x 10732 =323 x 10-3°cm|

and

o= (@411 x 103 CPm? 1) x (579 % 107%) =[255 x 1009 2 m? 11|

E18.5(b) The relative permittivity is related to the molar polarization through

g—1  pPny 20+1
=——= 0 &g=——0,

g +2 M 1-C
1.92gem™3) x (32. 3 mol ™!

C=( 92gem™) x { lﬁlcm mol™") 0726

85.0gmol™

2 x (0.726) + |

& = L.); —ig97

1 -0.726

E18.6(b) The induced dipole moment is

1 = oe =4mega’s

= 47(8.854 x 10712571 C?m Yy x (222 x 107¥ m?) x (150 x 10° vm™h

=371 x1073%Cm

E18.7(b) If the permanent dipole moment is negligible, the polarizability can be computed from the molar
polarization

Naa 3e0Pm
—_— 500 a=—
3g9 Na

m

and the molar polarization from the refractive index

oPm  &—-1 nl-| 3eoM [0l — l)
= = a-: ~
M  &+2 nt+2 Nap \n2+2

3 x (8.854 x 1072171 C2m— !y x (65.5gmol™}) (1.6222 - 1)
o =
(6.022 x 1023 mol™") x (2.99 x 108 gm=3) 1.6222 4-2

={3.40 x10~%° C2 m?)-!
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E18.8(b) The solution to Exercise 18.7(a) showed that
(350M) (nrz—l) ; ( M ) (nf—l)
o= x| = or o = x| =
Pia ng+12 4 pNa "y +2
which may be solved for n, to yield

"+ 2’ \? M
" = £ +2o with g’ =
B —a 4rpoNa

B (3) x (72.3gmol™!)
 (4m) x (0.865 x 106 gm3) x (6.022 x 1023 mol” ')

_ 1/2
. (33.14+2 x 2.2) _[T19]

g =3314x 107¥m’

33.14 - 2.2

E18.9(b) The relative permittivity is related to the molar polarization through

& —1 PP c 2041
= = SO Er =
& +2 M T 1-c¢

The molar polarization depends on the polarizability through

Na u? oNA , o u?
P, = oA Ll C= 4 Lol
"= 3 (a taur) ° 3eoM \ 0% Ty
_ (1491 kgm™3) x (6.022 x 10** mal™!)
T 3(8.854 x 10-121-1C2m 1) x (157.01 x 10~} kgmol™")

x (47:'(8.854 x 10721 ' m Yy % (15 x 1078 m?)

(5.17 x 107¥ Cm)? )
3(1.381 x 10-23JK-1) x (298 K)

2(0.83)+ 1
C=083 and & = % =

M 18.02 g mol ™!
8.02gmo 5 = 1.803 x 1077 m? mot ™!

E18.10(b v, o= = sl
) " p T 9994 x 103gm-

2yVe  2{(7275x 1072Nm™!) x (1.803 x 107 m* mol™!)
PRT (20,0 x 10=%m) x (8.314JK~" mol™') x (308.2K)
= 5119 x 1072

p = (5.623kPa) "% —[592 kPa

E18.11(b) V= s pghr = % (0.9956gcm_3) x (9.807ms—2) x (9.11 x IO_Zm)

2
1000 kg m~>
x (0.16 x 1073 m) x (—"_T)
gcm

=|7.I2 x 107 I Nm™! ]

333
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2y (2) x (2239 x 107N m™1)
o = Y ir3m = ={2.04 x 10°P
Pin = Pou = - 11838} 220 % 10" m 04 x 107 Pa

Solutions to problems
Solutions to numerical problems

The energy of the dipole —u 2. To flip it over requires a change in energy of 2¢01¢. This will occur
when the energy of interaction of the dipole with the induced dipole of the Ar atom equals 2,2, The
magnitude of the dipole—induced-dipole interaction is

2
V= _#1‘3"16 [18.24] = 211& [after flipping over]
e
6 M1y 6.17 x 1073 Cm) x (1.66 x 10730 m*)
Y= —

T 2mage (2m) x (8.854 x 10-21-1C2m~) x (1.0 x 103 Vm—!)
=1.84 x 10772 m?

r=24x10""m=[240m]

COMMENT. This distance is about 24 times the radius of the Ar atom.

P MY & E’_l) and Py = 2N '+N"‘JLZ [18.14and 18.15 with = 4mreger’]
= J— = — o . an . Itho = amTenl
m= % £ + 2 M 3AY T geokT 0

The data have been corrected for the variation in methanol density, so use p = 0.791 g cm™* for all
entries. Obtain p and ¢’ from the liquid range (¢ > —95°C) results, but note that some molecular
rotation occurs even below the freezing point {thus the — 110 °C value is close to the —80°C value).

Draw up the following table using M =32.0 g mol .

6/°C -8 =50 -20 0 20

T/K 193 223 253 273 293

1000

—_— 5.18 448 3.95 3.66 341

T/K

e 57 49 42 38 34
—1

& 0.949 0941 0932 0925 0917

& +2

Poltem® mol™") 384 38.1 377 37.4 37.1

P is plotted against 1/7T in Figure 18.1.

The exwrapolated intercept at 1/T = 0 is 34.8 (not shown in the figure) and the slope is 72} (from a
least-squares analysis). it follows that

, 3Py (atintercept) (3) x (35.0 cm® maol™h)
o = =
A7 Na (4m) x (6.022 x 102 mol™")

o= (1.282 x 1072 D) x (721)"/? (from Problem 18.3] ={0.34 D

= | 138 x 1072 e’
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P /lem® mel™")

32 3.6 4.0 4.4 4.8 5.2
1000 T/K Figure 18.1

The jump in & which occurs below the melting temperature suggests that the molecules can rotate while
the sample is still solid.

4 , N 1l
Py = —Nao + Al

3 SeokT [18.15, witha = 4rega’]

Draw up the following table

T/K 3843 420.1 4447 4841 5220
1000/(T/K) 2602 2380 2249 2066 1.916
Py /(cm? mol™h) 574 535 501 468 43.1

The points are plotted in Figure 18.2.

The extrapolated (least-squares) intercept is 3.44 cm® mol™!; the slope is 2.084 x 107

u=(1.282 x 1072 D) x (slope)'/? [Problem 18.3] =|1.85 D

, _ 3Pm(atintercept) (3 % (3.44cm? mol™!)
47 Na T @) % (6.022 x 108 mol™ !

=| 1.36 x 10~ em?

COMMENT. The agreermnent of the value of y with Table 18.1 is exact, but the polarizability volumes differ by
about 8 percent.

An clectric dipole moment may be considered as charge +¢ and —g separated by a distance / such that

(1.77D) x (3336 x 107Cm/D) _

h 197 x 107°C
299 x 10-17m

=gl so g=pfl=

In units of the clectron charge

g/e = (197 x 107 C)/(1.602 x 107'9C) =[0.123
4/
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63

60 A
T
g 55
&
2
;E 50 1

45

40 1 1 1 L 1 ] 1

1.9 20 21 22 23 24 25 26 27
1000 K
T Figure 18.2

Solutions to theoretical problems

P18.10 (a) Consider the arrangement shown in Figure 18.3(a). There are a total of 3 x 3 = 9 Coulombic
interactions at the distances shown. The total potential energy of interaction of the two quadrupoles

is
q142 1 2 l 1 2 1
V=—— -— -2 - -
471'80)([(1" r—l+r—21) (r+l r+r-—!
+ 1 2 +1
r+2t r+i r
q192 2 l 1 t
= l———+— -2 -2
47r£0r><[( 1—A+1—2A) (1+A tTa

+ l 2 +1 ).—l<<1
l+2x 14+2a Ty

"l Figure 18.3(a)

Expand each term using

1
J4+x

=l—x4x - 4+xt—.
and keep up to A* (the preceding terms cancel). The result is

6 4
v D92 qi1g2!
dmegr wegrs
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Define the quadrupole moments of the two distributions as

o =q, O = gal?

TTEQ r5

_ 6010 y ]

and hence obtain | V

{b} Consider Figure 18.3(b). There are three different distances, r, r’, and »". Three interactions are at
r, four at ', and two at +".

Ao
r'=(r2+12)'/2=r(1+f)”2wr(l+? —?+---)

=t Ay P =+ a2 g 22 w0 4

qi gz

o

EEA

e O :
]
o

247 l<<r

{

o
I i
|

O

41 q Figure 18.3(h)

Q192 1 2 1 2 4 2 i 2 1
y = 142 SO [N, A _—i4-
4 eg % |:(r ¥ + r rFoor + r + FAL + r
29142 3 4 1 2q1q2 roor
= === et === 3—d4—+—
(47reo “\r r + r dmegr * ( r + r”)

Substituting for r' and r” in terms of r and A from above we obtain (dropping terms beyond A*)

4 1
v—vel3- . - [V0=24142]
(l+%i~5§-) (14212 =229 dmregr

Ao
=v0[3—4(1—?+§+7)+(1—2x2+2x4+4x4)}

The terms in A® and A? cancel leaving

3 9 9122t 9qqal® | 9
Ve ve (62 )1t = Syt = 29u@2x _ Sl Qi |
2 4 egr 4 eqr’ 4regrd
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P18.12 The dimers should have a zero dipele moment. The strong molecular interactions in the pure liquid
probably break up the dimers and produce hydrogen-bonded groups of molecules with a chain-like
structure. In very dilule benzene solutions, the molecules should behave much like those in the gas

and should tend to form planar dimers. Hence the relative permittivity | should decrease |as the dilution

increases.

P18.14 An ‘exponential-6" Lennard-Jones potential has the form

V =de [Ae‘”c’ _ (T—)ﬁ]

and is sketched in Figure 18.4.

The minimum occcurs where
dv —A a8
— =de| —e "+ | =0
dr o r!

which occurs at the solution of

.
a — ée—r/a

r 6

Solve this equation numerically. As an example, when A = o = 1, a minimum occurs at r =

Figure 18.4

P18.16 Refer to Figure 18.5(a).

The scattering angle is 8§ = 7 — 2a if specular reflection occurs in the collision (angle of impact equal
to angle of departure from the surface). For b < Ry + Rz, sine = b/(R) + Ra).

g - H—Zarcsin(ﬁ) b< R+ R
0 b>R + R
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0 0.2 0.4 0.6 0.8 1.0 1.2

bR +R5) Figure 18.5(b}

The function is plotted in the Fig 18.5(b).

P18.18 The interaction is a dipole—induced-dipole interaction. The energy is given by eqn 18.24:

miey  [(27D)3.336 x 107 CmD™HP(1.04 x 107¥ m?)

V=— =
dreqrt 4r(8.854 x 107211 C2m~1)(4.0 x 109 m)®

V=|-18x10¥1=—1.1x10"3mol™!|

COMMENT. This value seems exceedingly small. The distance suggested in the problem may be too large
compared to typical values.

Selutions to applications

P18.20 (a) The table displays computed electrostatic charges (semi-empirical, PM3 level, PC Spartan) of
the DNA bases, modified by addition of a methyl group to the position at which the base binds
to the DNA backbone. (That is, R = methy! for the computations displayed, but R = DNA backbone
in DNA.) See the first set of structures for numbering.

{b) and {c) On purely electrostatic grounds, one would expect the most positively charged hydrogen
atoms of one molecule to bind to the most negatively charged atoms of another. The figure below
depicls hydrogen atoms as black lines, and has thicker gray lines for the most positively charged
hydrogens (those with a charge of at least 0.200); they also happen to be the hydrogens bound to elec-
tronegative atoms. The figure also has light gray type for the atoms with the greatest negative charges
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{more negative than —0.400), with a gray ball on the most negative carbon atoms. In principle, then,
any of the thick gray lines of one molecule can line up next to any of the atoms in light gray type of
its bonding partner. In practice, the carbon atoms are not good binding sites for steric reasons.

R-Guanine

R-Adenine R-Thymine R-Guanine R-Cytosine

atom charge atom charge atom charge atom charge
Cl 0905 ClI 0885 ClI 0720 Cl 0.961
amino N —-0.656 OofCl —(.580 OofCl —0.524 amino N —0.709
amino H' 0288 C2 —0.554 N2 —0.473 amino H' 0.291
N2 —0914 C2methyl C 0.180 Hof H2 0.233 N2 —0.501
C3 0785 C2methylH —0.003 C3 0.794 (3 0.993
Hof C3 —0.020 C3 0.173 amino N —0.693 Qof C3 —0.609
N4 —0.835 HofC3 0.111 amino HY 0.288 N4 —0.286
Cs 0.639 N4 -0.390 N4 —0.757 methyl C* 0.119
N6 —0.183 N4 methyl C* 0211 C5 0.325 methyl H*¢  0.017
methyl C* 0.113 N4 methyl H*+  0.002 N6 0.079 G5 0.205
methyl H*f  0.022 C5 0.836 methylC* —0.008 HofC5 0.103
C7 0.320 Oof C5 —0.596 methyl H*t 0043 C6 —0.684
Hof C7 0.056 N6 —0.540 C7 0.130 HofCé 0.174
N8 —0.584 Hof N6 0264 Hof C7 0.086
C9 —0.268 N8 —0.470

c9 —0.146

* part of R group, so not really available for hydrogen bonding in DNA
1 wable displays average charge of atoms that are chemically equivalent

(d) The naturally occurring pairs are shown below. These configurations are quite accessible sterically,
and they have the further advantage of multiple hydrogen bonds.

\

R-Adenine N / R-Guanine 0

Rie g Eieo
/K R-Thymine N/L R-Cytosine
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See above

The hydrocarbons in question form a homologous series. They are straight-chain alkanes of the
formula C,Hap42, or R—H where R = C, Hap41. Draw up the following table:

n 1 2 3 4 5
T 0.5 1.0 1.5 2.0 25
The relationship here is evident by inspection: 7 = n/2, so we predict for the seven-carbon

hydrocarbon in question:

n=17/2=[35]

The plot, shown in Figure 18.6, is consistent with a linear relationship, for R? = 0.997 is close to
unity. The best linear fit is:

log K = —1.95 — 1.497,

so|slope = —1.49 | and 1 intercept= —1.95 |.

-3.0

=35

apled o
—04 -02 00 02 04 06 08 10 Figure18.6

If we know m for the substituent R = H, then we can use the linear SAR just derived. Our best
estimate of 7 can be obtained by considering the zero-carbon “alkane™ Ha, whose radical H ought
to have a hydrophobicity constant # = 0/2 = 0. This value yields

logK = —1.95—149(0) = =195 so K = 107" =|1.12 x 1072,

Note: the assumption that R = H is part of the homologous series of straight-chain alkanes is a
resonable but questionable one.
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Answers to discussion questions

FirsL, try to understand why different molar mass averages might give different numerical values. Poly-
mers are unlike small molecules in that all small molecules of the same species have nearly identical
masses. Polymers vary widely in mass because they can vary in the number of monomeric units they
contain. Depending on how a polymer is synthesized and purified, it is entirely possible for one macro-
molecule to contain 2 monomer units and another 100. We call a polymer sample polydisperse if there
is a large variation in mass among the molecules of the sample; conversely, a sample is monodisperse if
its range of masses is narrow.

Even for small molecules, the melar mass is an average (over isotopic variants); however, the details
of the averaging process make a negligible difference when the distribution of molar masses is narrow.
But the different averages can give significantly different answers for highly polydisperse samples. Why
should experiments yield one average or another?

The differences in averages are in the weighting factors. We see that the weighting factor for M, is
the number of molecules that have a particular mass and (from eqn 19.2) that the weighting factor in
M is the mass fraction of a sample that has a particular mass. Different measurement techniques yield
different weighting factors because they are sensitive o different factors (or, more accurately, different
combinations of factors). The intensity of a mass spectrometry peak, for instance, is proportional to
the number of molecules of a given mass. Some techniques, like light scattering, are more sensitive (o
the size (volume) and shape of particles, and some, like sedimentation, are more sensitive to the mass.
(Discussions in the text reveal, however, that the measurements capture a complicated function of size,
shape, mass, and number.)

Experimental techniques for the study of polydisperse polymer solutions are sensitive to a wide range of
properties. Osmometry, measuring a colligative property, is sensitive to the number of molecules N; that
have molar mass M;. Consequently, average osmotic properties depend upon the number average molar
mass. Light scattering depends upon molecular size and shape, which indirectly depend upon mass, so
weight average molar mass becomes important. Other mass averages become important when the tech-
nigue is sensitive to intermolecular attractions and repulsions, molecular entanglements, gravitational
and centrifuge effects.

(a) AS is the change in conformational entropy of a random coil of a polymer chain. It is the statist-
ical entropy arising from the arrangement of bonds, when a coil containing N bonds of length /
is stretched or compressed by n/, where 1 is a numerical factor giving the amount of stretching
in units of {. The amount of stretching relative to the number of monomer units in the chain
isv=n/N.



D19.6

D19.8

MATERIALS 1: MACROMOLECULES AND AGGREGATES 343

(b) Rms is one of several measures of the size of a random coil. For a polymer of N monomer units
each of length /, the root mean square separation, Ry, is a measure of the average separation of the
ends of a random coil. It is the square root of the average value of R?, calculated by weighting each
possible value of R? with the probability that R occurs.

(c) Rp. the radius of gyration, is another measure of the size of a random coil. It is the radius of a thin
hollow spherical sheli of the same mass and moment of inertia as the polymer molecule.

All of these expressions are derived for the freely jointed random coil model of polymer chains which is
the simplest possibility for the conformation of identical units not capable of forming hydrogen bonds
or any other type of specific bond. In this model, any bond is free to make any angle with respect
to the preceding one (Figure 19.15 of the text). We assume that the residues cccupy zero volume, 50
different parts of the chain can occupy the same region of space. We also assume in the derivation of
the expression for the probability of the ends of the chain being a distance ! apart, that the chain is
compact in the sense that » <« N. This model is obviously an oversimplification because a bond is
aclually constrained to a cone of angles around a direction defined by its neighbor (Figure 19.16). In
a hypothetical one-dimensional freely jointed chain all the residues lie in a straight line, and the angle
between neighbors is either 0° or 180°. The residues in a three-dimensional freely jointed chain are not
restricted to lie in a line or a plane.

The random c¢oil model ignores the role of the solvent: a poor solvent will tend to cause the coil to
tighten; a good solvent does the opposite. Therefore, calculations based on this model are best regarded
as lower bounds to the dimensions of a polymer in a good solvent and as an upper bound for a polymer
in a poor solvent. The model is most reliable for a polymer in a bulk solid sample, where the coil is
likely to have its natural dimensions.

The formation of micelles is favored by the interaction belween hydrocarbon tails and is opposed by
charge repulsion of the polar groups which are placed close together at the micelle surface. As salt
concentration is increased, the repulsion of head groups is reduced because their charges are partly
shiclded by the ions of the salt. This favors micelle formation causing the micelles to be larger and the
critical micelle concentration to be smaller.

Using symbols that relate to surface properties (G(o),5(g),n5{a), I's, etc.} and the symbol ¢ for the
surfactant concentration in the bulk solution,

df = —=Sd7 + Vdp + pdo + 3 rydry  (Justification 19.7)

as a
(—) = — (_y) {Maxwell Relationship)
9o T aT P

This equation does not give a definitive indication of whether entropy changes are posilive (increase) or
negative (decrease) when surface area increases at the interface, or when I > 0, because the partial
derivartive of the surface tension with respect to temperature may be either positive or negative. However,
the partial of the surface tension (also called interfacial tension) with respect to temperature is usually
negative so it seems most likely that the entropy of the interface increases when the surface area increases.
The equation for the enthalpy change with surface changes is

H=GC+TS

oH G a8 d
)= @) 7@, ()
oo T.pay do Tpa do T.pay aT Ton
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Surface tension is always positive and the partial with respect to temperature is usually negative so the
enthalpy change is positive for increasing surface area.

Although it is difficult to find general statements concerning thermodynamic properties of surfactants
at solution interfaces, a surfactant that forms an ideal solution with one phase and is insoluble in the
second phase is expected to exhibit a negative entropy change upon adsorbing at the solution interface.
This would happen because the surfactant molecules are relatively disordered in the bulk solution. Upon
adsorption, the molecules become self-aligned and ordered. With spontaneous adsorption the free energy
of adsorption is negative and, since AG = AH — TAS for an isothermal process, we expect that AygoH
should be exothermic to the extent that A,y H < TA g8 < 0.

Solutions to exercises

The number-average molar mass is (eqn 19.1)

— 1 [3 % (62) + 2 x (78)] kgmol ™! 3

The mass-average molar mass is {eqn 19.3)

My = = kg mol™! = _69 kg mol
SNM; | 3x (6D +2x(18) o0 §mo

For a random coil, the radius of gyration is (19.33)

Ry = (N /6)'/* so N = 6(Ry/1)? = 6 x (18.90m/0.450nm)* = | 1.06 x 10*

(a) Osmometry gives the number-average molar mass, so

= _ MM, + NoM> _ () [M)YM) A+ (/M) Mo _ my + ma
M AN m/M) A+ em/Ma) T m /M) + (/M)
100
= £ [assume 100 g of solution] =| 8.8 kg mol~!
( 25¢ ) N ( 5g )
22 kg mol ™! 22/3 kg mol ™"

(b) Light-scattering gives the mass-average molar mass, so

— M M 25 22 75 22/3
M“,:ml L+ 2=( ) % 22) + (15) x (22/ )kgmol'lz 11 kg mol™!
ny + nm 25475

The formula for the rotational correlation time is

_ 4Jm3r1
TONuT
7(H20,20°C) = 1.00 x 107 kgm™' s™'[CRC Handbook]

4 x (4.5 x 107%m)? x 1.00 x 103 kgm™' s~ -
= =19.4x 10785
3x 1.381 x 10-23JK™! x 293K _
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The effective mass of the particles is
megr = bm = (1 — pvg)m [19.14] = m — pvgm = v, — vp = v(pp — p)
where v is the particle volume and p, is the particle density. Equating the forces
myfpro? = fs = 6mnas [19.15,19.12}

or v(pp - p)rm2 = %J’Tﬂs(pp - p)rm2 = 6 nas

Solving for s yields

2a%(py — pYrew?
=
S

i 3

s a5 - 2)2 az \- —

Thus, the relative rates of sedimentation are 2 M ( 2) M
Pp — £

51 at(pp — ) a1

The value of this ratio depends on the density of the solution. For example, in a dilute aqueous solution

with p = 1.01 gem™> | the difference in polymer densities matters in that the factor involving densities
is significantly different than 1:
52 (1.10 — 1.01),

2 = (84 = =37
1 ®4) (1.18 — 1.01},

s

In a less dense organic solution, for example a dilute solution in octane with p = 0.71 gcm™2, the
density difference has a smaller effect, for the factor involving densities is closer to 1:

52 4{1.10—-0.71)7
=384y ——F =59
51 @4 (L1B—0.71)

In both cases, the larger particle sediments faster.
The molar mass is related 1o the sedimentation constant through eqns 19.19 and 19.14:

7= SRT _ SRT
T BD T (1= pv)D

where we have assumed the data refer to aqueous solution at 298 K.

= (746 x 1073 5) x (8.3145JK~" mol™") x (298K)
"l - (1000kgm ™) x (8.01 x 10-*m3kg™")] x (7.72 x 10~ mZs~1)

=|120kgmol™!
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E19.7(b) See the solulion to Exercise 19.5(b). In place of the centrifugal force merr> we have the gravitational
force meirg. The rest of the analysis is similar, leading to

2a¥(pp — p)g  (2) x (15.5 x 1079 m)? x (1250 — 1000) kgm™> x (9.81 ms™?)
y= =
9n 9) x (8.9 x 10-4kgm~'s=1)

=[147x 107" ms"!

E19.8(b) The molar mass is related to the sedimentation constant through egns 19.19 and 19.14:

SRT _ SRT
bD (1 — pv)D

z|

Assuming that the data refer to an aqueous solution,
(5.1 x 10713 5) x (8.31451 K~ mol™") x (293K) -
= =56 kg mol
[1 —£0.997 gem™3) x (0.721 em3g~1)] x (7.9 x 10~ m?s~")

E19.9(b) In a sedimentation experiment, the weight-average molar mass is given by (eqn 19.20)

X

G RT e e M (r — r)bw?
YT R Db a a 2RT
This implies that
Mo ribw?
In¢c = ——— + constant
2RT

so the plot of In ¢ versus r2 has a slope m equal to

— 2% (83145JK"mol™') x (293K) x (821 em™?) x (100cmm”')?
YT = (1000kgm3) x (7.2 x 10~ m3kg )] x [(1080s~") x (27))?

=|73.l x 10% kg mol~! |

E19.10(b) The centrifugal acceleration is

a=rw?‘ soa/g =rw2/g
2
(5.50cm) x [2m x (1.32 x 10°s7")]
= =(3.86 x 10°
a/s (100cm m-1) x (9.81 ms-2)
E19.11(b) For a random coil, the rms separation is [19.31]

Roms = NY21 = (1200072 x (1.1250m) = 38.97 nm

E19.12(b} Polypropylene is —(CH{CH3)CHz)—p, where ¥ is given by

N = Mpolymer _ l74kgmol_]

= = =4.13 x 10°
Mmonomer 421 x 103 kg mol~!
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The repeat length { is the length of two C-C bonds. The contour length is [19.30]

Re= NI = (413 x 10% x (2 x 1.53 x 10™%m) =

The rms seperation is [19.31]

Res = INV2 = (2% 153 x 1070 m) x (413 x 1052 =197 x 10 8 m |=19.70m

Solutions to problems
Solutions to numerical problems

From egqn 19.20, we can relate concentration ratios to the molar mass

In ol Hwbwz(r,2 - r_%) _ 27r2M“,bv2(r|2 - r-_})
2 2RT - RT

and hence

2

(83147 K=" mol~'} x (298K) x (In’5) i
T \2p2 x (1 x 102kgmol~') x (1 —0.75) x {7.02 — 5.02) x 104 m?

= 58 Hz, or

Question. What would the concentration gradient be in this system with a speed of operation of
70000 rpm in an ultracentrifuge?

We need to determine the intrinsic viscosity from a plot of ((n/no) — D/(c/{gdm™?)) against ¢,
extrapolated to ¢ = 0 as in Example 19.5. Then from the relation

(7] = KMy, [19.25]

with K and @ from Table 19.4, the viscosity average molar mass My may be calculated. 5/ values are
determined from the times of Aow using the relation
n ! P

!
= — x — &= — [19.24]
m o po o

noting that in the limit as ¢ approaches 0 the approximation becomes exact. As explained in Example 19.5,
[n] can also be determined from the limit of (1/¢) In (n/ng) as ¢ approaches 0.
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We draw up the following table

cf(gdm™3) 0.000 222 500 800 1000
1fs 208.2 248.1 303.4 371.8 4213
/70 —  LI192 1457 1786 2024

100 [(1/n0) — 11 863 915 982  10.24

c/(gdm™)

In (n/10) — 01753 03766 0.5799 0.7048
1001

M{’;—") — 789 752 724 105
cf({gdm™)

The points are plotted in Figure 19.1.

)
L

1= 100{(s/np) — 1}/{¢/(gdm ™)}
I = 100 In{(n/ny)}/{e/ (g dm™)}

0 2 4 6 8 10
¢/{g dm=3) Figure 19.1

The intercept as determined from the simultaneous extrapolation of both plots is 0.0822 dm? g~

— 1/0.74
My [\ '/ 0.0822dm3g"! -
¥ = (?) = =|2.1x%x10

gmol™! 9.5 x 10-8dm? g-!

P19.6 The relationship (eqn 19.25) between ] and My can be transformed into a linear one
In[nxl=InkK + aln My

so a plot of In{#] versus In My will have a slope of a and a y-intercept of In K. The transformed data and
plot are shown below (Figure 19.2)

My /(kgmol™") 100 198 106 249 359 860 1800 5470 9720 56800
In])/(cm® g~ ") 890 119 281 440 512 776 1139 195 275 667
InMy/(kgmol™!) 230 299 466 552 588 676 7.509 861 9.18 10.90
In[n)/(cm® g 219 248 334 378 394 435 4749 527 562 6500
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? T B T T I h
i i y=10028+049999x I |
Ppr _ i
G e
E |
=
P N BT [P S
P IS e S S —
2 1 1 1 : | ]
2 a 6 8 10 12

In My Figure 19.2

=12 ;o)1 /2

Thus @ =|0.500 |and K = 928 ¢y g=! k=112 mol'/? = | 273em’ g ke

Solving for My yields

2
— )\ /e 100cm? g~! 3 1
My =[] = = =|(1.34 x 10° kg mol
M ( K 2.73cm3 g~ kg~ "2 mol'? | £

See section 5.5(e) and Example 5.4.

IT RT
— == (1 +B_i + - ) [Example 5.4, with [T = pgh]
c M M,

Therefore, to determine M, and B we need to plot J7/¢ against c. We draw up the following table

c/(gdm™3) 1.21 2.72 5.08 6.60
(f1/c)/(Pajgdm™?) 11 118 129 136

The points are plotted in Figure 19.3

140
—~ 130 -

120 &

(I/c)/(Pa/g dm~

110

Figure 19.3

349
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A least-squares analysis gives an intercept of 105.4 and a slope of 4.64. It follows that

=
~

= 1054Pag™ ' dm® = 1053 Pakg™' m?

|

n

—  (8314JK 'mol™") x (293K
and hence that M, = ( _mo )lx( 9 K) =|(23.1kgmol~!
105.4Pakg™"' m?

The slope of the graph is equal to RTB/Hﬁ, SO

RTB
=4.64Pag > dm® = 4.64 Pakg "> m®

_:,l_'_

n

23 1 kgmol 12 x (4.64 Pakg™* mb
Therefore, B — o kgmol )7 x @6dbakg "m7) o, 5 o

(8.314JK Tmol™") x (293K)

The glass transition temperature Ty is the temperature at which internal bond rotations freeze. In effect,
the easier such rotations are, the lower Ty. Internal rotations are more difficult for polymers that have
bulky side chains than for polymers without such chains because the side chains of neighboring molecules
can impede each others’ motion. Of the four polymers in this problem, polystyrene has the largest side
chain (phenyl) and the largest Ty. The chlorine atoms in poly(viny] chloride) interfere with each other’s
motion more than the smaller hydrogen atoms that hang from the carbon backbone of polyethylene.
Poly(oxymethylene), like polyethylene, has only hydrogen atoms protruding from its backbone; however,
poly(oxymethylene) has fewer hydrogen protrusions and a still lower T}, than polyethylene.

Solutions to theoretical problems

SLunit(n/p) = Sl unit(n)/S1 unit(p) = (Pa)/(kgm ) = (Nm~2)/(kgm ™)
= (kgm s )/(kgm ™) = m’s”

We begin by simplifying Poiseuille’s formula with the assumptions that p» = pg, p) = p2 + Ap where
Ap < pa, and Ap2 <« 2p> Ap so the second order term may be discarded.

ﬂ _ (p% - p%) Tt _ [(pg + Ap)z —p%] ard
dt = 16Impy 16 Inpy

(P +2p8p+ Ap* —p3)nr?  Ap e
16 Inpo 8in

When gravity is the driving force for fluid flow, Ap = Fgmvi,y/(m'z) = rrrgl/(m'zl) = pgl where g is
the gravitational acceleration and dV/dr = V/t = a1/t

el _ pglm"’
=

o0

in

(B8

[} r
l{—p- = 8_] = constant
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Dividing by the identical expression for a reference liquid gives eqn 19.24,

{n/pdto _ (n/p) 1

oot (/e 1o

This shows that the drainage time is governed by the kinematic viscosity (n/p).

P19.14 Eqn 19.26 gives the probability of finding the end of an N-step one-dimensional random walk at a
distance nf from the start,

2 1/2 R
P={-=- —rr/ZN-
(nN) )

We generalize to a continucus version:

2N,
dr, = (H) e /Wy

Physically, it is more fundamental to talk of the probability of finding the end “at” a given distance
x = n,/ rather than a given number of steps away. dx = Idn,. Hence, the probability of finding the
end of the polymer in an interval between . and x + dx is

2 I/Z 2 3
P, = (—) e M dx,
’ TN

Building our three-dimensional chain from one-dimensional random walks, we have

6
N2

3/2 2 el 2 2
dP.dP.dP. = ( ) e TITHTHONINE grdydy
{(Note that in this step we have replaced N with ¥ /3. This allows us to continue to regard N as the total

number of units in the polymer, so the number of steps in each dimension, divided equally among this
number, becomes & /3.) Now change variables to spherical polar coordinates:

el

P=x2+y"+22  and  dydydz = * sin 8drdfde,

6
N2

3/2 ] »]
so dP,dPydP, = ( ) e 3N Gin gdrdode.

To find the probability of finding the ends of the polymer at a distance between r and r 4 dr regardless
of angle, integrate over the angles and divide by 8, as stated in the problem, to restrict the integration to
positive x, ¥,z

| 6 2 322N 2 i o
—_— —— I/ - - - i
fposilivc dPdPydP; = 3 (IN!Z) e redr _[0 sin BdeD d¢p

XXz
directions 172
_ EH 6 / e IrANE 2
T8 a2
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1/2
Defining a = (W) allows us to complete the derivation:

a 3 3 2
_ _ 322N 2
f rive APxQPydP: = f(r)dr where f(r) = | dm (”l ) e 2|

NMND
dircctions

A simple procedure is to generate numbers in the range | to 8, and to step north for a | or 2, east for 3
or 4, south for 5 or 6, and west for 7 or 8 on a uniform grid. One such walk is shown in Figure 19.4.

Figure 19.4

Roughly, they would appear to vary as N'/2

The volume of a spherical molecule of radius « is

The smallest distance possible between centers of two such molecules is 2a, so the excluded volume is

4w (2a)?
Vp = 3 = Svm]
1 167 16
S0 B=>Navp = 4Navmol = TNAagﬂ = TNAyJRg

N2
(@) Rg=(€) [ [19.33]

16
3 x 63/2

= (4.22 x 10% mol™") x [(154 x 1072 m) x (4000)'/%)* =

so B=

y3PNYEN, =[4.22 x 102 mol! x (IN'/2)} |
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() Ry = 2'% x Ry(free) [19.36]

so B =237 x B(free) =[ 1.19 x 10%* mol~! x (w'ﬂ)ﬂ

=2%2 % (0.39m> mol~!) =

Given that G = U — TS — f and dU = TdS + 1dl, we take the differential, obtaining

dG =dU — TdS — 8dT — Idt —1d/
= TdS + tdl — TdS — S4T — /dr — 1dl =| —-SdT — Ilds

SinceA=U TS5, wehave A =G+ 1/,
so dA =dG +dl +1dr = =8dT — Ide + 1dl + tdt = | —8dT + 1d!

Since dA and dG are both exact differentials
as at as a!
— ] =—\|= and — ] ==
al ) aT J, aJr aT /,
Since dU/ = TdS + rd! [given],

alu a8 a1
_) =T (_) 4+ =|=-T\|==1] +1|[Maxwell relation above]
alt Jr al Jr aT /,

Solutions to applications

353

Molecular mechanics computations with the AMBER force field using the HyperChem package are
reported below. The value of the total potential energy will vary between different force fields, as will
the shape of the potential energy surface. The local energy minimum at ¢ = —179.6° and ¢ = —4.1% is
found to have a potential energy equal to 28.64 kJ mol~! when R = H. This value is used as a reference to
calculate energy differences (A E) on the potential energy surface. AE values give the relative stability of
different conformations with higher values indicating energetically unstable conformations. Similarly,
AE values were calculated with respect to the local energy minimum at ¢ = —152.3° and ¥ = 163.2°

when R = CHs.

initial optimized
o/ ¥/ P/° ¥/ EkImol™!)  AE/(kImol™!)

(a)R=H 75 —65 —176.0 8.3 28.765 0.126
180 180 180 180 32,154 3.515

63 35 —-1796 —4.1 28.639 0.000

{(b) R =CHj 5 =65 54.5 19.7 46.338 7.531
180 180 —1523 163.2 38.807 0.000

65 35 529 241 46.250 7.443

The computations were set up by using the software’s “model build” command, that is, initially setting
default values for bond lengths and angles except for the specified initial values of ¢ and . Care
must be taken to build the proper chirality at the central carbon when R = CHj3. Then the constraints
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were removed, and the entire structure was allowed to relax to a minimum energy. Not all of the
initial conformations relaxed to the same final conformation. The different final conformations appear
to represent local energy minima. It ought not to be surprising that there are several such minima in even
a short peptide chain thal contains several nearly free internal rotations. It is instructive to compare the
all trans (¢ = yr = 180°) initial conformation in the R = H and R = CHj3 cases. In the former, neither
angle changes, but the resulting structure is not the lowest-energy structure. In the latter, the methyl
group appears to push the planes of the peptide link away from each other {albeit not far) due to steric
effects; however, the resulting energy is lower than that of the other conformations examined.

Two of the initial conformations of each iolecule converge to the same energy minimum. These energy
wells are rather broad and the exact angle at which the computation stops within the minimum depends
upon details of convergence criteria used in the iterative methodology of the software as well as details
of the force field. Both sets of computations also found a second local energy minimum.

An alternative method for studying the energy dependence on ¢ and ¥ involves a method like that
specified above but with the AMBER computation performed at fixed values of both angles. Figure 19.5
summarizes a set of computations with —180° < ¢ < 180° and ¢ = 90°. To characterize the energy
surface, one would carry out similar calculations for several values of .

60 -
L]
L]
55
L]
-

o~ )
= L
E 50
2 . *
w

45

- »
4
40
-180  -135 -90 -45 0 45 90 135 180
o Figure 19.5

Assume the solute particles are solid spheres and see how well Ry calculated on the basis of that
assumption agrees with experimental values.

Re/nm = 0.05690 x {(vs/em® g !) x (M/gmol HY3 | [P19.17]
g

and draw up the following table
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Migmol™") vg/(em® g7)  (Ry/nm)eae  (Ry/nm)exn

Serum albumin 66 x 10° 0.752 2.09 2.98
Bushy stunt virus 10,6 » 10° 0.741 11.3 12.0
DNA 4 % 100 0.556 7.43 117.0

Therefore, serum albumin and bushy stunt virus resemble solid spheres, bul DNA does not.

Rearrange eqn 19.20 to yield

355

1 4 M b’ r?

= const. + ———
ne 2RT

. 5 . i wbw" .

s0 a plot of In ¢ against = should be a straight line of slope . We construct the following table
ricm 5.0 5.1 52 53 54
cfimg em™7) 0.536 0284 0.148 0.077 0.039
r2l(cm?) 250 260 270 281 29.2
in(c/mg cm™*) —0.624 1259 —1911 -2.564 —3.244

The points are plotted in Figure 19.6. The least-squares slope is —0.623.

Therefore

In(c/(gdm™))

25 26 27 28 29 30
2 el -
r*fem” Figure 19.6

Hw(l - pvs)wz
2RT

= —0623cm~% = —-0.623 x 10" m~2

It follows that

_ (=0.623 x 109°m~2) x (2) x (8.314JK~'mol™!) x (293K) _
¥ (1) — (1001 gem ) x (111Zem? gH) x [(2) x (3225~ 2B

The sedimentation constant § must first be calculated from the experimental data (eqn 19.16).

5 1 dinr

re?  w? dt (P19.1]
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Therefore, the slope of a plot of In r against 1 will be related to S. We draw up the following table.

/s 0 300 600 900 1200 1500 1800
ricm 6.127 6.153 6.179 6206 6.232 6.258 6.284
In(rfcm) 1.813 1.817 1.821 1.826 1.830 1.834 1.838

The least-squares slope is 1.408 x 1073571, so

slope 1.408 x 1073 57! 13
s = - =5.14x 10" s =[5.145
@ [(27) x (50 x 103/605))2 x s

(5.14 x 10713 5) x (8.314TK~ ' mol™!) x (293K)
(1 —0.998]1 x 0.728) x (7.62 x 10~ m?25)

— SRT
ThenM, = -5[19.19] =

=|60.1 kg mol™!

We need to determine the ratio of the actual frictional coefficient, f, of the macromolecule to that of the
frictional coefficient, f, of a sphere of the same volume, so that by interpolating in Table 19.3 we can
obtain the dimensions of the molecular ellipsoid.
_ kT (1381 x 1072 JK™!) x (293K)
f—E_ 7.62 x 10~ m2s~!

=531 x 107" kgs™!

Vi = (0.728cm’ g1 x (60.1 x 10° gmol™!) = 43.8 x 10° cm® mol ™!

=438 x 10”2 m’ mol™!

13 2.3 g1\ /3
Then,a:(wm) _((3)><(4.38x10 m3 mol )) — 2 59mm

4mNa)  \ (4m) x (6.022 x 1083 mol™ )
fo=6man = (6m) x (2.59 x 1077 m) x (1.00 x 102 kgm ™' s™'y = 4.89 x 107 kgs~!

hich gives S _ 331 1.09
w —=_— =1,
ICNENES & = 289

Therefore, the molecule is either prolate or oblate, with an axial ratio of about 2.8 (Table 19.3).

(a) Stkp = In(W)
AS/kp = In{Weircular) — In{Wideal chain)

Weircular 18 the configuration weight of the DNA molecule that has jeined ends (7 =0) while Wigeal chain
is the configuration weight for the molecule chain for which no segment has a constraint and two
possible configurations (right-pointing and left-pointing, see Justification 19.3). Wideal chain for a
molecule of N segments equals 2.

N!
(N/2Y (N/2)!

Weircular =
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In (Weircular} = In (N — 21n {{NV/2)}

=In(2m)'"? + (N + %) In(N) = N

N 1 N N
_ i/2 A MYy _ N P
2 lln(?_rr) + (2 + 2) In (2) 2 ] (Stirling’s approx.)

1
2\2
=m{2"{—
" (nN)

1
7
ASfkg =1In {2V (i) —In(2™)
aN

2
AS/kg =In| —
S/kg n(R'N)

Since 2/ N < |, entropy decreases in forming the closed circular (c¢)DNA. The following graph,
Figure 19.7, shows the dependence of AS upon N with a plot of f(N') = In(1/N)'/? (i.e. AS/kp —
In(2/m)7?).

] —

0 20 40 60 80 100
N Figure 19.7

(b) (i) A continuous, normalized Gaussian function, which is also called the normal distribution or the
bell-curve, has the form: £(x)} = (1/2ro ) /2)e®—+D*/20% where —00 < x < o0. {x) is the
mean value of x and ¢ is the standard deviation. It can be shown that o2 = (x2} — (x)2.
The discrete energy distribution for a twisted ccDNA molecule is:

pi = B /g [16.7] = e~P* /g where k is an empirical constant and i = 0, +1, £2, ...

Because it has an exponent in i2, which is comparable to x? in the above Gaussian function, the
energy distribution has the form of a Gaussian function with a maximum value that is centered
upon / = 0. The standard deviation of the discrete Gaussian distribution is found by comparing
the two equations. It is o = (1/28k)'/?

(ii} The following MathCad worksheet plots the energy distribution at several values of the unitless
temperature Ty, = 1/8k = kg T /k. Bar plots (histograms}, Figure 19.8(a), are appropriate for
discrete distributions in which the argument takes on specific values only (=0, =1, £2, £3,.. ).
Even though the argument is not defined for non-integer values of i, the last graph, Figure 19.8(b)
presents line plots with the understanding of discrete values. This reduces the visual confusion
of overlapping bars from multiple plots. The plots show that at higher temperatures there are
fewer molecules in the lowest energy state ; = ( and a greater number of molecules in the high
energy states.
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i 75 2 T e_iZ/Tnlliu
Npax = 10 7 := —Npax . Niax qQ (Traiie) 1= Z e~/ Trio P (T,-;,li[,_i) = —_—
i=—=75 q (Tralio)

(iii) Cannot be completed unless k is specified. See Figure 19:8 for variation of p with / at several

temperatures.
0.2 T T T
015k T T Tr:lliu =10 i
ptl0.i)y 0.1F 4
0.05 1
5 5

(a)

{b)

(a)

i Figure 19.8

The increase in temperature with the hydrophobic chain length is a result of the increased strength
of the van der Waals interaction between long unsaturated portions of the chains that can interlock
well with each other. The introduction of double bonds in the chains can affect the interlocking of
the parallel chains by putting kinks in the chains, thereby decreasing the strength of the van der
Waals interactions between chains. Double bonds can be either ¢is or rrans. Only cis-double bonds
produce a kink, but most fatty acids are the ¢is-isomer. So we expect that the transition temperatures
will decrease in rough proportion 1o the number of C=C bonds.

The addition of cholesterol is expected to increase the temperature of the transition from the liquid
crystalline state to the liquid state by altering the conformations of the hydrocarbon chains. Cho-
lesterol stabilizes extended chain conformations of adjacent hydrocarbon seclions by van der Waals
interactions relative to the coiled conformations that predominate when cholesterol is absent. The
extended chains can pack better than coiled arrangements. However the lower transition lemperature,
that from the solid crystalline state to the liquid crystalline form, is probably decreased upon addi-
tion of cholesterol; its presence prevents the hydrophobic chains from freezing into a solid array by
disrupting their packing. This will also spread the melting point over a range of temperatures.

n L 2,2
”—$=I—*~l+[n]c+k[n]c

tfrf =1

Define F = =[]+ &Dnfec
A linear regression of F against ¢ yields an intercept equal to (1] and a slope equal to K n12.

(1) fir toluene: Linear regression (R = 0.999 54) yields

[n] = 0.08566dm” g ' =|0.086din® g~  standard deviation = 0.00020dm* g~

K'[7)% = 0.002 688 dm® g~2; standard deviation = 0.000057 dm® g =2
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Then

. 0.002688dm° g2

0.37
(0.085 66dm> g~1)?

(2) In cyclohexane: Linear regression (R = 0.98198) yields

(5] = 0.04150dm> =" =[0.042dm? g~ || standard deviation = 0.000 18dm* g~

K'1n]? = 0.006 001 dm® g=2; standard deviation = 0.000 |16 dm® g~2

Then

0.000 6007 dm® g2
K= — > [0.35]
(0.04150dm* g=1)2 -

— ) 1/a
b = KM, M,.=|—
by [} v or (K

(1) In 1oluene

gmol~! =[2.4 x 107gmol ! |

) (1/0.72)

_ 0.08566dm> g
) 1.15 x 10— 5dm g

(2) In cyclohexane

— (/0120

_ 0.04150dm* g~!

M, = il ]) emol™ =|2.6 x 10°%g mol”" |
82 x 10~*dm” g~

(©) 7]/ (dm> ") = B (rrms/m)* /M, @ =2.84 x 10%

DIZANE 2172
Frms = o m. where ryns = (r‘)

— - 1/3
0.08566 x 2.39 x 10°
(1) I toluene: raps = x o X m=
2.84 x 1026
— - t/3
0.04150 x 2.56 x 10°
(2) In eyclohexane: rems = ( > 8: 101: ) m=
84 x 10-

(d}) Mistyrene) = 104 g mol ™!
Average number of monomeric units, (i) is

M,
M (styrene)

2.39 x 10° gmol ™!
1) In toluene  {n} = =[23x 103
2.56 x 10° gmol™!
(2) Incyelohexane:  {n) = 154 Dln_]? ={25x% 103
gmo

{n =

359
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(e) Consider the geometry in Figure 19.9

04

p2i)
p(5.i)
p(I0.0)

olr

-0 10

i Figure 19.9

For a polymer molecule consisting of {n) monomers, the maximum melecular length, Lyax. is

Liax = 28 {nYcos @
= 2(0.154 nm) {n) cos 35°
= (0.2507 nm) {n}

In toluene:  Lmax = (0.2507nm) x (2.30 x 10%) =| 5.8 x 102 nm

In cyclohexane:  Lpgy = (0.2507nm) x (2.46 x 10%) =|6.2 x 10% nm

{n) L2 12
0 R = (T) { = (0.0889 nmj){n)

Il ITERNLE
Kirkwood-Riseman: rXR = (%—u) = (-i—-ggl]—l-c«m)
. x

constrained coil: s = (2(1)) 72 1[19.36) or (n)/21[19.31]

Solvent {m Rg/mm  rRRnm % /nm

Toluene 2.30 x 10° 42
Cyclohexane 2.46 x 10° a3

(g) There is no reason for them to agree; they are different samples; there is no fixed value of M for
polystryene. The manufacturer’s claim appears to be valid.
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D20.2

D20.4

D20.6

Answers to discussion questions

We can use the Debye—Scherrer powder diffraction method, follow the procedure of Example 20.3,
and in particular look for systematic absences in the diffraction patterns. We can proceed through the
following sequence

. Measure distances of the lines in the diffraction pattern from the center.

. From the known radius of the camera, convert the distances to angles.

. Calculate sin® .

Find the common factor A = A2/4a2 insin? @ = ()\2/4az)(h2 + &2+ ).

. Index the lines using sin” 8/A = h* 4+ k% + I°.

. Look for the systematic absences in (kk/). See Figure 20.22 of the text. For body-centered cubic,
diffraction lines corresponding to £+ & + ! that are odd will be absent. For face-centered cubic, only
lines for which #, k, and ! are either all even or all odd will be present, others will be absent.

7. Solve A = 22/44” for a.

b W=

The phase problem arises with the analysis of data in X-ray diffraction when seeking to perform a
Fourier synthesis of the electron density. In order to carry out the sum it is necessary to know the
signs of the structure factors; however, because diffraction intensities are proportional to the square of
the structure factors, the intensities do not provide information on the sign. For non-centrosymmetric
crystals, the structure factors may be complex, and the phase o in the expression Fyy = |F,;,H|ei" is
indeterminate. The phase problem may be evaded by the use of a Patterson synthesis or tackled directly
by using the so-called direct methods of phase allocation.

The Patterson synthesis is a technique of data analysis in X-ray diffraction which helps to circumvent
the phase problem. In it, a function P is formed by calculating the Fourier transform of the squares of the
structure factors (which are proportional to the intensities):

P(r) = % 3 g P2+
hki
The outcome is a map of the separations of the atoms in the unit cell of the crystal. If some atoms
are heavy (perhaps because they have been introduced by isomorphous replacement), they dominate the
Patterson function, and their locations can be deduced quite simply. Their locations can then be used in
the determination of the locations of lighter atoms.

In a face-centered cubic close-packed lattice, there is an octahedral hole in the center. The rock-salt
structure can be thought of as being derived from an fec structure of Cl™ ions in which Na* jons have
filled the octahedral holes.
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The caesium-chloride structure can be considered to be derived from the ccp structure by having C1™
ions occupy all the primitive lattice points and octahedral sites, with all tetrahedral sites occupied by
Cs* ions. This is exceedingly difficult to visualize and describe without carefully constructed figures
or models. Refer to S.-M. Ho and B. E. Douglas, J. Chem. Educ. 46, 208, 1969, for the appropriate
diagrams.

Semiconductors generally have lower electrical conductivity than most metals. Additionally, the con-
ductivity of semiconductors increases as the temperature is raised whereas that of metals decreases.
The difference occurs because of the relative balance between the excitation of electrons into electrical
conductance and the scattering of electrons off the conductance path by collisions with vibraling atoms.
The scattering precess predominates with increasing temperature of a metal. The excitation process
predominales for the semiconductor.

The electronic structure of solids consists of allowed energy bands. The highest energy band of a metal
is partially filled. Being approximately filled to the Fermi level only, there is no gap of forbidden
energies for excitation. It is easy to promote electrons from the filled level in which all random vector
momentums are occupied to levels in which there is a preferred vector momentum. This provides high
electrical conductivity. The energy difference between the top of the band and the Fermi level helps to
explain their appearance. If sufficiently wide, all incident visible light can be both absorbed and emitted.
This gives many meltals their shiny, “silver” luster. A narrow width may result in color as a range of
visible frequencies are preferentially emitted. An example is the reddish color of copper.

Semiconductors have a band gap, Ej, between a filled valence band and an approximately unfilled
conductance band above it. Significant energy is needed to promote electrons to the conductance band.
The energy may be provided thermally with the application of higher temperature, with electromagnetic
radiation of frequency above vmin = Ez/h. or with an applied voltage. The visual appearance of a
semiconductor is approximated with v, For example, electromagnetic radiation with more energy
than green light is absorbed by cadmium sulfide (see Mlustration 20.2) so the yellow, orange and red
visible light are predominately reflected and seen as a yellow-orange color by an observer.

The most obvious difference is that there is no magnetic analog of electric charge; hence, there are no
magnetic ‘ions.” Both electric and magnetic moments exist and these can be either permanent or induced.
Induced magnetic moments in the entire sample can be either parallel or antiparalle! to the applied field
producing them (paramagnetic or diamagnetic moments), whereas in the electric case they are always
parallel. Magnetizalion, M, is the analog of polarization, P. Although both magnetization and induced
dipole mement are proportional to the fields producing them, they are not analogous quantities, neither
are volume magnetic susceptibility, x, and electric polarizability, c. The magnetic quantities refer to the
sample as a whole, the electric quantities to the molecules. Molar magnetic susceptibility is analogous to
moiar polarization as can be seen by comparing eqns 20.30 and 18.15 and magnetizability is analogous
to electric polarizability.

Solutions to exercises

(%,0, %) is the midpoint of a face. All face midpoints are alike, including (% %O) and (O, % %) .

There are six faces to each cube, but each face is shared by two cubes. So other face midpoints can be
described by one of these three sets of coordinates on an adjacent unit cell.
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Taking reciprocals of the coordinates yields (l . % - I) and (% i %) respectively. Clearing the fractions

L] 3 L]
yields the Miller indices | (313) and (643}

The distance between planes in a cubic lattice is

4

P —
T

This is the distance between the origin and the plane which intersects coordinate axes at (hi/a, k/a,l/a).

=
o= G T
The Bragg law is
ni =2dsind
Assuming the angle given is for a first-order reflection, the wavelength must be

A =2(128.2pm)sin 19.76° = | 86.7 pm

Combining the Bragg law with Miller indices yields, for a cubic cell
A
sin Oy = —-(I12 + k2 + IZ)I/E
2a
In a face-centered cubic lattice, 1, k, and / must be all odd or all even. So the first three reflections would

be from the (1 1 1), (2 0 0), and (2 2 0) planes. In an fcc cell, the face diagonal of the cube is 4R, where
R is the atomic radius. The relationship of the side of the unit cell to R is therefore

4R
@GR =d*+a*=2a" so a=—
V2
Now we evaluate
A A 154
2= - P 0189
2a  4J2R  4/2(144pm)
We set up the following table
hkl sin & a/° 20/°
111 0,327 19.1 8.2
200 0.378 222 44 4

220 0.535 323 64.6
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In a circular camera, the distance between adjacent lines is D = RA(28), where R is the radius of the
camera (distance from sample to film) and ¢ is the diffraction angle. Combining these quantities with
the Bragg law (A = 2d sin 8, relating the glancing angle to the wavelength and separation of planes),
we get

D=2RA0 = 2RA(s'm" i)
2d
. 96.033 . | 95.401pm
=2(5.74 -l L 2 ) =(0.054
(574 cm) (5'“ 2@23pm " 2823 pm))

The volume of a hexagonal unit cell is the area of the base times the height ¢. The base is equivalent to
two equilateral triangles of side a. The altitude of such a triangle is a sin 60°. So the volume is

V=2 (%a % asin 60°) ¢ = aPcsin 60° = (1692.9 pm)? x (506.96 pm) x sin 60°

=1.2582 x 10° pm® =| 1.2582 nm>

The volume of an orthorhombic unit cell is

3.86 % 108 pm?

T —3.86 x 107%2cm?
(10'0 pm em=1)3

V = abc= (589 pm) x (822 pm) x (798 pm) =

The mass per formula unit is

135.01 gmol ™!

m=
6.022 x 1023 mol ™!

=224x 107%2g

The density is related to the mass s per formula unit, the volume V of the unit cell, and the number ¥
of formula units per unit cell as follows

Nm oV (29gem3) x (3.86 x 1072 cm?)
p = 7 so0 N=— =

m 224 x 102 g -

A more accurate density, then, is

5(2.24 x 1072 g) > 90gcm—3
= — . m
P = 386 x 1002 cm? 5

The distance between the origin and the plane which intersects coordinate axes at (hfa, k/b,l/c) is
given by

T S
digt = (F toat C—z)
drpn =| 182 pm

The fact that the 111 reflection is the third one implies that the cubic lattice is simple, where all indices
give reflections. The 11] reflection would be the first reflection in a face-centered cubic cell and would
be absent from a body-cenlered cubic.

—1/2

32 92 92 =172
= ( 7t 7 T 2
(679 pm) (879 pm) (860 pm)
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The Bragg law
A
sinGy = — (B2 + k2 + 1512
2a

can be used to compute the cell length

(h2+k2+12)]/2= l37pm

= —— (1 + 12+ 112 =390
= S sinby e TP pm

With the cell length, we can predict the glancing angles for the other reflections expected from a simple
cubic

A

By = sin~! (2—(112 + &+ 12)'/2) =sin~N0.176(1% + k2 + IH)\/?)
4]

100 = sin~ ' (0.176(1% + 0 + 0)!/?) = 10.1° (checks)

8110 = sin~'(0.176(1% + 12 + 0)!/?) = 14.4° (checks)

200 = sin~' (0.176(2% + 0 + 0)'/?) = 20.6° (checks)

These angles predicted for a simple cubic fit those observed, confirming the hypothesis of a simple
lattice; the reflections are due to Lhe’ (100), {110}, (111), and (200) |plancs.

The Bragg law relates the glancing angle to the separation of planes and the wavelength of radiation

A
A=2dsing so @=sin"! —
51N 51N 2d

The distance between the origin and plane which intersects coordinate axes at (k/a, k /b, [/} is given by

ook pNT'
dh“:(a_z-i_ﬁ-'-c_?')

So we can draw up the following table

hkl dykt/pm Ot /°
100 574.1 4.166
010 796.8 3.000
111 339.5 7.057

All of the reflections present have 4 + k + { even, and all of the even 1 + & 4 [ are present. The unit cell,
then, is | body-centered cubic

The structure factor is given by

Fry = Zf,-e“ﬁf where ¢ = 2w (hx; + ky;i + lzi)
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All eight of the vertices of the cube are shared by eight cubes, so each vertex has a scattering factor

of f/8.

The coordinates of all vertices are integers, so the phase ¢ is a multiple of 2 and ¢ = 1. The
body-center point belongs exclusively to one unit cell, so its scattering factor is f. The phase is

6 =2x (Jh+ 3kt H) =wlh+k+D

When It + k + [ is even, ¢ is a multiple of 27 and ¢ = 1; when h + & 4+ 1 is odd, ¢ is 7 4 a multiple
of 27 and ¢ = —1. So €' = (— )"+ and

Fret = 8(F/8)(1) + f(— 1)k

=|2f forh+k+lcven and Ofor/t+k + ! odd

There are two smaller (white) triangles to each larger {gray) triangle. Let the area of the larger triangle be
A and the area of the smaller triangle be a. Since b = %B(base) andh = %H(height), a= ﬁA. The white
space is then 2N A /4, for N of the larger triangles. The total space is then (NA 4+ (NA/2)) = 3NA/2.
Therefore the fraction filled is NA/(3NA/2) = E

See Figure 20.1.

Figure 20.1

The body diagonal of a cube is a~/3. Hence
av3=2R+2r or VIR=R+r [a=2R]

The ionic radius of K+ is 138 pm when it is 6-fold coordinated, 151 pm when it is 8-fold coordinated.

=

(a) The smallest ion that can have 6-fold coordination with it has a radius of (\/i - l) x (138 pm) =

[570m}

{b) The smallest ion that can have 8-fold coordination with it has a radius of (ﬁ - l) x {151 pm) =

[Tiom]
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E20.17(b) The diagonal of the face that has a lattice point in its center is equal to 4r, where r is the radius of the

E20.18(b)

E20.19(b)

E20.20(b)

atom. The relationship belween this diagonal and the edge length a is
dr=av2 so a=2V2r

The volume of the unit celi is &°, and each cell contains 2 atoms. (Each of the 8 vertices is shared among
8 cells; each of the 2 face points is shared by 2 cells.) So the packing fraction is

2¥a0m 2(4/3)”"3 T
= = = -0.370
Vcc]l (2 \/Ei")3 3(2)3/2

The volume of an atomic crystal is proportional to the cube of the atomic radius divided by the packing
fraction. The packing fraction for hep, a close-packed structure, is 0.740; for bee, it is 0.680. So for
titanium

=0.99

Ve 0740 (122pm
Viep  0.680\ 126 pm

The bee structure has a smaller volume, so the transition involves a . {Actually, the daia are
not precise enough to be sure of this. 122 could mean 122.49 and 126 could mean 125.51, in which case
an expansion would occur.)

Draw points correspending to the vectors joining each pair of atoms. Heavier atoms give more
intense contributions than light atoms. Remember that there are two vectors joining any pair of atoms

(AB and ABY); don’t forget the AA zero vectors for the center point of the diagram. See Figure 20.2
for CgHe.

CeH O
O R(C.Cy)
OQ R(C;, C1)
O 50l

O Figure 20.2

2 .
Combine £ = 4T and E = $m? = 5= to obtain

N h 6.626 x 10~ 15
= = = m
(mkT)'2 (1675 x 10-27 kg) x (1.381 x 10~ JK~") x (300K)]'/2 P
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The laltice enthalpy is the difference in enthalpy between an ionic solid and the corresponding isolated
ions. In this exercise, it is the enthalpy corresponding to the process

MgBr, (s) — Mg () + 2Br (g)

The standard lattice enthalpy can be computed from the standard enthalpies given in the exercise by
considering the formation of MgBr,(s) from its elemenis as occuring through the following steps:
sublimation of Mg(s), removing two electrons from Mg(g), vaporization of Bra2(l}, atomization of
Bra(g), electron attachment to Br(g), and formation of the solid MgBr, lattice from gaseous tons

ko
AFHB(MgBrgvS) = AsubHe(Mg-s) + AionHe(Mg‘ g)+ Avan (Bra. 1)
+ AuH (Bra.g) + 20 H (Br,g) — ALH' (MgBry,s)
So the lattice enthalpy is
=] (=3 L=d
ALH® (MgBrs,s) = AgbnH (Mg.s) + AignH (Mg, 8) + AvapH (Bra, 1)

+ AuH' (Bry,g) + 20eH  (Br,g) — AcH® (MgBr»,5)

ALH' (MgBrs,s) = [148 + 2187 + 31 + 193 — 2(331) + 524]kJ mol ' = 2421 kI mol~!

Tension reduces the disorder in the rubber chains; hence, if the rubber is sufficiently stretched, crystal-
lization may oceur at lemperatures above the normal crystallization temperature. In unstretched rubber
the random thermal motion of the chain segments prevents crystallization. In stretched rubber these
random thermal motions are drastically reduced. At higher temperatures the random motions may still
have been sufficient to prevent crystallization even in the stretched rubber, but lowering the temperaiure
to 0 °C may have resulted in a transition to the crystalline form. Since it is random motion of the chains
that resists the stretching force and allows the rubber to respond to forced dimensional changes, this
ability ceases when the motion ceases. Hence, the seals failed.

COMMENT. The soluticn to the problem of the cause of the Challenger disaster was the final achievement,
just before his death, of Richard Feynman, a Nobel prize winner in physics and a person who loved to
solve problems. He was an outspoken person who abhorred sham, especially in science and technology.
Feynman concluded his personal report on the disaster by saying, 'For a successful technology, reality must
take precedence over public relations, for nature cannot be fooled' (James Glsick, Genius: The Life and
Science of Richard Feynman. Pantheon Books, New York (1992).)

Young’s modulus is defined as:

normal stress

" normal strain

where stress is deforming force per unit area and strain is a fractional deformation. Here the deforming
force is gravitational, mg, acting across the cross-sectional area of the wire, 712, So the strain induced
in the exercise is

. stress mg dmg 4(10.0kg)(9.8 m s‘z) s
strain = = = = = |58 xI107"
" E m(d/22E T md?E T m(0.10 x 10~3m)2(215 x 107 Pa)

The wire would stretch by 5.8%.
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E20.24(b) Poisson’s ratio is defined as:

__ transverse strain
P = normal strain

where normal strain is the fractional deformation along the direction of the deforming force and transverse
strain is the fractional deformation in the directions transverse to the deforming force. Here the length
of a cube of lead is stretched by 2.0 percent, resulting in a contraction by 0.41 x 2.0 percent, or (.82
percent, in the width and height of the cube. The relative change in volume is:

V+ AV

= (1.020)(0.9918)(0.9518) = 1.003

and the absolute change is:

AV = (1.003 — D(1.0dm*>) =|0.003 dm?

E20.25(b) p-type; the dopant, gallium, belongs to Group 13, whereas germanium belongs to Group 14.

1.12eV 1.602 x 10173
E20.26(6) £y = hvpy and Vg = Eg/h = ° ( X

=271 x 10H
6.626 x 10~ 15 Tev ) * *

E20.27(b) m =g 4SS+ N} 2upg [20.34, with Sin place of 5]

Therefore, since m = 4.00ug

S5+ 1) = (g) x (4.00)2 = 4.00, implying that S = 1.56

Thus § = %, implying three unpaired spins.
In actuality most Mn?* compounds have | 5 | unpaired spins.

_ ~6 -1
E20.28(b) Xor = %V = ﬂ _ (=79 % 107 x (84.15gmol ™)
o 0.81lgcm—3

=|-82x 1079 cm® mol™! |=| —8.2 % 1079 m3 mol~!

E20.29(b) The molar susceptibility is given by

_ NagluousS(S+ 1)
- UT

Xm

NOs is an odd-electron species, so it must contain at least one unpaired spin; in its ground state it has
one unpaired spin, so § = +. Therefore,

xm = (6.022 x 1053 mol™") % (2.0023)* x (47 x 0 T?T 'm?)
9274 x 1072177172 x (1) x (3 +1)
3(1.381 x 102 JK-) x (298K)

=|1.58 x 10~% m* mol™! l
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The expression above does not indicate any pressure-dependence in the molar susceptibility. How-
ever, the observed decrease in susceptibility with increased pressure is consistent with the fact that
NO» has a tendency to dimerize, and that dimerization is favored by higher pressure. The dimer has
no unpaired electrons, so the dimerization reaction effectively reduced the number of paramagnetic
species.

The molar susceptibility is given by

_ NagluougS(S +1) 554 1y = KT m
A = 3T ~ Naglror’
361381 x 107P JK! 208 K

(s 4 1y = SU-381 x ) x (298K)

(6.022 x 1023 mol —1) x (2.0023)2

y (6.00 x 1078 m* mol™")
(4 x 1077 T2 J- T m3) x (9.274 x 10-HJT-1)2
—1+ /T F+4{2.84)

=284 so S= =126
2

corresponding to effective unpaired spins. The theoretical number is . The magnetic moments
in a crystal are close together, and they interact rather strongly. The discrepancy is most likely due to an
interaction among the magnetic moments.

The molar susceptibility is given by

_ NagipougSES+1)
Hm = 3kT

Mn2* has five unpaired spins, so § = 2.5 and

(6022 x 102 mol™') x (2.0023)% x (4x x 1077 T?J" m?)
- 3(1.381 x 10-2JK-1)

Xm

y (9274 x 107H¥IT™1)? % (2.5) x 2.5+ 1)
(298 K)

=|1.85x 1077 m® mol™!

The orientational energy of an electron spin system in a magnetic field is
E = geupMs#

The Boltzmann distribution says that the population ratio r of the various states is proportional to

()
r = exp T
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where AE is Lhe difference between them. For a system with § = 1, the M;s states are 0 and £1. So
between adjacent slates

r = exp ('_gcﬂ-BMS'@) _
= — 7 )=
=(0.935

The population of the highest-energy state is ° times that of the lowest; r* =|0.873

]

. (~(2.0023) x (9274 % 1072 IT-H % (1) x (IS.OT))
p (1381 x 10-BJK-1) x (298K)

Solutions to problems
Solutions to numerical problems

A large separation between the sixth and seventh lines relative to the separation between the fifth and
sixth lines is characteristic of a | simple (primitive) cubic lattice | This is readily seen without indexing
the lines. The conclusion that the unit cell is simple cubic is then confirmed by the presence of reflections
from (100} planes.

A
digg = a [20.1] = —— [20.5
oo = a [20.1] Teind 120.5]

154 pm
= =1342
@ (2) x (0.225)

D 180
Note that since R = 28.7 mm, 8/deg = (ﬁ) X (—) = D/mm. Then proceed through the following
b4

sequence:
1. Measure the distances from the figure.
2. Convert from distances (o angle using 8/deg = D/mm.
3. Calculate sin*6.
4. Find the common factor A = A2/4a” in sin® 6 = (A2/4a?) (12 + &% + 7).
5. Index the lines using sin® 8/A = A2 + &2 4+ 12,
6. Solve A = A2 /4a’ fora.
(a)

D/mm 22 30 36 44 50 58 67 77

¢ /deg 22 30 36 44 30 58 67 17

10%sin®0 140 250 345 482 587 719 847 949

Analysis of face-centered cubic possibility

thkh (111 2000 21y 31D (222) (400) (331) 420
10°A 467 625 431 438 489 449 446 475
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Analysis of body-centered cubic possibility

(hkD (110) 200 @211 2200 310y (222) 321) 400
10%A 700 625 575 603 587 599 605 593

Begin by performing steps 1-3 inorder to determine D, &, and sin” @ and place them in tabular form as
above. It is now possible to reject the primitive (simple) cubic cell possibility immediately because
the separation between the sixth and seventh lines is not significantly larger than the separation
between the fifth and sixth lines {see Problem 20.2 and Figure 20.22).

The relatively large uncertainties of the separation measurements force the modification of steps
4 and 5 for the identification of the unit cell as being either face-centered cubic or body-centered
cubic. We analyse both possibilities by calculating the common factor A = sin? @/ + k* 3 17) for
each datum in each case. Comparison of the standard deviations of the average of A determines the
unit cell type.

The analysis of both the face-centered cubic and body-centered cubic possibilities is found in the
above table. Successive reflective planes are determined with the rules found in Figure 20.22.

fce possibility : Axy. =0.0478, oa = 0.0063 (13 percent)
bee possibility : Aav. = 00611, oa =0.0016 (6percent)

These standard deviations (ora ) indicate that the cell type is | body-centered cubic

The @ test of the (1 1 0 reflection datum for A yields 0 = 0.6. Conseguently this datum may be
rejected with better than 95 percent confidence. This yields a better average value for A.

Aay. = 0.0598, oa = 0.0016 (3 percent)

A 154 pm
24172 7 (2) x (0.0598)'/?

4R = /3a, so |R=136pm|[Fig.20.1 above withr = R]

Then a = =315pm

D/mm 21 25 37 45 47 59 67 T2
6/deg 21 25 37 45 47 59 67 T2
10%sin?6 128 179 362 500 535 735 847 905

Analysis of face-centered cubic possibility

(hk!) (111 (200) (2200 G311y (222) @400) (331) (420)
10%4 427 448 453 455 446 459 446 453

Analysis of body-centered cubic possibility

(hkD (110Y (200) 211y (2200 (310) (222} (321) (400)
10°4 640 448 603 625 535 613 603 566
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Following the procedure established in part (a), the above table is constructed.

fcc possibility : Aay. = 0.0448, o4 = 0.0010 (2 percent)
bee possibility : Ay, = 0.0579, o4 = 0.0063 (11 percent)

The standard deviations indicate that the cell type is I face-centered cubic |

A 154 pm
Then a= 20172 = @ < 00aag) A 24P
4R =24, so R=|129 pm

P20.6 When a very narrow X-ray beam (with a spread of wavelengths) is directed on the center of a genuine
pearl, all the crystallites are irradiated parallel to a trigonal axis and the result is a Lauve photograph with
6-fold symmetry. In a cultured pearl the narrow beam will have an arbitrary orientation with respect to the
crystallite axes (of the central core) and an unsymmetrical Laue photograph will result. (See J. Bijvoet
et al., X-ray Analysis of Crysials. Butterworth (1951).)

P20.8 0(100K) = 22°2'25". 9(300K) = 21°57' 59"
sinB(100K) = 0.37526, sin6(300K) = 0.37406
sin 6300 K) a(100K)
SO ) 099681 = S0 e Problem21.7
sin8(100K) 200K se¢ Problem21.7)

(300K) — A3 (154.062pm) x /3
a ~ 2sing | (2) x (0.37406)

a(l00K) = (0.99681) x (356.67 pm) = 355.53 pm

= 356.67 pm

8a  356.67 — 355.53
24 - 20D 799997 _ 3906 x 1073

a 355.53

8V 356.67° — 355.533

— = =9.650 x 1077
v 155.533 %

18V 9.560 % 1073
Dyolume = ?ﬁ = —200K =|4.8 x1073% K~!
g 3206 107
= = —=1. I"SK“I
volome = 7 200K 6 =10

P20.10 V = abcsin g
and the information given tells us that ¢ = 1.377b, ¢ = 1.4365, and g = 122°49’; hence
V = (1.377) x (1.4365%)sin 122°49' = 1.6625°

Since p = NM/VNa = 2M/(1.6625% Na) we find that

2M 173
b= —m——
1.6620Na

B (2) x (128.18 gmol™!)
~ A (1.662) x (1.152 x 105 g m=3) x (6.022 x 1023 mol™!

1/3
)) = 605.8 pm
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Therefore, a =834 pm| b =[606 pm], ¢ =

As in Example 20.4 of the text we use

l oo
plxy = v Fo+ 2}2; F, cos(2mhx)
=

Because V is unknown we work with
Vox) = fix)
flx)y =30+ 16,4 cos(2rmx) + 13 cos(@mx) + 8.2 cos(Grrx) + 11 cos(8mx)
— 4.8cos(10mx) + 10.8cos(12mx) + 6.4 cos(14mrx) — 2 cos{16mx)

+ 2.2 cos(18xx) + 13 cos{207x) + 10.4 cos(22xx) — B.6 cos(24mx)

— 2.4 cos(26mx) + 0.2cos(28mx) + 4.2 cos(307x)

A plotof Vp(x) = f(x) is shown in Figure 20.3.

Electron Density
130 T T T T

—50

1
) 0.2 0.4 6 0.8 1 Figure 20.3

In a monoclinic cell, the area of parallelogram faces whose sides are a and ¢ is
A = cacos(B —90°)
50 the volume of the unit cell is

V = abccos(f — 90°) = (1.0427 nm) x (0.8876nm) x (1.3777nm) x cos(93.254° — 907)
= 1.2730nm’

The mass per unit cell is

m=pV =(2.024gem™) x (1.2730nm%) x (107 emnam™")? = 2577 x 1072 ¢
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The monomer is CuC7H|3N5038, so its molar mass is

M = 63.546 + 7(12.011) -+ 13(1.008) + 5(14.007) + 8(15.999) + 32.066 g mol ™'
= 390.82 g mol~!

The number of monomer units, then, is the mass of the unit cell divided by the mass of the
monomer

N 2.577 x 107 6.022 23 mol !
N=m A=( x ) x ( I><|0 mo )23_97 or
M 390.82gmol™

The problem asks for an estimate of &M% (CaCl). A Born—Haber cycle would envision formation of
CaCl(s) from its elements as sublimation of Ca(s), ionization of Ca(g), atomization of Cl,(g) electrom
gaim of Cl(g), and formation of CaCl(s) from gaseous ions. Therefore

AfH®(CaCl, s) = AqpH®(Ca, s) + AjgnH® (Ca, g} + 2A¢H®(Cl, g
+2A¢gH®(Cl, g) — ALH®(CaCl, s}

Before we can estimate the lattice enthalpy of CaCl, we select a lattice with the aid of the radius-ratio
rule. The ionic radius for CI~ is 181 pm; use the ionic radius of Kt (1381) for Ca*t

_ 138 pm
" 181pm

¥ =0.762

suggesting the CsCl structure. We can interpret the Born-Mayer equation (eqn 20.15) as giving the
negative of the lattice enthalpy

AH® = Alziz2|Naé? 4
L dreod d

The distance & is

d=1(138+ 181)pm = 319pm

o A He a 0763 X 1D x (6022 x 107 mol™') x (1.602 x 1077 C)? ( 345 pm)
AL 47(8854 x 10-12]-1C2m—1) x (319 x 10~ 2 m) 319 pm

ALH® = 6.85 x 10° Imol™! = 685 kI mol ™!

The enthalpy of formalion, then, is

ArH® (CaCl, s) = [176 + 589.7 + 2(121.7 — 348.7) — 685] kI mol™' =| =373 kJ mol ™! |

Although formation of CaCl(s) from its elements is exothermic, formation of CaCla(s) is still more
favored energetically. Consider the reaction

2CaCl(s) — Ca(s) + CaCl»(s)
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for which AH® = ArH®(Ca) + ArH® (CaCly) — 2A1H° (CaCh
2 [0 — 795.8 — 2(—373)] kJ mol ™"
AH® = —50k] mol ™!

Note: Using the tabulated ionic radius of Ca (i.e. that of Ca?*) would be less valid than using the
atomic radius of a neighboring monovalent ion, for the problem asks about a hypothetical compound
of monovalent calcium. Predictions with the smaller Ca®* radius (100 pm) differ substantially from
those listed above: the expected structure changes to rock-salt, the lattice enthalpy to 758 kJ mol ™",
ApH®(CaCl) to —446 kJ mol ™" and the final reaction enthalpy to +96 k] mol~'.

P20.18 A
) and Y2 T i;-'-
[/
Fﬂl(‘“
i
Yo Monomers Dimer Figure 20.4(a)
(a) Hior— = (¥yor--utlho) = (C-l-ur—.l‘/fl + c+0r—2'!’2|“1‘/’0)

= Cyor—.1 {(¥1leldo) + cror—2 {¥2l1l o)
But (¢ [rt|vr0) = (¥2lpzl¥ro} = Hmon, 50

Htor— = (C+or—.l + C+ur—.2) Hmon

b ﬁ‘nt’-f—or— = Vior—¥tor— and (H - i-’+0r—) Yior— =0

- p 2
Vmon — V4or— _ ﬁ- Vior— =0 where 8= _Hmon __ (1 — 3cos? 9)
8 mon — V4or— dmegher?
Xpor— 1 - -
( +rr Xy ) Yior— =0 where Xtor— = (Vmon = Var=) /B
or—
X+ar—- 1 2
= x5 —_ l = 0
| Xyor— x+0r—

Xyor— = (Fmon — Vior-) /8 = %1 and Viar— = Vmon £ B

Vy = Vmon — B and Vo = ¥yon + 8

The ratio of 3 /u? (and the relative intensities of the dimer transitions) doesn’t depend upon 8 or
8 because . = 0. To see this, we use the coefficients of the normalized wavefunctions for ¥ and
W_ and the overlap integral § = {{r||yr2).

(x+0r— L ) (C+°r"') =0 where Xyor— = £l
1 Xq-or— Cior—2

Xior—Caor—,| +Cpor-2 =10

Coor—2 = —Xtor—Ctor—,1 (l)
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+or—

108 cm™

2.35 1 1 1 {

6/(/2) Figure 20.4(b)

The coefficients must also satisfy the normalization condition.

{(Yror—Wrqor—) = (C+or—.l¢’1 + cror~2¥2lC+or— 11 + C+or—.2‘¢"f2)

= Ci—or—.l + C~2H)r—.2 + 2c4or-1Cror-28
2 2 2
= Cho—g T Cor—l = 2x+01'—c+or—.|S =1
Thus,
1
Cpl = ————75  C+2=—C4]
20—
and
1
€l = o T T o2 -2 =0C—]

[2¢1 482

=

2
_i _ (u-_+)2 _ (cen 4 cs2) taon (C+.l - C+.1)2 _0
,LLE H— (C—_I + C—.Z) Hmon -+
{¢) The secular determinant for N monomers has the dimension ¥ x V.

‘:'mon - i’dimcr 4 0
v c’mon - i"r.Iimcr 14
0 1%

Vmon — Vdimer

- - km
Dfimer = Vmon + 2V cos (N—l— 1) k=1,23,....N [20.21]

377

(i)
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9 2
f7 2 2 —H
v = 0 = mon (l _ 3 4 0) — mnon
FO) dmeghcr? o8 2w egher?
The plot in Figure 20.4(c) shows the dimer transitions for 8§ = 0 and N = 15. The shape of the
transition distribution changes slightly with N and transition energies are symmetrically distributed
around the monomer transition. The lowest energy transition changes only slightly with N giving
a value that goes to 25000 cm™! 4+ 2V = 25000cm ! + 2 x (—1289 em™!) = 22422 em™! as
N — oo,

Since the model considers only nearest neighbor interactions, the transition dipole moment of the
lowest energy transition doesn’t depend upon the size of the chain.

28 T Y T T T T T

Ydimer

10% cm™!

=]
2

k Figure 20.4(c}

The relationship between critical temperature and critical magnetic field is given by

T2
H(T) = H(0) (1 - ?5)

o]

Solving for T gives the critical temperature for a given magnetic field:

HAT 1/2 3 —1 172
T=TL.(1—H‘;((O))) =(7_|9K)x(1—w) =[6.0K]

63901 Am™!

Solutions to theoretical problems

Consider for simplicity the two-dimensional lattice and planes shown in Figure 20.5.
The (hk} planes cut the & and b axes at a/h and /&, and we have

i = d —E cosa——d —E
ME=Tam T Tk b
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o

Y

\ PN Figure 20.5

- - -
Then, since sin® « + cos? & = 1, we can write

() -

and therefore

w=() ()

The same argument extends by analogy (or further trigonometry}) to three dimensions, to give

2

1 (h 2+ £V (! :
4> " \a b c
P20.24 f—'w“
. =

where N is the number of atoms in each unit cell, V; their individual volumes, and V, the volume of the
unit cell itself. Refer to Figure 20.6.

@ g ®) ©
ﬁ Figure 20.6

4 3 3
(a) N=1, V, = EI” , Ve = (2R)
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4 4R\
(b) N=1, V, = Errr3. V. = (ﬁ) [body diagonal of a unit cube is NE)

2x (4/HrR w3
= = ={0.6802
/ :

(4}?/\/5)3
(c) N=4, V, = %HR-‘, V. = (2/2R)?

4 x (4/3)3’!1‘23 T
= - = -0.7405
f (2+/2R)? 3.2

FIJH — Zﬁe-?ﬂf(h.r,'+k_\','+f:j) [207]

For each A atom use % fa (each A atom shared by eight cells) but use f for the central atom (since it
contributes solely to the cell).

Fig = %fr\ 1 +e‘.’_:r|'h + e2m’k + e2JrH + eEni(Ir+k) + BZm’UH—I) + e?.rri(l'+!) + leri(h+k+.!)
+}¢-B82ni(h+k+f)

=fa + (=D [ k.1 are all integers , ™ = —1]

@ fa=f, fs=0 Fu=f 1 no systematic abscncesl

(b} f5 = %fA; Fuit = fa [1 4 %(_l)(h+k+n]

Therefore, when A +k +/ is odd, Fiy = fa (1 - %) = | fa,and when i+ k+/iseven, Fy = 3 fa.

Thatis, there is an| alternation of intensity |(/ o F2)according to| whether /1 + & + / is odd or even |

© fa=fa=Ff Frpp=F{1+ D) =0 ifh+k+1 s odd.

Thus, [a]l h 4+ k + ! odd lines are missing |

(a) The density of energy levels is:

o--(2)
PU =5 T\

dE  d
where T (a + 28 cos




P20.30

P20.32

MATERIALS 2: THE SOLID STATE 381

Unlike the expression just derived, the relationship the problem asks us to derive has no trigono-
metric functions and it contains £ and « within a square root. This comparison suggests that the
trigonometric identity sin® 8 + cos? 8 = | will be of use here. Let 8 = kr /(N + 1); then

sin@ = 1(1 —cos2g)!/?

however, cos @ is related to the energy

E—o

28

E=a+28cos6 350 cosf=

E 212
and sind = |:l —( 2;0) j|

—(N+ 1)/2rp
[1 - (& — /262"

Finally,| p(E) =

(b) The denominator of this expression vanishes as the energy approaches «« & 28. Near those limits,
E — a becomes +28, making the quantity under the square root zero, and p(E) approach infinity.

If a substance responds nonlinearly to an electric field £, then it induces a dipole moment:
w = ok + BE.

If the electric field is oscillating at two frequencies, we can write the electric field as
E = Ejcosw)t + Ey coswaf,

and the nonlinear response as
BE? = B(E| cosw)! + Eacoswar)?,
,BE2 = ,B(E’ll cos® I+ Ezz cos? wn! + 2E | E7 cosw)f cos wal).

Application of trigonometric identities allows a product of cosines to be re-written as a sum:
COsACOs B = % cos(A — By + % cos(A + B).

Using this result (a special case of which applies to the cos?® terms), yields:
BE? = L BIET(L + cos 2w ) + EZ(1 4 cos 2wt} + 2E; Ea(cos{w) + wa)t + cos(w) — w2)!].

This expression includes responses at twice the original frequencies as well as at the sum and difference
frequencies.

K
N2Oy(g) = 2ZNOa(g)
(1 —a)n 2an amounts

| —o 20

mole fractions
I+ |+«
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I —w 2o ) .
2 p  pariial pressures |p =p/p~ here]
I+

Il +c
o/l + o) p 4o
= = 2
O—ea/lta) 1—a¥

Now solve for a.

) K ( K A\
o” = . o=
i+ K 4p+ K

K 172 ] 172
The degree of dimerizationisd =l —e =1 - (4{) m K) =|1- (m)

The susceplibility varies in proportion o @ = | — d. As pressure increases, o decreases, and the
susceplibility .

To determine the effect of temperature we need A.H ~ A.H® for the reaction above.
AHT =2 % (33.18k] mol™"y — 9.16 kI mol™' = +57.2 k] mol™!

A positive A H® indicates that NO,(g) is favored as the temperature increases; hence the susceplibility

increases | with temperature.

Solutions to applications

The density of a Face-centered cubic crystal is 4m/V where m is the mass of the unit hung on each latice
point and V is the volume of the unit cell. (The 4 comes from the fact that each of the cell’s 8 vertices
is shared by 8 cells. and each of the cell’s 6 faces is shared by 2 cells.)

Sop = _ and M = +pNpa®
£= ad T Npa® o - 4}0 Ad
M = 1(1.287gem™) x (6.022 x 10¥ mol™") x (12.3 x 1077 cm)’

3.61 x 10° gmol~!

Single-walled carbon nanotubes (SWNT) may be either conductors or semiconductors depending upon
the tube diameter and the chiral angle of the fused benzene rings with respect lo the lube axis. Van der
Waals forces cause SWNT (o stick together in clumps, which are normally mixtures of conductors and
semiconductors. SWNT stick (o many surfaces and they bend. or drape, around nano-sized featurcs that
are upon a surface.

Only the semiconductor SWNT are suitable for the preparation of field-effect transistors (FET) so
IBM rescarchers (Science. April 27, 2001) have developed a destructive technique for climinating
conducting tubes from conductor/semiconductor clumps with a current burst. The technique can also
be used to remove the outer layers of multiwalled tubes that consist of mulliple concentric tubes about
a common axis. Bandgaps increase as the diameter of multiwalled tubes is decreased which means that
the destructive technique can be used to tailor a semiconductor tube to specific requirements.
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large variety of chiral angles

Various types of nanotubes

‘armchair’

|::> Tube axis

htip:/fonline. itp.ucsb.edufonling/
ghall_cY8/dekker/oh/ L8, homl

hip-ffonline.itp.ucsh.eduf

online/ghall_c98/dekker/oh/08.him]

Multiwalled Nanotubes have diameters between 1 am and
30 nm with an imerlayer spacing of 0.34 nm.

hup:ffonline.itp.ucsb.edu/online/ghall_c98/dekker/oh/05.him!

il —

Figure 20.7(a)

Here is a list of ideas for praducing transistors with SWNT.

Cees Dekker and students (S.J. Tans er al., Nature, 393, 49 (1998)) have draped a semiconducling carbon
nanotube over metal electrodes that are 400 am apart atop a silicon surface coated with silicon dioxide.
A bias voltage between the elecirodes provides the source and drain of an FET. The silicon serves as a
gate electrode. By adjusting the magnitude of an clectric field applied 1o the gate, current flow across
the nanotube may be lurned on and off.
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Nanotube drain ®

Source (Au) \ \/ Drain (Au)

gate oxide[Si0,]

clectrade
souree

clectrode

nanotube
molecule

wale |Sif

hutp:/fwww.research.ibm.com/
nanoscience/fet.himl

htep:#online.itp.ucsb.cdu/
online/ghali_c98/dekker/oh/50.html

Figure 20.7(c)

Si back gate

http://www usc.edu/dept/ee/People/Faculty/Zhou/zhougroup/research.himl - Figure 20.7(d)
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A section of a single nanotube may be exposed to potassium vapor to produce a p—n junction.

A single-electron transistor (SET) has been prepared by Cees Dekker and coworkers (Science, 293, 76,
{(2001)) with a conducting nanotube. The SET is prepared by putting two bends in a tube with the tip of
an AFM. Bending causes two buckles that, at a distance of 20 nm, serves as a conductance barrier. When

an appropriate voltage is applied to the gate below the barrier, electrons tunnel one at a time across the
barrier.

Figure 20.7(e)

A semiconductor tube may be fused to a conductor tube to produce a SET similar to an SET.

_ Flow of current

http://www.geocities.cony
fikrethasmer/physics/
electronic/electronic.html

SEMI-

CONDUCTOR
CONDUCTOR Figure 20.7(f)
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: 1 Molecules in motion

D21.2

Answers to discussion questions

Diffusion is the migration of particles {molecules) down a concentration gradient. Diffusion can be
interpreted at the molecular level as being the result of the random jostling of the molecules in a fluid.
The motion of the molecules is the result of a series of short jumps in random directions, a so-called
random walk.

in the random walk model of diffusion, although a molecule may take many steps in a given lime, it
has only a small probability of being found far from its starting point because some of the steps lead it
away from the starting point but others lead it back. As a result, the net distance traveled increases only
as the square root of the time. There is no net flow of molecules unless there is a concentration gradient
in the fluid, also there are just as many molecules moving in one direction as another. The rate at which
the molecules spread out is proportional to the concentration gradient. The constant of proportionality
is called the diffusion coefficient.

On the molecular level in a gas, thermal conduction occurs because of random molecular motions in
the presence of a temperature gradient. Across any plane in the gas, there is a net flux of energy from
the high temperature side, because molecules coming from that side carry a higher average energy per
molecule across the plane than those coming from the low temperature side. In solids, the situation is
more complex as energy transport occurs through quantized elastic waves (phonons) and, in metals, also
by electrons. Conduction in liquids can occur by all the mechanisms mentioned.

At the molecular (ionic) level, electrical conduction in an electrolytic solution is the net migration of
ions in any given direction. When a gradient in electrical potential exists in a conductivity cell there
will be a greater flow of positive ions in the direction of the negative electrode than in the direction of
the positive electrode, hence there is a net flow of positive charge toward the region of low electrical
potential. Likewise a net low of negative ions in the direction of the positive electrode will occur. In
metals, only negatively charged electrons contribute to the current.

To see the connection between the Aux of momentum and the viscosity, consider a fluid in a state of
Newionian flow, which can be imagined as occurring by a series of layers moving past one another
(Figure 21.11 of the text). The layer next to the wall of the vessel is stalionary, and the velocity of
successive layers varies linearly with distance, z, from the wall. Molecules ceaselessly move between
the layers and bring with them the x-component of linear momentum they possessed in their original
layer. A layer is retarded by molecules arriving from a more slowly moving layer because they have
a low momentum in the x-direction. A layer is accelerated by molecules arriving from a more rapidly
moving layer. We interpret the net retarding effect as the fluid’s viscosity.
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According 1o the Grotthuss mechanism, there is an effective motion of a proton that involves the
rearrangement of bonds in a group of water molecules. However, the actual mechanism is still highly
contentious. Attention now focuses on the HgQ} unit in which the nearly trigonal ptanar H3O™ ion
is linked to three strongly solvating HO molecules. This cluster of atoms is itself hydrated, but the
hydrogen bonds in the secondary sphere are weaker than in the primary sphere. It is envisaged that the
rate-determining step is the cleavage of one of the weaker hydrogen bonds of this secondary sphere (Fig-
ure 21.16a of the text). After this bond cleavage has taken place, and the released molecule has rotated
through a few degrees (a process that takes about | ps),there is a rapid adjustment of bond lengths and
angles in the remaining cluster, to forman HSC}QL cation of structure HaO - - - H* - - - OH5 (Figure 21.16b).
Shortly after this reorganization has occurred, a new HQO;" cluster forms as other molecules rotate into a
position where they can become members of a secondary hydration sphere, but now the positive charge
is located one molecule to the right of its initial location (Figure 21.16¢). According to this model, there
is no coordinated motion of a proton along a chain of molecules, simply a very rapid hopping between
neighboring sites, with a low activation energy. The model is consistent with the observation that the
molar conductivity of protons increases as the pressure is raised, for increasing pressure ruptures the
hydrogen bonds in water.

The maximum flux in mediated wansport is achieved at very high concentrations of the transported
species. Under such conditions, the transported species A flood the carrier species C, pushing practically
all of the latter into the form of the AC complex. (The mathematical condition for saturation of the fiux
at Jynax 1S that [A] 3> K, the equilibrium constant for dissociation of the AC complex; this condition puts
practically all C into the complex, regardless of its inherent stability.) The value of Jy,x depends on the
concentration of carrier species, [Clg. For a given value of [Clg, Jmax represents the transport capacity
of the “feet” of carriers. The oversupply of A keeps the carriers transporting at full capacity.

Solutions to exercises

(a) The mean speed of a gas molecule is
8RT\ '/
c=|—
()
&(He) M{Hg\'? 720059\ '/ 7075
50 = = _— = .
c(Hg) M(He) 4.003
(b) The mean kinetic energy of a gas molecule is % mec?, where ¢ is the root mean square speed

3IRT\ /2
=)

So 1 me¢? is independent of mass, and the ratio of mean kinelic energies of He and Hg is E’

(a) The mean speed can be calculated from the formula derived in Example 21.1.

i=

(SRT)'” B (3 x (8.314JK~'mol™") x (298K)

172
8RT | =[475 x 107 ms~! |
M 7 x (28.02 x 10-3kgmol ™)
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(b) The mean free path is calculated from A = k7/(2'2ap) [21.13) with 0 = =d® = n x (3.95 x
1071"m)? = 4.90 x 107" m?

(1381 % 1072 JK™") x (298K)
212 x (490 % 10719 m2) x (1 x 10-9Torr) x () x (Louzlotee)

760 Torr 1utm
=|4x 10*m

(e) The collision frequency could be calculated from egn 21.11, but is most easily obtained [rom
eqn 21.12, since A and ¢ have already been calculated

¢ 475x% 10°ms™! "
A 446 x 104m

Then, A =

&

Thus there are 100 s between collisions, which 1s a very long time compared to the usual timescale of

molecular events, The mean free path is much larger than the dimensions of the pumping apparatus
used to generate the very low pressure.

_ kT
E21.3(b) VY [21.13]

172 2y 112
o=nd d=(2) e (m) = 0.34m
w by
{1.381 x 1072 K"} x (298K) -
(21/2) x (0.36 x 10~'3m?) x {0.34 x 109 m)

This pressure corresponds to about 240 atm. which is comparable to the pressure in a compressed gas
cylinder in which argon gas is normally stored.

E21.4(b) The mean free path is

kT 1381 x 10721 K~") % (217K
‘= 0381~ [XCTO g i0m)

T 2W2%p T i [0_43 x (10-9 m)z] x (121 x 10 Paatm™')

E21.5(b) Obtain dala from Exercise 21.4(b)
The expression for 7 obtained in Exercise 21.5(a) is z = [16/(3-.':mk7‘“)]]"2 ap

Substituting o = 0.43 nm?, p=12.1 x 107 Pa. m = (28.02 u), and T = 217K we oblain

4% (043 x 107"%m?) x (12.1 x 10° Pa)
[ x (28.02) x (1.6605 x 10-27kg) x (1381 x 10-2TK~") x 217K)]"”*

=99 x 108!

E21.6(b) The mean free pathis

kT (1381 x 1072JK™') x (25+273)K 550 x 10~ mPa

A= =
27ap 212[052 x (109 m)*| p P
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550 x 103 mP

@ A= B  _ _137x10”m

(15atm) x {1.013 x 105 Paaim™'}

550 x 1073 mPa
b = =[55 % 108
®) (1.0bar) x (105 Pabar 1) X m
550 x 1073mP

© A= X i =|4.1 x 105m

(1.0Torr) x {1.013 x 10% Paatm~" /760 Torratm™')

E21.7(b) The fraction F of molecules in the speed range from 20010 250m s™his

250ms"!
F= [ Fv)dy
2

00 ms—!

where f (v) is the Maxwell distribution. This can be approximated by

i/ M2
Faf(yAv=4r v exp o Av
27 RT 2RT ’

with f {v) evaluated in the middle of the range

3/2
440 x 103 kgmol ™! 2
X £mo ) % (225ms_')

F = 4x | 7
2 (8.3]4SJK‘ mol™ ) x (300K)

— (4.0 x 10 kgmol™") x (225 ms~")’
X exp ( s £mo )X( me ) x(SOms_l),
2(8.31451K~"mol™") x (300K)

F=96x |02

COMMENT. The approximation we have employed, taking f (v) to be nearly constant over a narrow range of
spaeds, might not be accurate enough, for that range of speeds includes about 10 percent of the molecules.
You may wish to do the integration without this approximation (a considerably more complicated process)
to see how much difference there is.

E21.8(b) The number of collisions is

PAT
(2mmkT) e
B (L1 Pa) x (3.5 x 1073 m) x (4.0 x 1072 m) x (10s)
B {27 x (4.00u) x (1.66 x 10~ kgu~'} x (1381 x 10~ JK~'} » (I500K)}

NETYa

E21.9(b) The mass of the sample in the effusion cell decreases by the mass of the gas which effuses out of it.

N =ZwAr =

172
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That mass is the molecular mass times the number of molecules that effuse out

A N Z At mpAt A!( m )1/2 A M 12
1= M = Ht = ——— = —_— = R
" v QRremkT)? b 2mkT P 27 RT

2
= (0.224Pa) x 7 x (4 x 3.00 x 107 m)" x (24.00h) x (36005h™")

-3 -1 1/2
y 300 x 107~ kg mol
27 x (8.3145JK'mol~") x (450K)

=498 x 107%kg

The time dependence of the pressure of a gas effusing without replenishment is
p = poe”"" where T o /m

The time 7 it takes for the pressure to go from any initial pressure pg to a prescribed fraction of that
pressure fpg is

JE:rlnf

Po

f=r1ln

so the time is proportional to t and therefore also to ./m. Therefore, the ratio of times it takes two
different gases to go from the same initial pressure to the same final pressure is related to their molar
masses as follows

|

M, 12 d M M hie] 2
=\ an = —
L) M, : : f
-l 82.35)> -
S50 Mpuarocarbon = (28.01 gmol ) x 135 =554 g mol
DS

The time dependence of the pressure of a gas effusion without replenishment is

p=poc™" so  1=tlnpo/p

v (27{!:1)”2 1% (211'1’14)”2
wheret =—

Ag \ kT ~ As \ RT

3 -3 -1y \/?
=( 22.0m 1) y ( 27 x (28.0 x 103 kgmol ') ) e 10%s
7% ) (

0.50 x 10-3m 8.3145J K~ mol=") x (293 K)
s 1= (8:6x 1055)In orP2 I} 57 107
Y 105kPa L=
The flux is

dr 1 dT
J=—k—=—=ACynclX] —
Kdz 3 v.m€ [ ]dz
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where the minus sign indicates flow toward lower temperature and

| } 8ETN'/? 8RT\'/?
A= \/ENO—’ c= ;;;i'_ = m" s and[M]:n/V:N/NA

g j = 2Cvm (RT 2 41
h ™ dz

2 % (28.832 — 8.3145) J K~ mol ™!
3% [027 x (1079 m)*] x (6.022 x 10 mol~")

(8.3145JK~"mol~') x (260 K)
X
m x (2016 x 10~3kgmol ')

=|0.17)Jm%s”!

E21.13(b) The thermal conductivity is

| } 2y m { RT N 2Cym [ RT\'?
= =-ArC X] = - [t AL R
= 3rCvelXl = 2o (nM) 07 = 3NA \ M

1/2
) x {(3.5Km™"

—1
k= (0.240 chm_?'s_l) x (K cm-‘) =0240 x 10~ Jm~' s~ K~

2 % (29.125 — 8.3145) JK ' mol ™!
50 o=
3 % (0.240 x 10~ Tm~" s~ K=} x (6.022 x 10% mol™')

(83145TK~" mol 1) x (298K) )"’
7 x {28.013 x 10-3 kg mol ")

=[1.61 x 10719 m? |

E21.14(b) Assuming the space between sheets is filled with air, the flux is

_ 97 _ TS ! [50*(—10)1(])
J_—kdz_[(o.zcuxlo Jem™2s )X(Kcm ) ]x(—_lo.()cm

-2 -

=145 x 107 Jem 257

So the rate of energy transfer and energy loss is

JA = (145 % 1073 Tem 2571y x (1.50m2) x (100emm™")? =

E21.15(b) The coefficient of viscosity is

l _ 2 (mkT\'"? 2 fmkT\'*
n=-AmNc=— [ — S0 0= —
3 in

3o T T

p=166uP=166x 10" kgm !5
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2
0= (3 x (166 x 10-7 kgm~! s'))

(28.01 x 1077 kgmol~') x (1.381 x 10" 1K) x @73K)} "2
X
7 % (6.022 x 1022 mol™")

=[3.00 x 10719 m?]

E21.16(b)} The rate of fluid flow through a wbe is described by

v _ ok =t o (16lpedV o Y
dr 16npo n rrd de T

Several of the parameters need to be converted to SI units

r=315%x 1077 m)=75x 10 m

dv
and I = 8.70cm® x (lO“zmcm_')3 sl =870 x 10 ¢m?s!.

Also, we have the viscosity at 293 K from the table. According to the T'!/2 temperature dependence, the
viscosily at 300 K ought to be

300K\ /2 300\ '/?
n(293K) x (—) = (176 x 1077 kgm™'s7") x (—)

K
7 (300K) 203K 293

=178 x 10 "kgm !5
16(10.5m) x (178 x 1077 kgm™'s~!) x (1.00 x 10° Pa)
p- =
" 7 x (7.5 % 1073 m)*

1,2
x (870 x 1076 m?s™'} + (1.00 x 105Pa)3]
=|1.00 x10° Pa

COMMENT. For the exercise as stated the answer is not sensitive to the viscosity. The flow rate is so low that
the inlet pressure would equal the outlet pressure (to the precision of the data) whether the viscosity were
that of N at 300K or 293 K, or even liquid water at 293 K!

E21.17(b) The coefficient of viscosity is

1 _ 2 (rnkl’")”2
n=-imNc=—
3 3o n

2 (78.12 x 107 kgmol ™'} x (1.381 x 10" IK )T 2
= X
3[088 x (10-9m)’] 7 x (6.022 x 107 mol ™)

=572 x 1077 x (T/K)'? kgm™1 57!
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(a) At273K n=(572x 1077) x (273)/2 xgm~' s~ =|0.95 %105 kg m™! s’j

(b) At298K = (572 x 1077) x (298)"2 kgm='s~! =[0.99 x 105 kg m~' s~ |

(c) At1000K = (5.72 x 1077) x (1000)'/? kgm~! s~ =| 1.81 x10~5kg m™! s-'|

E21.18(b} The thermal conductivity is

2Cv.m { RT\'?
30Ny \ M

k= 1rCymt[X]=

2 % [(20.786 — 8.3145) JK~' mol™']

(a) ko= 3 " 1
3[024 x (1072 m)’] x (6022 x 10 mol~")
(8.3145J K=" mol~1) x (300K)\ "2
 (20.18 x 10~ kgmol™')
—loondim sk
The Aux is
dT - 305 — 295) K
J=—k—= (0_01|4Jm-‘ s K") x (BB =2 KY_ 1 765m-2s

dz 0.I5m

so the rate of energy loss is

s =(0761m7257") x (0.15m)? =[0017571]

2 x [(29.125 — 8.3145) JK~! moi™']

®y = 3[043 x (102m)?] x (6.022 x 102 mol~")
(8.3[45 1K~ mol™') x (3001())”2
m (28.013 x 10-3 kg mol ')
=[9.0x10731 m~! s~ K|
The flux is
T 305 —
J= _chli_z = (9.0 x 1073 Jm~!s7! K“') x (%?n%) =0.60Jm~2s™!

so the rate of energy loss is

s = (0605 m~2s7") x ©Ism)? =[001415™"]

E21.19(b) The rate of fluid flow through a tube is described by

v (p2 —pi)mr

dr 16inpg
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so the rate is inversely proportional to the viscosity, and the time required for a given volume of gas to
flow through the same tube under identical pressure conditions is directly proportional to the viscosity

1) m s0 7 i
_= — & 2 =
h 2 |

_ (208 uP) x (18.0s) _ —7 -1
NCFC = 7705 =|520uP|=520x10""kgm™ s

The coefficient of viscosity is

LN ( 2 ) y (mkr)'ﬂ ( 2 ) y (mkr)'ﬂ
= —AMINC = -_— = —_— [
! 3 3a i 3rd? T

so the molecular diameter is
d=( 2 )”2 y (mkr)”"
3mn bid
ol

1/2
T\ 37 (520 x 10-7kgm~ ! s71)

((200>< 10~ kgmol~!) x (1.381 x 10-5 JK~) x (2981())"4
x

7 x (6.022 x 102 mol !}

923 x 107%m =

l 2C RT\'/?
E21.20(b) _Lew axp = 2evm
=3¢y X =370\ T

2 x (29.125 — 8.3145) K~ mol~! ((8.3145]1(“ moi~') x (3001())"2
= x
3[0.43 x (1072 m)?] x (6.022 x 102 mol ") 7 x (28.013 x 10~ kgmol ™)

|9.0 x 103 Im T TK! |

E21.21(b) The diffusion constant is

1 2RT)?
D = —AC = —,)
3 3apNa (M2
2[(83145 K=" mol™!) x (298K)]*
3[043 x (10-9m)*] p (6022 x 10% mol™") x [ (28.013 x 102 kgmol~')}"*
1.07mZs™!
p/Pa

The flux due to diffusion is

ook )= (2)%
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where the minus sign indicates flow from high pressure to low. So for a pressure gradient of
0.10 atmem ™!

Dj(m*s™") s
J = 0.20 x 107 P
((s.3|4511<l mol~ ') x (298!()) x ( x ram )

~2 -1

= @.Imolm 25~y x (D/(m®s™ "))

1.07m*s™! 3 1
(a) D=T= 0.107m*s

and / = (8.1 molm™257") x (0.107) =[0.87 mol m~25~!

() L0775 (o7 107 s ]
= ——————- . 4 =
100 x 10%
and J = (8.1 molm~2s7') x (1.07 x 1073) =|8.7 % 103 molm~2s~! I
1.07m2s!
¢ = =713 x10 8 m?s!
© 15.0 x 105 (713 x107 w57 |

and J = (8.1molm~2s7 '} x (7.13 x 10-8) =15.8 x 107" molm 25! |

E21.22(b) Molar ionic conductivity is related to mobility by

A= uF = (1) x (4.24 % 1078 m?s™! v-’) x (96485cmor‘)

=[4.09 x 1073 s m? mol~' |

E21.23(b) The drift speed is given by

A 401 x 107 8m2s ' V1) x (12.0V
s 20 _ ) x 120M) e % 105 ms
I 1.00 x 10-2m

E21.24(b} The limiting transport number for C1~ in aqueous NaCl at 25°C is

t_ 791
P = = =|(0.604
T up+u- 5194791

(The mobilities are in 10 8 m? s~ V=)

E21.25(b) The limiting molar conductivity of a dissolved salt is the sum of that of its ions, so

AY (Mgly) = A (Mgz"') + 21 ([7) = A, (Mg (C2H102)2) + 247 (Nal) — 245 (NaCaH302)

m

= (18.78 + 2(12.69) — 2(9.10)) mSm’mol ' ={25.96 mS m®> mol~!

E21.26(b) Molar ionic conductivity is related to mobility by

A

A=zuF so uw= =

el



MOLECULES IN MOTION 399

5.54 x 107> Sm?mol ™
H=

(1) x (96485 Cmol ™'}

7.635 x 1073 S m? mol !
=

(1) x {96485Cmoi™")

=[574 x 103 m2 v-1 51|

=17913 x 1078 m? v—! 51|

7.81 1073Sm? mol ™!
Br™: u = x 10 7 mol :|8.09 x 1078 m2 v-1 4! |
(1) x (96485Cmol™~")

E21.27(b) The diffusion constant is related to the mobility by

E21.28(b)

E21.29(b)

E21.30(b)

p_ MRT _ (424 x 1078 m?s™!' V') x (8.3145J K" mol™') x (298K)
ToF (1) x (96485Cmol")

=| 1.09 x 107 m? 5~! |

The mean square displacement for diffusion in one dimension is
():2) = 2Dt

In fact, this is also the mean square displacement in any direction in two- or three-dimensional diffusion
from a concentrated source. In three dimensions

P=x+y 4+ so (rl) = (xz) + (yz) + (22) = 3(.1'2) = 6Dt
So the time it takes to travel a distance | /(r3> is

(r2) (1.0 x 102 m)’

= — 3
‘T 6D T 6205 % 109 m2s ) _

The diffusion constant is related to the viscosity of the medium and the size of the diffusing molecule
as follows

kT KT (1381 x 1072 JK~!) x (298 K)
a = =
6rnD 6w (1.00 x 10-3kgm~'s71} x (1.055 x 10~ m? s~}

a=20Tx107"m=

The Einstein—Smoluchowski equation related the diffusion constant to the unit jump distance and lime

D

= 6mna

22 A2
= — SO0 T =
27

D =
2D

If the jump distance is about one molecular diameter, or two effective molecular radii, then the jump
distance can be obtained by use of the Stokes—Einstein equation

kT kT kT

D= = SO A=
6mrna  3mnk InnD
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“wr? [(1.381 x 10-B)K ") x (298K)]*
18 (xm? D® 18 [x (0.387 x 10-*kgm~'s~)]* x (3.17 x 10~ m?s-!)’

=[200 x10~" 5|=20ps

E21.31(b) The mean square displacement is (from Exercise 21.28(b))

.2 -6 12
) .
N _(:) (1.0 x 107%m) B "y
(r )_6Dr so (= 7l 6(I.0x o1 25_1) =|1.7 x107<s

and T =

Solutions to problems
Solutions to numerical problems

P21.2 For discrete rather than continuous variables the equation analogous to the equation for obtaining ¢
(Example 21.1Yis {v,) = }_; vix (Ni/N} = (1/N) ¥, Nyvip with (N;/N) the analogue of f(v)

N=40+62+53+124+24+38+59460+2 =328
1
(a) (vx)=§§§[40><80+62x85+---+2>< 100 + 38 x (—80)

459 x (—85) 4+ - +2 x (—100)} kmh™'

=[28kmn~"Jeas

1
(b) (|vx|)=ﬁ{40x80+62x85+---+2x 100 + 38 x 80

+59 %854 --+2x 100)kmh™'

=[86km ]

1
© (u_%) = 5 (40 x 807 + 62 x 85 + -+ 42 x 1002} (km h™")? = 7430 (km h~')?

u_% =|8 kmh™! that ,/{v2} = (|v.|) in this case is coincidental.
Ry

P21.4 K = IATCy m [A][21.23]

8kT\ /2
(—) 2171 T'?
am

li T 172 Cif
Hence, x & T2 Cy , 50 — = —) x .
ence, v.m - T Cun

(o]
I

=

At 300K, Cy = %R +R= %R AtI0K, Cyp = %R [rotation not excited]

' f300N\'* /5
Therefore, — = { — -] =191
erefore, (10 X(B) 9.1]
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Radioactive decay follows first-order kinetics (Chapter 22); hence the two contributions to the rate of
change of the number of helium atoms are

dN dN
a9 = k. [Bk] (radioactive decay) o = —Zw[A] [Problem21.5]
Therefore, the total rate of change is

dN p
S o k[BK] - ZwAwithZw = —©
qr = Bkl = ZwAwith Zw = 5

[BK] = [Bkloe™ and p = "KL = MNakT _ MKT
_ Bkl = KT AT N

Therefore, the pressure of helium inside the container obeys

dp kT dN kkrT[Bk] okt (pAKT/V)
V.t v 0 Qrmk)\?
kk:T[Bk A kT \\/?
If we write @ = M, b=|—1x , the rate equation becomes
Vv Vv 2mm
d .
d—f:ae_""—bp, p=0attr=0

which is a first-order linear differential equation with the solution

p= (kra—b) X (c“b" - c_kf')

Since [Bk] = %[Bk]o when 1 = 4.4 h, it follows from the radioactive decay law ([Bk] = {Bklge ")
that (Chapter 22)

In2

= —44x107s!
@4) x (3600%) XIS

ke

1.0x 107%g

We also know that [Bk]o = ( 1
244 gmol™

) x (6.022 x 10® mol™!) = 2.5 x 10!8

_ kkT[BKlg (1381 x 1072 TK™!) x (44 x 107°571) x (298K) x (2.5 x 10'%
- v - 1.0 x 10-6m3
=045Pas™!

2

% X (2.0 x 1076 m)? (1381 x 1078 JK~") x 298K) )" e

and b = X =39x107"s
1.0 x 10=8m’ (2m) x (4.0) x (1.6603 x 10-77 kg)

Then, a

0.45Pas™!
[(4.4 % 1075 — (3.9 x 10-9)]s7!

Hence, p = ( ) % (e—3.9x10’3(r/s) _ B—4.4x10‘5(r/s})

= (120 Pa) x (6—4.4x|0’5(r/s) _ e-a.gxlo—-‘(r/s))
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@  r=1h  p=(120Pa) x (7916 —¢~1) =[ 100 Pa]
(B) =100, p=(120Pa) x (e "6 —e!0) =[24 Pa]

1
P21.8 o R [21.27, and the discussion above 21.27]

Because both solutions are aqueous their conductivities include a contribution of 76 mS m~' from the
water. Therefore,

« (acid soln) _ i (acid) + x (water) _ R{KCI soln) _ 33219
«(KCl soln) T K(KCD + x(water)  R(acid soln) ~ 300.0

33.21
Hence, « (acid) = {x (KCl} + « (water)] x (—300 0) — k(water) = 53mSm™!
53mSm™!
Am = L= o 3 =|5.3 x 107* mS m? mol ™!
¢ 1.00 x 10" molm™
p21.10 c= X [21.28] = —/:(o [¢ small, conductivity of water allowed for in the data}

m m

1.887 x 107%Sem™! _
R 3 - [Exercise 21.25(a)]
138.35cm* mol

~ 136 x 10 % molem™ = solubility =| 1.36 x10™° M
H* 3.623
P21.12 1{H*) = _ ey [2149b] = ————— =

u (H*) +u (C17) 3.6234+0.791

When a third ion is present we use

1 (Ht)
T(H*) + 1 (Nat) +1(C17)

t(HY) = (21.47]

For each I, [ = zuve FAE = constant x cu. Hence, when NaCl is added

c (H"’) i (H+)

I(H+) = — —
c (H+) i (H"‘) +c (Na+) ] (Na“') +c (CI ) u (Cl )
(1.0 x 1073) x (3.623)
= = -0.0028
(1.0 x 10_3) x (3.623) + (1.0} x (0.519) + (1.001) x (0.791) -
P21.14 o= (ZAFY (i) [Problem 21.13]
: Ty INT :

The density of the solution is 0.682 g cm™>; the concentration c is related to the molality m by
e/tmoldm™) = p/(kgdm ™) x m/(molkg™")
which holds for dilute solutions such as these.

2
A=nrt=7 x (2_073 x 10-3m) = 1.350 x 10~ m?
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cAF (1350 x 1073 m?) x (9.6485 x 10°Cmol™') N
7 (5000 x 1073 A} x (25005) <= (0.1002mmol 1) x ¢

= (0.1042 m? mol") X p X m= (0.]042 m? mol") X (682 kg m’3) X

= (71.06 kgm™! mol") X m= (0.07103 kgmm ! mol_') X m

andsoty = (0.07106 kg mm“lmol”) XXX m
In the first solution 1, = (0.07106 kg mm ™! mor') x (286.9mm) x (0.01365 molkg™') =|0.278

In the second solution 14 = (0.07106 kgmm™! mol-‘) x (92.03 mm) x {0.04255 mol kg ') =|0.278

Therefore, r(H+) = 0.28, a value much less than in pure water where +(H™) = 0.63. Hence, the mobility
is much less relative to its counter jon, NH; .

uRT e
2163] and a=
zF [ ] and a 6mrnu

o (B314TK™ mol™]) x (298.15K) x u

9.6485 x 104 C mol™!

D=

[21.43]

=2569x 1072V x i

so D/(cm?s™!) = (2.569 x 107%) x u/(cm?s~! v~

1.602 x 1071°C
=
(67) x (0.891 x 10~3kgm™' s~ x u
_954x1078Ckg 7 ms 954 x 1078 v-Im? s

it i

(1J=1CV,1J=1kgm’s™?)

9.54 % 1074
#fem2s—! -l

9.54 x 1072
w/ems—1 -l

and so a/m =

and therefore a/pm =

We can now draw up the following table using data from Table 21.6

Lit Nat K* Rb*

100u/(cm?s~' V1) 401 519 7.62 1792
10°D/cm? 1.03 133 196 204
a/pm 238 184 25 120

The ionic radii themselves (i.e. their crystallographic radii) are

Lit Na*t K+ Rbt

re/pm 59 102 138 149
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and it would seem that K* and Rb* have effective hydrodynamic radii that are smaller than their ionic
radii. The effective hydrodynamic and ionic volumes of Li* and Nat are (411/3)1::13 and (4r /3 ri
respectively, and so the volumes occupied by hydrating water molecules are

fa) LiT AV = (4n/3) x (212* —59%) x 107 m3 = 5.56 x 107 m?
(b) Nat AV = (dn/3) x (164% — 102%) x 10730 m? = 2,16 x 10~¥ m?

The volume occupied by a single H2O molecule is approximately (47 /3) x (150 pm)® = 1.4x 107 m?,

Therefore, Lit has about firmly attached H>O molecules whereas Na™ has only

(according to this analysis).

This is essentially one-dimensional diffusion and therefore eqn 21.72 applies.

Hoe—.\'zdi.l
= _[21.72
= a@mpniz #7A
10g
and we know that g = — )= 0.0292 mol
342 gmol™

A=7R2=196cmZ, D=521 x 107%cm?s™' [Table21.8]

ADHY? = (19.6em?) x [(r) x (5.21 x 10~%cm?s™!) x (1)'/?
=793 x 107 2cem?® x (1/s5)'?

X 25 cm? _ 120 x 108
4Dt~ (@) x (521 x 10-8cmZs~yx1~  (t/s)

0.0292 mol x 10%2
(7.93 x 10~2cm3) x (¢/s)1/2
e~ 1.20x 109 4(¢/5)
(t/s)\/?

Therefore, c = ( ) « g 1-20x105/(1/5)

= (369M) x (

e—l.2>(105
(@) t=10s, ¢=(369M) x (W a\:@

—0.038

— lvr = ? - LR
(b) +t=1lyr=3.16x10"s, c—(369M)x((3.16:&10.‘.)]/2)_ 0.063 M

COMMENT. This problem illustrates the exireme slowness of diffusion through typical macroscopic distances;
however, it is rapid enough through distances comparable to the dimensions of a cell. Compare to Problem
21.40.

Kohlrausch’s law states that the molar conductance of a stirong electrolyte varies with the square root of
concentration

Am = AZ = K2
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1/2 should be a straight line with y-intercept AS,. The data and plat

Therefore a pilot of Ay versus ¢ PN

(Figure 21.1) are shown below

Nal KI
¢/(m mol dm™) cl? Am/(Scmzmol_l) c/(mmoldm_J) elf? /1.“,/(Scm2 mol ™)
32.02 5.659 50.26 17.68 4205 4245
20.28 4503 51.99 10.88 3.208 4591
12.06 3473 54.01 7.19 2.68 4753
8.64 294 5575 2.67 1.63 51.81
2.85 1.69  57.99 1.28 1.13  54.09
1.24 1.1l 58.44 0.83 091 5578
0.83 091 58.67 0.19 044 5742

60 T g T T T
! y=60.681 — 1.8563x |
 R? =0.988
5
.~.E @ Nal
g 0 1OKI
<) L J
.
<:E 45 ..........:.............'...‘........‘.i..... T
y = 58.863 — 3.9903xi
[ R?=10.993
40 [ ] 1 H 1 : H 1
0 1 2 3 4 5 6
¢*//(mmol dm™) Figure 21.1

Thus AZ,(Nal) =|60.7 S cm? mol~! |and A;(KI)=i58.95cm2 moi~! |

Since these two electrolytes have a common anion, the difference in conductances is due to the cations

A°(Na™) — 2°(K*) = A} (Nal) — Ap (KD =

The analogous quantities in water are

A% (Nal) = A(Na™) + A(17') = (73.50 + 76.8) Sem” mol~! = | 126.9 § cm® mol™' |
A (K1) = A(K*) + A7) = (73.50 + 76.8) Sem?mol ' = | 150.3S cm? mol~! |
A*(Na*) — A°(K") = (50.10 — 73.50) Sem?mol ™" ={ —23.4 Scm? mol~! |

The ions are considerably more mobile in water than in this solvent. Also, the differences between Na*t
and K*are minimized and even inverted compared to water.
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The diffusion constant of an ion in solution is related to the mobility of the ion and to its radius in
separate relations

uRT kT Fk ze
= 50 a= =
2F 6 na 6mrnuR  6mwnu

(1) x (1.602 x 10719 C)

= =83x107'""m ={830
6m (0.93 x 102 kgm=" 571} x (1.1 x 1078 m2 V-1 4~} 8 "

D=

4

Solutions to theoretical problems

We proceed as in Section 21.1(a) except that, instead of laking a product of three one-dimensional
distributions in order to get the three-dimensional distribution, we make a product of two one-dimensional
distributions.

Fluy, p-‘,)dp.l_dll-\, = (p_%)f(p-\?'l)dp_rdp_‘, = (27;7;T) cilm'llzﬂ-dl’_‘-dl"\-

where v? = v 4+ v2, The probability f(v)dv that the molecules have a two-dimensional speed. v, in the
range v. v 4 dv is sum of the probabilities that it is in any of the area elements dv,dv, in the circular
shell of raidus v. The sum of the area elements is the area of the circular shell of radius v and thickness
dv which is (v + d1)* — 7v? = 27 vdv. Therefore

2 M n
—na fT _
Sy =2x (2:;';\'7‘) i [F = I]

The mean speed is determined as ¢ = fooo vf(wydr = fooo m/(kT)vze_"“'zlszdv.

Using standard integrals this evaluates lo‘ ¢ = (TkT/2m)'/* = (wRT72M)1 72 |

COMMENT. The two-dimensional gas serves as a model of the motion of molecules of surfaces. See
Chapter 24.

Rewriling eqn 21.4 with (M/R) = (m/k}

3/2 247
f(l’) — 4 (2‘:;\7-.) \’26_”" J2T

The proportion of molecules with speeds less than ¢ is

¢ m 32 ¢ L
P = Ndv = 4 2, /2ATd
fo Flvyde T (2J'rkT) ](; vee v
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I
Defini = —
efining a = >

P =4 (E)H2 /‘" \)ZP,*crv2 dv = —47 (E)J/Z i [f e—m-2 dv
T 0 w da Jo

S ] 7 -1 /2
Defining x* = av*, dv =a 12dx

1/2

32 pea 1/2 ca'?

1 2 I d 2

(—) [ e dx + (—) ——f e " d.\'l
a ) a da fy

dy = (n'ﬂ/z) erf(ca'’?)

172
5

(¥}
Then we use f e "
0

2 ~y
d [ .2 deal’? e ] C e
a 0 € ’ Ch=( d(! ) X(e ( l)=§(a|/2)e o

d <
where we have used % f Sy =f(2)
IJo0

Substituting and cancelling we obtain P = erf(ca'/?) — (2ca'/?fx'1?) e

Now, ¢ = (3kT/m)'/2, s0 ca'? = (?:.U’“/m)"/2 X (Jln/21’{T)l/2 = (3/2)”2, and

3 6 1/2 .
P=erf( 5) - (—) e ¥2=092-031=[061]
Fid

407

Therefore (b} of the molecules have a speed less than the root mean square speed and
(a)| 39 percent | have a speed greater than the rool mean square speed. (¢} For the proportions in terms

of the mean speed 7, replace ¢ by & = (8T /mm)'/? = (8/3m)"/% ¢, so ta'/? = 24712,

Then P = erf(ca'/?) — (2242 /m'12) x (679 = erf (2/7Y2) — (4/n)e %™ = 0.889 — 0.356 =

That is, of the molecules have a speed less than the mean, and have a speed

greater than the mean.

An effusion oven has constant volume, fixed temperature, and effusion hole of area A. Gas escapes

through the hole. which makes the effusion rate negative.

dN PANA

ar = 22MRT)'2 f21.-16]

For a perfect gas, pV = nRT = NRT /N and, therefore, N = NapV/RT.
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) ... dN NaVdp e .
Differentiation gives — = ——— —. Substitution into the first equation yields:
dt RT dt
NaVdp PAN,

RT di ~ (xMRT)'

dp RT \% A p , , MNP v
—=—\\— —p = —— where the time constant is 7 = | —— —
dt 2aM v T RT A

When ¢ = t,/2, p = (1/2)pg. Substitution into the above equation gives

1/2
Po f72 2xM 1'%
In{ — } =-——= =th@=({Z—] —-h@
n(2po) ;O =T ( RT 2 2

The final equation indicates that the half-life for effusive loss is independent of pg. Furthermore,the
half-life increases with both the V /A and M!/2 factors. It decreases with the factor =172,

P21.30 dc #c npe 140t
Z —D——[21.68] withe = ———— [21.72
ar Pl I withe A(@Dn!/? [ :
_ 9 -
or ¢ = ———rllze

¢
= —— ired
D as require

Initially the material is concentrated at x = 0. Note that ¢ = 0 for x > 0 when ¢ = 0 on account of the

very strong exponential factor (e"’-‘l/ " —» Omore strongly that 1/7'/2 — oo)

When x = 0, e=¥/4Di — | We confirm the correct behavior by noting that (x} = 0 and (xz) =0at
1 = 0[21.82], and so all the material must be at x =0 at¢ = 0.
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P21.32 Draw up the following table based on the third and last equations of Justificarion 21.11

N 4 6 g 10 20 30 40 60 100

P (6 )gxact 0 0016 00313 00439 00739 00806 0.0807 0.0763 0.0666
P(6M)approx,  0.004 0.162 0.0297 0.0417 00725 00799 00804 0.0763 0.0666

The points are plotted in Figure 21.2.

0.05

Figure 21.2

The discrepancy is less than 0.1 percent when

P21.34 AB = AT 4+ B™; yap = |, because AB interacts weakly with ions.

g 0AtaB- _ (VA+}’B+) " (C‘A+CB+)
aaB YAB CAB

K=yi[(ac)(ac)]=yi(a2c) or )ic= l —o

(1 — o) l—« K w?
K Ar A )G Ae + A )ac
Am=;=(+ c)lon=(+ - ) =(l++l_)a

Let A% = A4 +X_ be the molar conductivity when the solution is infinitely dilute and @ = | (eqn 21.30}.
Then, & = Am/(A4 + A_) = Ap/AS. Substitution into equilibrium expression gives:

Am\2 1
K="ic(f1—?) (1 ﬂm)
m _A:n
I Am  (Am 2y:,2:c_(Am 2M-a
As \A ) K \Ag o?
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Division by Ap, gives:
1 i ( | — a’) An
Am  AY a? ) (A%)?

11 +(l—a) Am
Am  AS a? ) (A2)2

Solutions to application

The diffusion coefficient for a perfect gas is
D= %AE where A = (2”201\.")7' where A is number density.

The mean speed is

172
=146 x 10 ms™!

_ (skTN' (3(1.331 x 1072 K1) x (10*K)
“TA\mm) T\ auyx(166x 10-Tkgu-)

& 1.46 x 10 ms™
T 3aAN212 T 30021 % 10718 m2) x (1 x (102 m)~3)21/2

The thermal conductivity is

SoD

=l 1.6 x 10" m2s~!|

eCvm (1.46 x 10* ms™') x (20.784 — 8.3145) JK~! mol™’
K = =
3aNp212 3(0.21 x 1018 m?) x (6.022 % 1023 mol~")21/2

k=[034TK " m~!s~!

COMMENT. The validity of these calculations is in doubt because the kinetic theory of gases assumes
the Maxwell-Boltzmann distribution, essentially an equilibrium distribution. In such a dilute medium, the
timescales on which particles exchange energy by collision make an assumption of equilibrium unwarranted.
It is especially dubious considering that atoms are more likely to interact with photons from stellar radiation
than with other atoms.

RH (mass percentage} x {density)
v - 100(molar mass)

_ 0.36(158 gem™?)

~ Logmol™!

Concentration of 'H nuclei, ['H] =

= 57molem™

t densit
Concentration “He nuclei, [*He] = MHe _ (mass percentage) x (density)
v 100(molar mass)}

_ 0.64(158 gem ™)
- 4.0gmol ™!
3

=25molem™

Concentration of ¢~ = []H] + 2[4He] = (57+2 x 25) molem™ = 107 molem™?
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Total concentration of gaseous particles = (57 + 25 + 107) mol cm™? = 189 molem ™

" nucleus = (14 x 107 emy(1)'? = 1.4 x 1073 em

Mhe nucleus = (14 % 1072 em)@)'? =22 x 107" em

(a) The excluded volume of a nuclear collisional pair is estimated to be equal to the volume of the
dashed sphere in Figure 21.3. The excluded volume of a single nucleus is 1/2 of this.

I 4 16
b2 (Ny) % (5) % [%(2,-)3] = _3£NAr3

Nu:i*::leus

Figure 21.3

In this problem we have a mixture of hydrogen and helium nuclei so let us take r to equal the
weighted average of hydrogen and helium radii. This is, of course, a very simple estimate. Then

r 2 0.36(1.4 x 1072 cm) + 0.64(2.2 x 107"% cm)

ra19x107%em

16
b= —3’1(6.022 x 10% mol™") x (1.9 x 1073 cm)?

b~71 x107"cm® mol™!

b(percm3) ~ 82moal x 7.1 x 107" ¢m? mol ™!

~ 58 x 107" cm’

This b is extraordinarily small compared to [ cm®, so we may treat the nuclei as points within any
macroscopic volume. In the sense that the nuclei act as volumeless points, the perfect gas law would
seem to be applicable. However, our analysis has not included details of the internuclear forces and
these may be appreciably larger than the hard-sphere model estimate.

1%
(b)) Toerfeet = p—, where » = total number of moles of gaseous particles including the number
P nR &

of moles of electrons

3 (2.5 x 10" atm) x (1 dm?/10° cm?) 3
"~ (189 molem™?) x (0.0821 dm> atm K~ mol 1y

1.6 x 107K = Tperfect




412 INSTRUCTOR'S SOLUTIONS MANUAL

Vi — & a
(<) TvanderWaals = mT (P + '@)
_ P(Vm - b)
R

(=) = &l(=) ]

.y

R
_ ( 2.5 x 10! atm )
~ \0.0821 dm® atm K=" mo! !

assuming o = 0

1
x [—3 — 71 x 107 %em? mol"]
189 molcm™

(7.1 x 107" em® mol™!) x (2.5 x 10'! atm)
(0.0821 dm® atm K~ mol ™)

= Tpcrfccl -

where the last term is negligible. Therefore
TvanderWaals = Tperfccl

P21.40 The mean square displacement is (from Exercise 21.28(b})

2 —5 2
oA B u o ox107tmy )
(’ )_6DI so 1= 6D 6(1.0 x 10—Ilm25—1) _




