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Preface

This manual provides detailed solutions to all the end-of-chapter (b) Exercises, and to the even-numbered
Discussion Questions and Problems. Solutions to Exercises and Problems carried over from previous
editions have been reworked, modified, or corrected when needed.

The solutions to the Problems in this edition rely more heavily on the mathematical and molecular
modeling software that is now generally accessible to physical chemistry students, and this is particularly
true for many of the new Problems which request the use of such software for their solutions. But almost
all of the Exercises and many of the Problems can still be solved with a modern hand-held scientific
calculator. When a guantum chemical calculation or molecular modeling process has been called for,
we have usually provided the solution with PC Spartan Pro™f because of its common availability.

In general, we have adhered rigorously to the rules for significant figures in displaying the final
answers. However, when intermediate answers are shown, they are often given with one more figure
than would be justified by the data. These excess digits are indicated with an overline.

We have carefully cross-checked the solutions for errors and expect that most have been eliminated.
We would be grateful to any readers who bring any remaining errors to our attention.

We warmly thank our publishers for their patience in guiding this complex, detailed project to
completion.

P.W.A.
CAT
M.P.C.

C.G
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The properties of gases

D1.4

D1.6

E1.1(b)

Answers to discussion questions

The partial pressure of a gas in a mixture of gases is the pressure the gas would exert if il occupied alone
the same container as the mixture at the same temperature. It is a limiting law because it holds exactly
only under conditions where the gases have no effect upon each other. This can only be true in the limit
of zero pressure where the molecules of the gas are very far apart. Hence, Dalton’s law holds exactly
only for a mixture of perfect gases; for real gases, the law is only an approximation.

The critical constants represent the state of a system at which the distinction between the liquid and
vapor phases disappears. We usually describe this situation by saying that above the critical temperature
the liquid phase cannot be produced by the application of pressure alone. The liquid and vapor phases
can no longer coexist, though fluids in the so-called supercritical region have both liquid and vapor
characteristics. (See Impacr 1.4.1 for a more thorough discussion of the supercritical state.)

The van der Waals equation is a cubic equation in the volume, V. Any cubic equation has certain
properties, one of which is that there are some values of the coefficients of the variable where the
number of real roots passes from three to one. In fact, any equation of state of odd degree higher than
1 can in principle account for critical behavior because for equations of odd degree in V there are
necessarily some values of temperature and pressure for which the number of real roots of V' passes
from n {odd) to 1. That is, the multiple values of V converge from nnto 1 as T — T¢. This mathematical
result is consistent with passing from a two phase region (more than one volume for a given T and p) to
a one phase region (only one V for a given T and p and this corresponds to the observed experimental
result as the critical point is reached.

Solutions to exercises
(a) The perfect gas law is
pV =nRT

implying that the pressure would be

_ nRT

P
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All guantities on the right are given to us except n, which can be computed from the given mass

of Ar.
n= ﬁ = 0.626 mol
sop = (0.626 mol) x (8.31 x 1072 c]i.r:f*d':a; K~ 'mol™") x (30 + 273 K) _
not 2.0 bar.

(b) The van der Waals equation is

_RT _ @

Vm—b V2

(831 x 1072dm’ bar K™ 'mol ™) x (30 +273) K
P= s dm?/0.626 mol) — 3.20 x 10~2 dm* mol~!

(1.337 dm®tm mol=2) x {1.013 bar atm™!)
_ =|(10.4 bar

(1.5 dm® /0.626 mol)2

P:

E1.2(b}) (a) Boyle’s law applies:
pV = constant so prVr =piV;

and

piVe  (1.97 bar) x (2.14dm%)
= —— = =|(1.07 bar
="y 2.14 + 1.80) dm? [1.07 bar]

(b) The original pressure in bar is

1 atm 760 Torr
pi = (1.07 bar) x (1.013bar) X ( )_ 803 Torr

1 atm

E1.3(b) The relation between pressure and temperature at constant volume can be derived from the perfect
gas law

Pi Pf
V =nRT so0 xT d —==—
P P an T, T

The final pressure, then, ought to be
pTe  (125kPa) x (11 +273) K
=T = =120 kPa
o= 200 25K X (114

E1.4(b) According to the perfect gas law, one can compute the amount of gas from pressure, ternperature,
and volume. Once this is done, the mass of the gas can be computed from the amount and the molar

mass using
pV =nRT

“ pV  (1.00atm) x (1.013 x 10°Paatm™') x (4.00 x 10* m?)
n= =— =
RT (83145 J K 'mol™!) x (204+273) K

and m = (1.66 x 10° mol) x (16.04 g mol™") = 2.67 x 10%g =|2.67 x 10° kg

= 1.66 x 10°mol




E1.5(b}

E1.6(b)

E1.7(b)
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Identifying pex in the equation p = pex + pgh [1.3] as the pressure at the top of the straw and p as the
atmospheric pressure on the liquid, the pressure difference is

p—pex = pgh= (1.0 x 107kg m™3) x (9.81ms™2) x (0.15m)

=|1.5x 10% Pa | (= 1.5 x 1072 atm)

The pressure in the apparatus is given by

P = Pam + pgh [1.3]
Pam = 760 Torr = 1 atm = 1.013 x 10° Pa

1k 10® cm?
pgh = 13.55 g cm™? x (mfg) X ( = ) x 0.100m x 9.806 ms~2 = 1.33 x 10* Pa
m

p=1013x10°Pa + 1.33 x 10° Pa = 1.146 x 10° Pa=| 115 kPa

All gases are perfect in the limit of zero pressure. Therefore the extrapolated value of pVy, /T will give
the best value of R.

The molar mass is obtained from pV = nRT = %RT

RT RT
which upon rearrangement gives M = %? =p—
P

The best value of M is obtained from an extrapolation of p/p versus p to p = 0; the intercept is M /RT.

Draw up the following table

p/atm (pVen/T)/(dm?* atm K~'mol™")  (po/p)/(dm3atm™")

0.750 000 0.082 0014 1.428 59
0.500 QGO0 0.082 0227 1.428 22
0.250 000 0.082 0414 1.427 90

From Figure 1.1(a), (E¥—m) = [0.082 061 5 dm® atm K~! mol~!
p=0

ol
T
T E
. b
>
- E
o
E
=
i=
4
=

Figure 1.1(a)
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From Figure 1.1(b). (E) =142755¢ dm? atm™!
p=0

Figure 1.1(b)

i
p

M=RT(

) = (0.082 061 5 dm® atm mol™' K™') % (273.15 K} x (1.42755 g dm*atm™")
p=0

=|31.9987 g mol ™!

The value obtained for R deviates from the accepted value by 0.005 percent. The error results from the
fact that only three data points are available and that a linear extrapolation was employed. The molar
mass, however, agrees exactly with the accepted value, probably because of compensating plotting
erTOrs.

The mass density p is related to the molar volume Vi, by

M
Vm =
y2)

where M is the molar mass. Putting this relation into the perfect gas law yields

M
pVa =RT so Do —RT
P

Rearranging this result gives an expression for M, once we know the molar mass, we can divide by the
molar mass of phosphorus atoms to determine the number of atoms per gas molecule

RTp _ (8.314Pam’mol™") x [(100 + 273)K] x (0.6388 kg m™*)
P 1.60 % 107 Pa

=0.124kgmol ™' = 124 g mol™"

M=

The number of atoms per molecule is

124 g mol ™!

—=—— =400
31.0g mol~!

suggesting a formula of
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E1.9(b) Use the perfect zas equation to compute the amount; then convert to mass.

pv
pV=nRT so n=—
RT

We need the partial pressure of water, which is 53 percent of the equilibrium vapor pressure at the given
lemperature and standard pressure,
p = (0.53) x (2.69 x 10° Pa) = 1.43 x 10° Pa

_ (1.43 x 10° Pa) x (250 mY)
T (831451K 'mol™"y x (23 +273)K

or m= (145 x 10 mol) x (18.0g mol™') = 2.61 x 10° g =|2.61 kg

E1.10(b) (a) The volume occupied by each gas is the same, since each completely fills the container. Thus solving
for V we have (assuming a perfect gas)

SO 7 = 145 x 10% mol

mRT 0225¢
V = HNe = 1
12| 20.18 g mol™

= 1115 x 107 mol, pn. =8.87kPa, T =300K

(L1 15 x 1072 mol) x (8.314dm* kPa K~ ' mol™") x 300 K)

8.87 kPa
-

{b) The total pressure is determined from the total amount of gas, # = itch, + Mar + fiNe.

v =3.137dm?

0.320 ¢ _ 0.175 g
neHy = —DI =1.995 x 10 2 mol Har = —Dl =438 x 10 mol
16.04 g mol™ 39.95 g mol™
n= (1995 + 0.438 + 1.115) x 10" 2mol = 3.548 x 10~2mol
nRT (3.548 x 1072 mol) x (8.314 dm? kPa K~! mol™!) % (300 K)

- [Ezin]

E1.19(b) This is similar to Exercise 1.11(a) with the exception that the density is first calculated.

3.137 dm?

RT
M = p— [Exercise 1.8(a)]
p

_ 33.5mg
= 250em?

1340g dm™) x (62.36 dm Torr K~ ! mol~!
M= {0.1340 g dm™") x (62.36 dm" Torr mol™) x (298 K) =|16.14 g mol™!
152 Torr

E1.12(b) Thisexerciseis similar to Exercise [.12(a) in that it uses the definition of absolute zero as that temperature
at which the volume of a sample of gas would become zero if the substance remained a gas at low

temperatures. The solution uses the experimental fact that the volume is a linear function of the Celsius
temperature.

= 0.1346g dm™, p=152Torr, T =298K
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Thus V= Vg +aVpl = Vp + b8, b =aVy
At absolute zero, V =0,0r0 = 20.00dm’ + 0.0741 dm® °C~! x @(abs. zero)

20.00 dm?®
O (abs. zero) = it L =270°C

0.0741 dm? °C~!

which is close to the accepted value of —273°C.

nRT
E1.13(b} (a) p= Vv

n = 1.0mol
T = (i) 273.15K: (ii) 500K
V = (i) 22.414dm>; (i} 150cm?

_ (1.0mol) x (8.206 x 1072 dm® atm K~ mol™") x (273.15K)

(i) :
22.414dm
=
(i) _ (1.0mol) x (8.206 x 102 dm’ atm K~' mol™") x (500K)
- 0.150 dm?

= (2 significant figures)

(b) From Table (1.6) for H»S

a = 4.484 dm® atm mol ! b = 4.34 x 1072 dm’ mol ™!
nRT an?
p= - —
V —nb V-

_ (1.0 mol) x (8.206 x 1072 dm? atm K~ mol™!) x (273.15 K)

i
® 22414 dm® — (1.0 mol) x (4.34 x 10=2dm> mol™")
(4.484 dm® atm mol™") x (1.0 mol)?
(22.414 dm*Y’
=
@) (1.0 mol) x (8.206 x 10~2dm? atm K~ mol™") x (500K)
11 =
0.150 dm> — (1.0mol) x (4.34 x 10-2 dm’ mol™")

(4.484 dmPatmmol ') x (1.0 mol)?
(0.150dm?)2

= 185.6atm ~ (2 significant figures).

E1.14(b) The conversions needed are as follows:

latm=1013x 105Pa; 1Pa=lkgm 's7% 1dm®=10"%m® 1dm®=10""m?
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Therefore,

a = 1.32 atm dm® mol~? becomes, after substitution of the conversions

a =| 1.34 x 107! kg m*s~2mol~? |, and

b = 0.0436 dm® mol ™! becomes

b =436 x 10~5 m3mol~!

E1.15(b) The compression factor is

7= PVm Vi

RT ~ Vo

(a) Because Vip = V3 +0.12 V5 = (L.12)V7, we have Z =[ 1.12 Repulsive | forces dominate.

{(b) The molar volume is

V= (LI2)VS = (1.12) x (RP_T)

0.08206 dm’ atm K~' mol™') x (350K
V= (1.12) x (( o amlzamllm ) x B8N _ (57 dm® mol-!

Eltee) (@  vo o KT _ B314IK mol™h) x 298.15K)

"p (200 bar) x (105 Pabar™')

=1.24 x 107* m’ mol~" =0.124 dm? mol~!

{b) The van der Waals equation is a cubic equation in Vi,. The most direct way of obtaining the molar
volume would be to solve the cubic analytically. However, this approach is cumbersome, so we
proceed as in Example 1.4. The van der Waals equation is rearranged to the cubic form

R
vg—(b+ﬂ)v§,+(f)vm—@=o or xJ—(b+—T)x2+(f)x—@=o
P P p P p P

with x = Vm/(dm3 mol™1y.
The coefficients in the equation are evaluated as

(8.206 x 10~2dm’ mol™!) x (298.15 K)
(200 bar) x (1.013 atmbar™ ")

RT
b+ — = (3.183 x 1072dm® mol ) +
p

= (3.183 x 1072 + 0.1208) dm” mot~' = 0.1526 dm*mol™"

a 1.360 dm® atm mol ™2

7 (200 bar) x (1.013 atm bar—))

= 6.71 x 1073 (dm> mol~1)2

ab _ (1.360 dm® atmmol~?) x (3.183 x 10~2dm"* mol~")

| = 2.137 x 10~*dm’® mol™")?
(200 bar) x (1.013 atm bar™")

Thus, the equation to be solved is x* — 0.1526x% + (6.71 x 10~3)x — (2.137 x 10~%) = 0.



E1.17(b)

E1.18(b)

E1.19(b)

10 INSTRUCTOR'S SOLUTIONS MANUAL

Calculators and computer software for the solution of polynomials are readily available. In this case
we find

x=0.112 or Vy=|0.112dm’ mol~"]

The difference is about 15 percent.

The molar volume is obtained by solving Z = pVy,/RT [1.17], for Vy,, which yields

ZRT  (0.86 08206 dm? atm K~ mo! ™! 300K —
Yy = KT _ (086) x © m” aum K mol™ ) x G0K) _ | 55 dm® mol™!
P 20 atm

(a) Then, V = nVy = (8.2 x 10" mol) x (1.059dm? mol=') = 8.7 x 107 dm® =

(b) An approximate value of B can be obtained from eqn 1.19 by truncation of the series expansion after
the second term, B/Vy,, in the series. Then,

v
B=Vm(p—;—l)=vmx(2—l)

= (1.039 dm’ mol ') x (0.86 — 1) = | —0.15 dm’mol~'

(a) Mole fractions are

nN 2.5 mol
= = =(0.63
N = renl 25+ 1.5 mol (063

Similarly, xy =

(b) According to the perfect gas law

Powl ¥V = moalRT

Mol RT
Vv

_ (4.0mol) x (0.08206 dm”’ atm mol ™! K=!) x (273.15K)

22 4dm?

50 Dol =

(c) The partial pressures are

PN = Anpion = (0.63) x (4.0atm) =
and py = (0.37) x (4.0atm) =

The critical volume of a van der Waals gas is

Ve=3b

sob = 4V, = $(148cm’ mol™') = 49.3cm® mol ™' =|0.0493 dm’ mol!

1
3

By interpreting b as the exciuded volume of a mole of spherical molecules, we can obtain an estimate
of molecular size. The centers of spherical particles are excluded from a sphere whose radius is the
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diameter of those spherical particles (i.e. twice their radius); that volume times the Avogadro constant
is the molar excluded volume &

ar(2r)3 L/ 36 \'/?
”=N‘“( 3 ) 0 "=5(4nNA)

173
1{ 3(49.3¢m’ mol™!

= (—Semmol )} gk 10 em = [194 x 10 m
2 \ 47(6.022 x 107 mol™)

The critical pressure is

d

Pe= 7

$0 @ = 27pcb? = 27(48.20 atm) x (0.0493 dm’ mol~")2 =|3.16 dm® atm mol =2

But this problem is overdetermined. We have another piece of information

_ 8a
€7 27Rb

According to the constants we have already determined, 7. should be

B 8(3.16 dm® atm mol~?)
T 27(0.08206 dm” atm K=! mol™") x (0.0493 dm> mol™!)

=231 K

7.

However, the reported T} is 305.4 K, suggesting our computed a/b is about 25 percent lower than it
should be.

E1.20(b) (a) The Boyle temperature is the temperature at which limy,__, oo dZ/{d(1/Vy,)) vanishes. According
to the van der Waals equation

( RT t ) v
_ P Vm _ vm - b V]:[!'] m _ Vm _ a
~ RT RT Vm—b  VaRT

dZ ( dZ ) ( dVm )
SO —— =\ X\ —/——————
d(1/Vm}) dVn d{1/Vin)

dz , Vi | a
— _v2 . — _v-
m (dvm) : ((vm o Va—b T vEnRT)
_ V%b a
T (Vm—b)? RT

Z

In the limit of large molar volume, we have

dz
lim —:b——a = so i:b
Voo d(1/Vin) RT RT

4.484 dm® atm mol_z)

: (

d7=— = =[1259K]
o Rb {0.08206 dm>® atm K~! mol~!) x (0.0434 dm® mol~")
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(b) By interpreting & as the excluded volume of a mole of spherical molecules, we can obtain an estimate
of molecular size. The centres of spherical particles are excluded from a sphere whose radius is the
diameter of those spherical particles (i.e. twice their radius); the Avogadro constant times the volume
is the molar excluded volume b

dm(2r)? 1/ 3 \'?
b=NA( N(Sr)) 50 r=§(4rrNA)

1 ( 3(0.0434 dm® mol ™)

1/3
=1286x 10%dm =1.29 x 1079 m ={0.129 nm

2

E1.21{(b) States that have the same reduced pressure, temperature, and volume are said to correspond. The reduced
pressure and temperature for Nz at 1.0 atm and 25°C are

1. K
L Oam _ 1030 and T, = & = BHZIK_, 4

Pre e T 3354am .~ 1263K

The corresponding states are

(a) For H,S

p = pepe = (0.030) x (8.3 atm) =
T = T;T. = (2.36) x (373.2K) = [881 K

(Critical constants of H3S obtained from Handbook of Chemistry and Physics.)
(b) For CO»

p = ppe = (0.030) x (72.85atm) =
T = T;T: = (2.36) x (304.2K) =

(¢} For Ar

P = pepe = (0.030) x (48.00atm) =
T = T,T; = (2.36) x (150.72K) =[356 K

E1.22(b) The van der Waals equation is

_ RT a
P=vo-b V2

which can be solved for &

8.3 ~mo]™! K
b=V — RTa — 4.00 x 10~* m3 mol~! — (8.3145J K~ "mol ): (288 )2
2 7 P 1~
P*v 4.0 x 106pa 4 7o Pamol =
(4.00 x 1079 m3> mol 12

=11.3 x 10~*m? mol™!




P1.2
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The compression factor is

_ pVm (40 x 10°Pa) x (4.00 x 1074 m* mol~') _
T ORT  (83145JK 'mol™!) x (288K)

0.67

Solutions to problems
Solutions to numerical problems

Solving for n from the perfect gas equation [1.8] yields n = pV/RT and n = in/M , hence p = m/V =

RT RT RT
Mp/RT. Rearrangement yields the desired relation, thatis|p = p— |, or Z_ —,and M = —

M poM ple

Draw up the following table and then plot p/p versus p 1o find the zero pressure limit of p/ o where all
gases behave ideally.

p/(gdm™) = p/(kg m3);

. 105 P
1 Torr = (1 Torr) x (ﬂ) x (M) = 133.3Pa

760 Torr | atm
p/Torr 91.74 188.98 2773 4528 6393  760.0
p/(10° Pa) 1223 2519 3.696  6.036 8522 10.132
p/(kgm™?) 0225 0456 0.664  1.062 1468 1734
(p/p) (10°m?s72) 544 552 5.56 5.68 5.81 5.84

P s plotted in Figure 1.2, A straight line fits the data rather well. The extrapolation to p = 0 yields an
o

intercept of 5.40 x 10* m?2s~2. Then

M= RT _ (83141K"'mol™") x (298.15K)
T 540 x 107 m?s72 540 x 109 m?s~2

= 0.0459kgmol ™ = [45.9 g mol~!

—— ¥=5.3963 + 0.046074x R = 0.99549

(plp) (10%m*s™")

pI{10*Pa) Figure 1.2
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COMMENT. This method of the determination of the molar masses of gaseous compounds is due to Can-
nizarrc who presented it at the Karlsruhe conference of 1860 which had been called to resalve the problem of
the determination of the molar masses of atoms and molecules and the molecular formulas of compounds.

The mass of displaced gas is gV, where V is the volume of the bulb and p is the density of the gas. The
balance condition for the two gases is m(bulb) = pV (bulb), m(bulb) = 'V (bulb)

which implies that p = p’. Because [Problem 1.2] p = pM/RT

the balance condition is pM = p'M’

which implies that M’ = £ x m
P

This relation is valid in the limit of zero pressure (for a gas behaving perfectly).

In experiment 1, p = 423.22 Torr, p/ = 327.10 Torr; hence

, 42322 Torr

= 2 M 70,014 1! =90.59 1!
327.10Torr < 0-014gmo gmo

In experiment 2, p = 427.22 Torr, p’ = 293.10 Torr; hence

,_ 427.22Torr

= —=C 70014 1=! = 102.0 !
20310 Torr | gmo gmo

In a proper series of experiments one should reduce the pressure (e.g. by adjusting the balanced
weight). Experiment 2 is closer to zero pressure than experiment 1; it may be safe to conclude that

| M = 102 g mol~" | The molecules | CH,FCF; | or| CHF,CHF; | have M % 102 gmol™".

We assume that no H» remains after the reaction has gone to completion. The balanced equation is
N2 + 3H; — 2NH;

We can draw up the following table

Na H» NH; Total

Initial amount n » 0 n+n

Final amount n — %n’ 0 %n’ n—+ %n’
Specifically 033mol 0 1.33mol 1.66 mel
0

Mole fraction 0.20 0.30 1.00

RT 206 x 10~ 2dm” atm K~! mol™! 273.15K
p=“—:(l.66mol)>< @ X - am ;no ) % ( ) =|1.66 atm
v 22.4dm
p(H) = x(Ha)p = [0]

p(N2) = x(Na)p = (0.20 x (1.66atm)) =
p(NH3) = x(NH3)p = (0.80) x (1.66 atm) =
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From definition of Z [1.16] and the virial equation [1.19], Z may be expressed in virial form as

P1.8
I 1\’
VITI VI‘I'I
Since Vi, = RT/p [assumption of perfect gas], 1/V, = p/RT; hence upon substitution, and dropping
terms beyond the second power of (1/Vg)
_ v LAY
Z=1 +B(RT) +C(RT)
100 at
Z=14(=217 x 107 dm* mol™) x ( o )
(0.0821 dm” atm K~ 'mol™") % (273K}
100 at 2
+(1.200 x 1072 dm® mol2) x ( - = _ )
(0.0821dm” atm K=" mol™!) x (273K)
Z =1 — (0.0968) + (0.0239) =|0.927
RT 0.0821dm’ atm K=" mol™') x (273K
Vin = (0.927) x (—) = (0.927) x (( ™ mmo — ) x CBKY 16208 dm®
P
Question. What is the value of Z obtained from the next approximation using the value of Vi, just
calculated? Which value of Z is likely to be more accurate?
P1.10 Since B’(Tg) = 0 at the Boyle temperature {Section 1.3b): B'(Tg) = a + be=</Ts =0

—(1131 KD :

Solving for T : T =
[—(—0. 1993 bar")}

(0.2002 bar™ 1)

2 2a \'7? 1 2aR\'?
P1.12 From Table 1.6 T, = (5) X (ﬁ) s P = (E) x (m)
2a \'* 126
il may be solved for from the expression for p. and yields 229P¢ ) Thus
3bR R
2 lngb 8 Pc Vc
T = —_ — —
‘ @)X(R ) @)X(R
8 40 atm) x (160 x 10~*dm’ mol~! -
( ) ( ) =|210K

()
3 8.206 x 10~2dm? atm K~! mol™!

-6 3 —1
b (1) g (E) 160 x 10~° m” mol 886 x 10-2 m?

T (3) % (6.022 x 1023 moi~ ")

1% = — =

'mol Na 3 Na
4

Ymol = T’ﬁ

3 B 173
r= (E x (8.86 x 107 m3)) =[0.28 nm|
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Solutions to theoretical problems

Z=me= 1

[see Exercise 1.20(a).]

m

p A\ 2
which upeon expansion of (1 - T) =14+—+ (—) + - -yields

a 1 1\?
Z=1 (b—— x{— V462 {—) +--
+ (0~ 57) ( Vo ) ( Vo )
We note that all terms beyond the second are necessarily positive, so only if

a b + b \? +
- il
RTVh  Vm Vi

can Z be less than one. If we ignore terms beyond b/ Vyy,, the conditions are simply stated as
Z<! when—>b Z>1 when— <b
en — > > when — <
= " ’T " RT

Thus Z < 1 when attractive forces predominate, and Z > 1 when size effects (short-range repulsions)
predominate.

The Dieterici equation of state is listed in Table 1.7. At the critical point the derivatives of p with respect
to (wrt) Vo, equal zero along the isotherm for which T = 7. This means that (3p/3Vn)r = 0 and
(82p/3V2)r = 0 at the critical point.

_ RTe=*/RTVm ap ) _ [aVm —ab—RTVZ
L — 3V )7 T VZ(Vi — BIRT)

( apy\ (8_p) [an —ab — RTV2, (—2aV2 + 4Vyab + RTVS, — 2ab?)
avz /)y \oVm/r | VAV — BYRT) P (VRI(Vm — B2(RT)])

Each of these equations is evaluated at the critical point giving the three equations:

RTC e—a/RTc Ve

Po=—% aVe —ab— RTVE =0

—2aV? +4Veab + RT.V? — 2ab* = 0

Solving the middle equation for T, subsfitution of the result into the last equation, and solving for V¢
yields the result: V. = 2b or b = V,/2 (The solution V. = b is rejected because there is a singularity
in the Dieterici equation at the point Vy, = b.) Substitution of V; = 2b into the middle equation and
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solving for 7, gives the result; 7. = a/4bR or a = 2RT:V;. Substitution of V; = 2b and T, = a/4bR
into the first equation gives:

1 a _2
Pe= Z (F) €
The equations for Ve, T¢, pe are substituted into the equation for the critical compression factor (eqn 1.23)
togive: Z, = pcVe/RT. = 2e~2 = 0.2707. This is significantly lower than the critical compression factor
that is predicted by the van der Waals equation (eqn 1.21a): Z.(vdW) = p V/RT. = 3/& = 03750

Experimental values for Z; are summarized in Table 1.5 where it is seen that the Dieterici equation
prediction is often better.

v
P oy =1 4 Bp+CP + - [L18]
RT
PV B C
0+ 4+ [119
’r TV, T2 L1.19)
B C
whence Bp+C'p? 4+ = — + — + -+
Vm Vi
Now multiply through by Vi, replace pVi by RT{I + (B/Vn) + - - - }, and equate coefficients of
l BB'RT + C'R*T? C
powersof — :BRT+ — M +--- =B+ — + -
VI'I'I Vm m
! : : , B
Hence, B'RT = B, implying that| B’ = —
RT
’ p2r2 2 272 ; : ,_C-#
Also, BB'RT + C'R°T* = C, or B + CR*T* = C, implying that| C’" = 7T

2V, v,
Write Vy, = f(T,p); thendVp, = (—m) dT + (_“‘) dp
A » ap Jr

Restricting the variations of T and p to those which leave Vi, constant, that is dVi; = 0, we obtain

()
()5, ().~ (8, ().
aT /, o /r aT J Vm /o aT /v, ap
AV /7

From the equation of state

ap RT s ap) R b
/i L A YOS N Py 2,2
(3Vm)r vz ~ At (aT Vo Vm " Vi

m

R b A
vy () ()
(_é“f)p - _( RT 2(a+bT)) - (RT N 2(a+bT))

vZ v Vi vZ

Substituting
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, +bT RT
From the equation of state u =p - -
Vr}', Vin
b b
R+ — R+ —
e (VY _ ( +vm) _( +vm)_ RVo + b
ar J, RT ( RT)_ RT | 2pVm —RT
i 2 - — 2p _—
Vm m Vrl'l
P1.22 Z = Vin/V3, where V7, = the molar volume of a perfect gas
From the given equation of state
RT b+ vy b
Vn]:b-}-—p—:b-l—vr?, then Z = V]%m=l+ﬁ

For Viy = 106, 106 = b+ V3, or V& = 9b

then2=@= E= 1.11
9b 9

P1.24 The virial equation is

B C
me=RT(l+V—m+V—2+"') or

m

PV B C
=14+ —4+ =
RT + Vo V2

m

(a) If we assume that the series may be truncated after the B term, then a plot of (pVin /RT) vs (1/V)
will have B as its slope and | as its y-intercept. Transforming the data gives

p/MPa (Vi /dm?)/(mol™") pVm/RT (1/Vy)/(mol dm™)

0.4000 6.2208 0.9976 0.1608
0.5000 4.9736 0.9970 0.2011
0.6000 4.1423 0.9964 0.2414
0.8000 3.1031 0.9952 0.3223
1.000 2.4795 0.9941 0.4033
1.500 1.6483 0.9912 0.6067
2.000 1.2328 0.9885 0.8112
2.500 0.98357 0.9858 1.017

3.000 0.81746 0.9832 1.223

4.000 0.60998 0.9782 1.639

A plot of the data in the third column against that of the fourth column is shown in Figure 1.3. The
data fit a straight line reasonably well, and the y-intercept is very close to 1. The regression yields

B=|-132 x 1072 dm®mol~' |
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1.00 T 5= 099949 - 1.3245 x 10 2%
099 :
PYn
RT
098
0-97 H N H
0 1 2

{1V, Vedm*mol ™
Figure 1.3

{b) A quadratic function fits the data somewhat beltter (Figure 1.4) with a slightly better correlation
coefficient and a y-intercept closer to 1. This fit implies that truncation of the virial series after the
term with € is more accurate than after just the B term. The regression then yields

B=|—-151%10"2dm*mol™'| and € =|1.07 x 10~3 dm® mol~>

»=099947 — 5051 x 107 x + 1.0741 x 1074
0.97 R = 1.000 H
0 1 2

/¥, Y(dm*mol™!
(¥ (ol Figure 1.4

Solutions to applications

P1.26 The perfect gas law is

_pv

V=nRT so n=
I H 7 RT

At mid-latitudes

. . 2 103 10 -1
n=(lOOatm)x[(lOOdm)x(ZSOx 0-%em)/10emdm™"] _ o —

(0.08206 dm® atm K~ 'mol~1) x (273 K)

In the ozone hole

2 -3 -1
"y (1.00 atm) x [(1.00dm~) x (100 x 10~"cm)/10cm dm™"] _[4.46 x 10~* mol

(0.08206 dm® atm K~ 'mol™") x (273K)
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The corresponding concentrations are

-3
2= 112X 197 mol — =28 x 10~ mol dm~? |
Vo {(1.00dm?*) x (40 x 13 m) x (10dm m™")
—4 I
a2 446 x 1077 mo =| 1.1 x 10~% mol dm_3|

V7~ (1.00dm?) x (40 x 103m) x (10dmm™")
respeclively.

v 4 4 _
n= ‘;—T[I.S], V= ?H:J = an x (3.0m)? = 113 m’ = volume of balloon

p=10am, T=298K

1.0at 113 x 10*dm® =
@ n= (104 m);‘ ( - — % ) = [4.6Z x 10? mol
(8.206 x 10~2dm” atm K~ mol™") x {298 K)
(b) The mass that the balloon can lift is the difference between the mass of displaced air and the mass

of the balloon. We assume that the mass of the balloon is essentially that of the gas it encloses.

Then m(Hy) = nM(Ha) = (4.62 x 10° mol) x (2.02gmol~1)=9.33 x 107 g
Mass of displaced air = (113 m?) x (1.22kgm™3) = 1.38 x 10%kg

Therefore, the payload is (138kg) — (9.33kg) =| 1.3 x 10%kg

(¢) For helium, m = nM(He) = (4.62 x 10° mol} x (4.00 gmol~') = 18kg
The payload is now 138kg — 18kg = | 1.2 x 10%kg

Avogadro’s principle states that equal volumes of gases represent equal amounts {moles) of the gases,
s0 the volume mixing ratio is equal to the mole fraction. The definition of partial pressures is

P1=xp
The perfect gas law is

Mo pL_ X

pV=nRT so — = =
vV  RT RT
(a) m(CCLF) _ (261 x 107'%) x (1.0atm) =|| % 10-1 mol dmil
1% (0.08206dm’ atm K~ 'mol™1) x (10 + 273 K -
500 x 10~12 )
ang MECkED) _ (509 x 107 1) x (1 0atm) =[22 % 107" mol dm? |
v (0.08206dm” atm K~ 'mol™") x (10 + 273} K
(b)  m(CCLF) _ (261 x 10~'?) x (0.050 atm) —[80 x 10" mol dm~]
1% (0.08206 dm” atm K~'mol™") x (200K) '
CClhF 10712y % (0.
g n(CChFy) _ (509 x3 012y x ¢ Ot':Oatm) =| 6 % 1= ol dmj
v (0.08206 dm” am K~ "mol 1) x (200K)




2 The First Law

D2.2

D2.4

D2.6

E2.1(b)

Answers to discussion questions

Rewrite the two expressions as follows:
(1) adiabatic p o 1/VY (2} isothermal p &< 1/V

The physical reason for the difference is that, in the isothermal expansion, energy flows into the system
as heat and maintains the temperature despite the fact that energy is lost as work, whereas in the adiabatic
case, where no heat flows into the system, the temperature must fall as the system does work. Therefore,
the pressure must fall faster in the adiabatic process than in the isothermal case. Mathematically this
corresponds to y > 1.

The change in a state function is independent of the path taken between the initial and final states; hence,
for the calculation of the change in that function, any convenient path may be chosen. This may greatly
simplify the computation involved, and illustrates the power of thermodynamics.

The following list includes only those state functions that we have encountered in the first two chapters.
More will be encountered in later chapters.

Temperature, pressure, volume, amount, energy, enthalpy, heat capacity, expansion coefficient, iso-
thermal compressibility, and Joule-Thomson ceefficient.

One can use the general expression for 7z given in Further Information 2.2 (and proved in Section 3.8,
eqn 3.48) to derive its specific form for a van der Waals gas as given in Exercise 2.30(a), that is,
T = a/V,%] . (The derivation is carried out in Example 3.6.)} For an isothermal expansion in a van der
Waals gas dU, = (a/Vm)z. Hence At/ = —a(l/Vina — 1/ V). See this derivation in the solution to
Exercise 2.30(a). This formula corresponds to what one would expect for a real gas. As the molecules
get closer and closer the molar volume gets smaller and smaller and the energy of attraction gets larger
and larger.

Solutions to exercises

The physical definition of work is dw = —F dz [2.4]

In a gravitational field the force is the weight of the object, which is F = mg



E2.2(b)

E2.3(b)

E2.4(b)

22 INSTRUCTOR'S SOLUTIONS MANUAL
If g is constant over the distance the mass moves, dw may be inlergrated to give the total work
o I
W= —f Fdz= —f medz = —mgizr — ) = —mgh  where I = (zr — zj)

w=—(0.120kg) x (9.81 ms_z) x (50 m) = —=59] =59 J needed

This is an expansion against a constant external pressure; hence w = —pe, AV [2.8]

The change in volume is the cross-sectional area times the linear displacement:

3
AV = (50.0em?) x (15¢cm) % ( ) =75x 1074 m?,

100 cm
s0 w=—(121 x 10°Pa) x (7.5 x 107" m*) = -9l J|as1Pam® = 11.

For all cases AU = 0, since the internal energy of a perfect gas depends only on temperature. (See
Molecular interpretation 2.2 and Section 2.11(b) for a more complete discussion.) From the definition
of enthalpy, H = U +pV.so AH = AU + A(pV) = AU 4+ A(nRT) (perfect gas). Hence, AH = 0 as
well, at constant temperature for all processes in a perfect gas.

@

v,
w=—nRT In (—r) [2.11]
v‘

o1 e 31.7dm? 7
= —(2.00mol) x (8.3145JK ™" mol™") x (22 +273)K x In ——— =| =1.62 x 10’}
22.8dm
g=-w=|162x103J
(b) AU=AH =0

w= —p AV [2.8]
where pey in this case can be computed from the perfect gas law
pV = nRT
(2.00mol) x (8.3145J K~ "mol™"} x (22 + 273) K
P= 31.7 dm*

—(1.55 x 10°P 31.7 —22.8) dm?
and = —4:33 X 107 Pa) x ( Ydm T 38 % 10%)
(10dm m~1)3

g=—w=|[138x 10"
©
[free expansion] ¢ = AU —w=0-0 =@

COMMENT. An isothermal free expansion of a perfect gas is also adiabatic.

x (10dmm~%)¥ = 1.55 x 10° Pa

The perfect gas law leads 10

PV nRT) mT>  (111kPa) x (356K)
= or = = = 143 kP
paV  WRT, Pr="7 277K
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There is no change in volume, so . The heat flow is

g = va dT =~ CyAT = (2.5) x (8.31451 K~ mol™") x (2.00 mol) x (356 — 277) K

=(3.28 x 10*]
AU =qg+w=1328 x 10*]

—(7.7 x 10° Pa) x (2.5dm%)
E2.5(b) {(a) w= —pAV = (D dm a3 =

(by w=—nRT In (%) [2.11]

(2.5 + 18.5)dm?

6.56
W= — (_ﬁ_) x (8.31451K " mot™") x (305K) x In A
18.5dm’

39.95 gmol ™!

=[-5281
E2.6(b) AH = AcongH = —AupH = —(2.00mol) x (35.3kImol™") =| —70.6 kI

Since the condensation is done isothermally and reversibly, the external pressure is constant at 1.00 atm.
Hence,

w= —pex AV [2.8] where AV = Vjjq — Vi = —Viyp  because  Vig € Vigp

On the assumption that methanol vapor is a perfect gas, Viyp = nRT/p and p = pex. since the
condensation is done reversibly. Hence,

w ~ nRT = (2.00mol) x (8.3145J K~ mol™") x (64 + 273) K =[5.60 x 10°]
and AU =g +w=(~70.6+560)kJ} ={ —65.0kJ

E2.7({b)  The reaction is
Zn+2H" — Zn*t + H,

so it liberates | mol of Ha(g) for every | mol Zn used. Work at constant pressure is

W= —pex AV = —pViyye = —nRT

50g ) 21
=—| —————— ¥ x [8.3[45]J K™ mol x (234273 K =|—1881]
(gr=r) < ) x 23+ 273 K =[Z1881]
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E2.8(b) (a) At constant pressure, g = AfA.

100+273K
g= f CpdT = f [20.17 + (0.4001)T/K]dT JK™!
04+273K
IK™!

[(20 1T + 2(0.4001) x (12)]
' 2 K 273K

1 2 2 3
= [(20.17) x (373 = 273) + 5 (0.4001) x (373" — 273 )] T= = AH

w=—~pAV = —nRAT = — (1.00mol) x (8.3145JK™" mol™") x (100K) =

AU=g+w=(149—0.831)kI =|14.1 kJ

313K

(b) The energy and enthalpy of a perfect gas depend on temperature alone. Thus, AH =| 14.9 kJ |and

AU = as above. At constant volume, w = @ and AU =¢g,s09 = .

E2.9(b) For reversible adiabatic expansion
Vi lfe
Tr =T, (—‘) [2.28a]
Vr

where

—R A1 —8.314 ~Imol~!
oo Cvm _ Gom _ (37.11-83145) JK 1rno 3463,
R R 8.3145] K~mol~

so the final temperature is
500 x 1073 dm?

1/3.463
Tr=298.15K)x | —m8M8 = (200 K
= ammasw « ()

E2.10(b) Reversible adiabatic work is

w=CyAT [2.27) = n{Cpn — R) x (Tt — T}

where the temperatures are related by [solution to Exercise 2.15(b}]

AN C Cpm — R
T; = 71(7;) [2.28a] where ¢ = ;;"“ = % =2.503

400 x 10-3dm3} "%
SoTr ={(23.0+273.15) K] x | ———— =156 K

2.00dm?

312¢g ) gl
andw= [ ——— | x (29.125 —8.3145) JK "mol " x (156 —296) K =|—-3251J
(28_0 p—e [-3251]

E2.11(h) For reversible adiabatic expansion

1.3
Vi 500 x 103 dm?
peVE =pivl [229] so pr=pi (7') = (8.73 Torr) x (W = [8.5 Torr]
f . m"
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E2.12(b) qp = "Cp,m AT [2.24]

& L
Com = = =|53JK |
pm = AT T 19mol x 178K mo
Cvm = Com—R=1(53—-83)JK 'mol™" =45 JK~! mol"’

E2.13(b) AH = g, = C,AT [2.235,2.24] = nCpm AT

AH = g, = (2.0mol) x 37.11 JK ' mol™!) x (277 - 250)K = I 2.0 x103 J mol™!

AH = AU+ A(pV) = AU +nRAT so AU = AH — nRAT
AU =20x10° Tmol~! — (2.0mol) x (8.3145T K~ mol™!) x (277 — 250)K

=[1.6 x10% § moi~! |

E2.14(b} In an adiabatic process, g = @ Work against a constant external pressure is

—(78.5 x 10°Pa) x (4 x 15 — 15)dm?
W= —pu AV = (10dmm-1)? =|-35x10"17
AU=g+w=|-35x10*]

One can also relate adiabatic work to AT (egn 2.27):

%
i'i(cp.m -Ry

—35x 10%]
T= - -—24 K|
(5.0mol} x (37.11 — 8.3145) JK~! mol™! -

AH = AU+ A(pV) = AU + nRAT,

= —35x 1037 4+ (5.0mol) x (8.3145TK " mol™!) x (=24K) =|—4.5 x 103 ]

E2.15(b) In an adiabatic process, the initial and final pressures are related by (eqn 2.29)

w=CyAT = n(Cpm — R)AT so LT =

Com _ Cpm _ 208JK !mol™! 67

VY =pivY  where = = = =
P Piti Y= Cvm Com—R  (208—831)JK ' mol"

Find V; from the perfect gas law:

_ nRTi _ {1.5mol)(8.31 TK~ ' mol™ ") (315K)

Vv, = =0.0171m?
Toop 230 x 103 Pa m
pi\"" . {230kPa /b
vi=Vvi{Z) =007 =|0. .
so Vi ‘(pr) 0.0 m)(170kPa) 0.0203 m

Find the final temperature from the perfect gas law:

V 170 3 0.0205 m?3 =
T}:%:( x 10° Pa) x ( m)=279K

(1.5mob)(8.31JK~"' mol™!)

25
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Adiabatic work is (eqn 2.27)

w=CyAT = (20.8 — 831) K mol™" x 1.5mol x (279 — 315)K = | —6.7 x 102}

E2.16(b} At constant pressure

g = AH = nAyu,H® = (0.75mol) x (32.0kImol~") =|24.0kJ

and w = ~pAV & —pVyper = —nRT = —(0.75mol) x (8.3145J K" mol™") x (260K)

w=—16x 103J=
AU=w+g=240— 16kl =

COMMENT. Because the vapor is here treated as a perfect gas, the specific value of the external pressure
provided in the statement of the exercise does not affect the numerical value of the answer.

E2.17(b) The reaction is
CeHsOH(l) + 70,(g) — 6COa(g) + 3H,0(l)

AH® = 6AHT(CO2) + 3ATH® (H20) — AfHT(CsH50H)Y — 7AH®(04)

= [6(—393.15) + 3(—285.83) — (—165.0) — 7(0)]1 kI mol~' =|—3053.6 kJ mol~!

E2,18(b) We need ArH® for the reaction
(4) 2B(s)+3Ha(g) — Bz2Hs(g)

reaction(4) = reaction(2) + 3 x reaction(3} — reaction(1)

Thus, AH® = A H%{reaction(2)} + 3 x A H®[reaction(3)} — A, H®{reaction{ 1)}

=[-2368 4+ 3 x (—241.8) — (—1941)1 kI mol~! =| —1152kJ mol~!

E2.19(b) For anthracene the reaction is
CraHio(s) + F02() — 14C02(g) + SH20(1)

AU® = AcH® — AngRT [2.21],  Ang = —3 mol

AU = —T061 kI mol™! — (_g x 83 x 107 kI K™ 'mol™! x 298 K)

= 7055 k] mol™!

225 x 1073 g

gi = Ig =nau"=(—
lal =lgv] = |n8:U”] 172.23 gmol !

) x (7055 kJ mol-‘) = 0.0922 kJ

gl _ 0.0922K

= =" 0. KIK™!' =|68.31K"!
c T 35K 0.0683 68.31K
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When phenol is used the reaction is
CeHsOH(s) + $02(g) — 6C0a(g) + 3H0(1)
AcH® = —3054 kI mol™! [Table2.5]
AU =AH — AngRT, Any = —%

= (=3054kImol™") + (2) x (8.314 x 10 KIK ™" mol™!) x (298K)
= —3050kJ mol ™’

135 x 1073 ¢
lg] =

—‘—1) x (3050 mol™") = 4375 k)
94.12 gmol™

lq] 4.375k)
AT=2 =—"""  _[+464.1K
C  0.0683kIK™!

COMMENT. In this case A.U® and AcH? differed by about 0.1 percent. Thus, to within 3 significant figures,
it would not have mattered if we had used A.H® instead of AcU?, but for very precise work it would.

E2.20(b) The reaction is AgBr(s) — Ag*(aq) + Br(aq)

AlH® = AfH® (Ag™,aq) + ArH®(Br~,aq) — AfH"(AgBr, s)

= [105.58 + (—121.55) — (—100.37)] k) mol~! =| 4+84.40kJ mol ™"

E2.21(b) The combustion products of graphite and diamond are the same, so the transition C(gr) — C{d) is
equivalent to the combustion of graphite plus the reverse of the combustion of diamond, and

AygansH® = [—393.51 — (395.41)] ki mol™" =| +1.90 kJ mol~"

E2.22(b) (a) reaction(3) = (-2) x reaction(1} + reaction(2} and Anp = —1
The enthalpies of reactions are combined in the same manner as the equations (Hess's law).
AHT(3) = (=2) x AcHT(1) + AH®(2)
= [(=2) x (52.96) + (—483.64)] kJ mol~'

=|—589.56 kI mol !

AT =AH® — AngRT

= —589.56kImol™! — (=3) x (8.314JK ™ 'mol™") x (298 K)

= —589.56 kJ mol~' + 7.43kJ mol~" = | —582.13KkJ mol~’

(by ArH® refers to the formation of one mole of the compound, so

AcH® (HD = } (52.96 kJ mor‘) =|26.48 kJ mol~!

ArHO(H30) = } (—483.64KImol ™) =| —241.82KkI mol ' |
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AH® = AU® + RTAng [2.21]
= 7727k mol~! + (5) x (8.3145 x 103 kI K 'mol™") x (298 K)

= —=760.3 kJ mol™!

Combine the reactions in such a way that the combination is the desired formation reaction. The enthalpies
of the reactions are then combined in the same way as the equations to yield the enthalpy of formation,

A:H® /(KT mol™!)

1N2(2) + $02(g) — NO(g) +90.25
NO(g) + $Clz{g) — NOCI(g) -1(75.5)
INa(g) + 102(g) + 1Cla(g) - NOCl(g) +52.5

Hence, AfH®(NOCI, g) =| +52.5kJ mol !

According to Kirchhoff’s law [2.36]

100°C
AH®(100°C) = AH®(25°C) + f ACdT
25°C

where A, as usual signifies a sum over product and reactant species weighted by stoichiometric
coefficients. Because Cp  can frequently be parametrized as

Cpm =a+bT +¢/T?
the indefinite integral of Cp m has the form
f CpmdT = aT + 36T — /T

Combining this expression with our original integral, we have

373K
AH®(100°C) = AH®(25°C) + (TAa + §T A — Acc/T) Bk
Now for the pieces
AH®(25°C) = 2(~285.83 kI mol™") — 2¢0) — 0 = —571.66 kI mol ™"
Ara = [2(75.29) — 2(27.28) — (29.96)1J K~ mol~! = 0.06606 kJ K~' mol~!
Ak = [2(0) — 2(3.29) — (4.18)] x 1072 JK 2 mol™! = =10.76 x 10~ kI K2 mol ™!

Arc = [2(0) — 2(0.50) — (—1.67)] x 10° JK mol~! = 67kJ K mol ™!
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1
AH®(100°C) = [—571.66 + (373 — 298) x {0.06606) 4+ 5(3732 — 2982)

1 l
x{(—~10.76 x 1077} — (67) x (373 298)] kJ mol

=] -566.93 ks mol~! |

E2.26(b) The hydrogenation reaction is
(1 C2Ha(g) + Ha(g) — C2Ha(g) AHT(T) =7

The reactions and accompanying data which are to be combined in order to vield reaction (1) and
AHP(T) are

2 Ha(g) + 102(g) = H20() AH®(2) = —285.83kJ mol ™!
(3)  CaHi(g) + 302(g) — 2H0() +2C02(g) AH®(3) = —1411kJ mol ™!

(4) CoHa(g) + $02(g) = HaO() +2C02(g)  AcH®{4) = —1300k) mol ™
reaction (1) = reaction (2) — reaction (3) + reaction (4)

(a) Hence, at 298 K:
AH® = AH®(2) — AH®(3) + AHT (4)

= [(—285.83) — (—1411) + (~1300)] kI mol~! =

AU® = AH® — AngRT [2.21}; Ang=—I

= 175k mol™! — {(—1) x (248kFmol™") =} —173 kI mo!™!

(b) At348 K:
AH®(348K) = AH®(298K) + A.C, (348K — 298K) [Example 2.6]
ACp =Y WCrntD)[2.37] = Cy(C2Ha, 8) — Cpry (C2Ha2, 8) — €y (Ha, )
J
= (43.56 — 43.93 — 28.82) x 1073 KT K™  mol™! = —29.19 x 107 kJ K" mol ™'

AH®(348K) = (—175kI mol™*) — (29.19 x 107 kI K™ mol™") x (50K)

=|—176 %I mol~!

E2.27(b) NaCl, AgNO;, and NaNO; are strong electrolytes; therefore the net ionic equation is

Agt(aq) + CI~(aq) — AgCl(s)
AH® = ArH® (AgCl) — AfH® (AgT) — AfHE(CIT)

= [(—127.07) — (105.58) — (—167.16)] kI mol™! =| —65.49 kI mol~!



E2.28(b)

E2.29(b)
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Ca®*(g) + 2¢” 4 2Br{g)

lonization Ca(g) + 2Br(g)

Disseciation | Ca(g) + Bra(g)

Electron
gain Br
‘];l:;porizalion Ca(g) + Bra(l) Ca™ (g) + 2Br {g) \ 2
A
Sublimati
C: mation | ¢ 6 + Bra(l) Hydration Br”

Ca®*(g) + 2Br~(aq) \ 4
-Formation CaBra(s)

A Hydration Ca®*
—Solution v

Figure 2.1

The cycle is shown in Figure 2.1.
~DpygH®(Ca*") = — AgoinH®(CaBrz) — ArH® (CaBra, s) + AgpH®(Ca)

+ AvapH® (Br2) + AgissH” (Br2) + Ajon H® (Ca)

+ AionH%(Cat) + 24, H®(Br) + 28phyaHo (Br™)
=[—(—103.1) — (—682.8) + 178.2 + 30.91 + 192.9

+ 589.7 + 1145 + 2(—331.0) + 2(—337)] kI mo! ™"

={1587 kImol !
$0 AnyaH®(Ca®*) =| —1587 kI mol ™!

The Joule-Thomson coefficient w is the ratio of temperature change to pressure change under conditions
of isenthalpic expansion. So

—(BT) ~oT 0K o4 Kam!
F=\op /), " ap T (00—2am =

The internal energy is a function of temperature and volume, Uy, = U (T, Vi), 50

BUm aUm aUm
dUny = dr -— dv, =
m ( aT )Vm + (avm)T m |:7TT ( v )T]

For an isothermal expansion dT = 0; hence

m

V2 Vi 22.1dm? mol~!
= ma dV, a
AUy =[ dln =f — dVy = a] ;1 = ——
v, Y, Vi 1.00dm mol=' V& Vi

au,
dUy, = ( m) dVy = wrdVy, = {_Izdvm
a T Vm

22.1dm* mol ™!

o .l 1.00 dm* mol~!

a a 21.1a
- T o1+ T T 3 1
22.1dm" mol 1.00 dm* mol 22.1dm” mol

= 0.95475a dm™* mol




E2.31(b)

E2.32(b)

E2.33(b)
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From Table 1.6, a = 1.337 dm® atm mol~!

AU, = (095475 mol dm?) x (1.337 atm dm® mol™?)

— I m?
(1.2765 atm dm” mol ") x (1.01325 x 10° Paatm™") x (LJ)
103 dm

129 Pam’ mol™! =/ 129 I mol~!

RT a
w=—fpdVy where p= — — for a van der Waals gas.
Voo — b 5
Hence,
RT a
w= —f (Vm ——b)dvm + / V—%dvm =—g+ AUy
Thus
22.1 dm3 mol™! RT v RT In(V » 221 dm3 I1'|01—I
7= [.UOdnﬁmo]" (Vm - b) " 1V = 0) 1.00 dm* mol ™!
22.1 —3.20 x 1072 p—
= (8.314JK™  mol™") x (298K) x In X " ) =[+7.7485 kI mol ! |
1.00 — 3.20 x 10~2
andw = g + AUp = —(7747Tmol™") + (129 T mol ") = 7618 Jmol~! | = —7.62 kI mol~' |

The expansion coefficient is

aT

oL (BV) _VEIx 10K +2x 152 x 1070 TK™)
v R v

VBT x 107 + 2 x 1.52 x 1078 (7 /Ky K

T V077 + 3.7 x 1074(T/K) + 1.52 x 10-8(T/K)?)

3.7 x 1074+ 2 x 1.52 x 1078310 K~}
- PIx107+2x 152 x VOO T 57« 102k~ |
0.77 + 3.7 x 1072(310) + 1.52 x 10-¢(310)2

Isothermal compressibility is

1 /fav AV o A AV
kr=—=|—) & ——— 5 = ———
d Vi\dp/r VAp F Vir

A density increase of 0.08 percent means AV /V = —0.0008. So the additional pressure that must be
applied is

0.0008 =
Ap= =[3.6 x 102 atm
2.21 x 10-%atm~!

The isothermal Joule-Thomson coefficient is

oH
(T) = —puCp=—(L.11 Katm™ ') x (37.11J K™  mol™") =| —41.2Jatm~" mol~!
P/
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If this coefficient is constant in an isothermal Joule-Thomson experiment, then the heat which must be
supplied to maintain constant temperature is Aff in the following relationship

AH
M _412)am™ mol! so AH = ~(41.2)atm™" mol~"nap

AH =—(41.2] atm™! mol™!) x (12.0mol) x (~55atm) =

Solutions to problems

Assume all gases are perfect unless stated otherwise. Unless otherwise stated, thermochemical data are
for 298 K.

Solutions to numerical problems

RT
P2.2 W= —pAV[28) V=

> Vi, so AV =V

Pex

RT
Hence w % (—pex) X (" ) = —nRT = (—1.0mol) x (8.314 TK t mol™!) x (1073 K)

ex

Even if there is no physical piston, the gas drives back the atmosphere, so the work is also

P2.4 The virial expression for pressure up to the second coefficient is

= RT I+ 5 f1.19]
p= v v .
f F/RT B Vit 1 1
W= — dV = —n — x|+ —]dVy =~-uRTIn (—) + nBRT ( — —)
.[ F [ (Vm) ( Vm) ” mGi Vm.l‘ Vm.i

From the data,

nRT = (70 x 107  mol) x (8.314JK~'mol™") x (373K) = 217

5.25cm? — 6.26 cm? _
Vo.=_—_—""""_  —750cm*mol”!, Vy=-—"""  —890cm®mol”!
™= 30 % 10-2 mol cmmo ™= 50 x 10-3 mol emmoe
d B( 1 l ) (—28.7cm’ nor‘)x( : ! )
and so _— = (— . 1 —_
Vir Vi 89.9cm3mol™!  75.0cm? mol™!
=634 x 1072
Therefore,

- 6.29 = o, -
w= (=273 x In (E) + (2171 x (634 x 107 = (=39.2)) + (13.8)) =
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Since AU =g+wand AUV =4835), g=AU—-—w=(835D+@5)=(+109]

B
AH =AU+ A(pV) with  pV =nRT (l+—)

m

| |
— —) , asAT =0
Vm.f Vm.i

1
A(pV) = nRTBA (V_) = nRTB (

m

=171 x (634 x 107%) = 138

Therefore, AH = (83.5 1) + (13.3J) =

V- 2
2 nRT r-a
= - dVv ith =— - — Table 1.7
Y Ll P b P V—nb y2 [ ]

Vi gy Vi gy Vo —nb 1 |
Therefore, w = —nRTf +n2af 7z = —nRT ln( 2 ) —rla (— — —)
v, V—nb v, V Vi —nb VoV

This expression can be interpreted more readily if we assume V >» nb, which is certainly valid at all but
the highest pressures. Then using the first term of the Taylor series expansion,

).’2
1n(l—x)=—x—?+--- for |x| « 1

nb nb
In(V—nby=mvV+hn|l-=]=InV~-—
n{ nb) =In +n( V) n v

and, after substitution

N Vs 5 1 1 2 1 1
w~—nRTln(v—l)+n bR’T(-‘-/—?‘---—V-—l-)—na(v2 Vl)

V. I
A —nRT In (—2) — n%(a — BRT) (— - _)
Vl V;l. Vl

1 1
2 4wg — nz(a — bRT) (V — V_) = Perfect gas value + van der Waals correction.

2 1
wo, the perfect gas value, is negative in expansion and positive in compression. Considering the correction
term, in expansion Vs > V,, 50 ({1/Va2) — (1/V)) < 0. If attractive forces predominate, @ > bRT and
the work done by the van der Waals gas is less in magnitude (less negative) than the perfect gas—the gas
cannot easily expand. If repulsive forces predominate, 8RT > a and the work done by the van der Waals
gas is greater in magnitude than the perfect gas—the gas easily expands. In the numericat calculations,
consider a doubling of the initial volume.

V. 2.0dm?

(@) wo = —nRT In (T/i) = (—1.0mol™!) x (8.314TK ! mol™!y x (298K) x In (1 3)

wo = —1.72 x 10° 1 =[=1.7k]]

()  w=wy—(1.0mol)? x [0—(5.11 x 1072dm’ mol™!) x (8.3147K™'mol™") x (298K)]

x( L l )=(—1.7§x1031)—(63J)=—|.7§x|031=

20dm®  1.0dm?

Odm
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1 1
w = wg — (1.0moD)? x (4.2 dm® atm mol™2) x ( — )
() 0= ( o "X\ Z0dm® ~ T0dm?

w=wp+ 2.1 dm? atm

3 1 3 . 5
= (=1.72 x 10*J) ++ (2.1 dm*atm) x ( m ) x ([ 01 x 10 Pa)

10dm 1 atm
=(—1.72 x 1081y + (021 x 103)) =| —1.5kJ

Schematically, the indicator diagrams for the cases (a), (b), and (c) would appear as in Figure 2.2
For case (b) the pressure is always greater than the perfect gas pressure and for case (c) always less,
Therefore,

V3 Va Vz
f pdv{c) <f pdV(a) <f pdV(b)
v v

Yi

Figure 2.2

The calorimeter is a constant-volumne instrument as described in the text (Section 2.4); therefore
AU =gy

The calorimeter constant is determined from the data for the combustion of benzoic acid

0.825
U= ( g

m) x (=3251 kI mol™!) = —21.96kJ
12gmo

i lg]  21.96 kI
Since AT=1940K, C=—-=
AT 1.940 K

For D-ribose, Al = —CAT = —(11.32 kJK™'} x (0.910 K)

=1132kIK™!
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150.13 gmol ™!

AU 5 1
= — = - - - 1
Therefore, A U » (I1.32kJK™'} x (0.910K) x ( 0727 2

) = —2127 kJ mol ™!
The combustion reaction for D-ribose is
CsHj9Os(s) + 502(g) — 5CO2(g} + SH0O()

Since there is no change in the number of moles of gas, AH = AU [2.21]

The enthalpy of formation is obtained from the sum

AH/(kImol™!)

5C0O2(g) + SH20(1) — CsH pOs(s) + 50,(g) 2130

5C(s) + 502(g) — 5COa(g) 5 % (—393.51)
5Ha(g) + 30n(g) — SH20(1) 5 x (—285.83)
5C(s) + 5Ha(g) + 302(g) — CsH oOs(s) ~1267

Hence A;H=| —1267 kJ mol ™!

Duata: methane—octane normal alkane combustion enthalpies

Species CH4 CaHg CsHg CaHio CsHy2 Ce¢Hyg CgH, 3
AcH /(K mol™") —890 —1560 —2220 —2878 —3537 —4163 5471
M/(g mal™h) 16.04 30.07 44.10 58.13 72.15 86.18 114.23

Suppose that AcH = kM". There are two methods by which a regression analysis can be used to
determine the values of & and ». If you have a software package that can perform a “power fit” of the
type ¥ = aX?, the analysis is direct using ¥ = A H and X = M. Then, k = a and n = b. Ahernatively,
taking the logarithm yields another equation-one of linear form

In|AH| = In|k| +nlnM where k < 0

This equation suggests a linear regression fit of In(A ) against In M (Figure 2.3). The intercept is In &
and the slope is n. Linear regression fit

Inlki =4.2112,  standard deviation = 0.0480; &k = —e*?!12 =[—67.44]

n=009253|, standard deviation = 0.0121

R =1.000

This is a good regression fir; essentially all of the variation is explained by the regression.

For decane the experimental value of A H equals —6772.5 k)Y mol ™! (CRC Handbook of Chemistry and
Physics). The predicted value is

AcH = kM" = —67.44(142.28)0955% ) mol ™" = | —6625.5 kI mol~!

.. —6772.5 — (—6625.5)
P t f prediction = 100
ercent ermmor o pre 1ction -66255 x
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Normal alkane combustion enthalpies

80 -

In (-AH HK mol™))

75 |

70 |

65 L by e b e b
2.5 3.0 35 4.0 4.5 5.0
In M/(gmol™") Figure 2.3

Percent error of prediction =| 2.17 percent

H,0"* (aq) + NaCH3COO - 3H,0(s) — Na™ (aq) + CH3COOQH(aq) + 4H,0(1)
Rsale = Misal/Msan = 1.3584 g/(136.08 gmol™') = 0.0099824 mol

Application of eqns 2.14 and 2.19b gives:

AcHm = —Acatorimeter 7 /1san = —Cealorimerer+contents AT g
= —(Cealorimeter + Csolution) AT /sal
= _(91.0JK™' +4.144TK "em™2 x 100cm?) x (—0.397 K)/0.0099824 mol

= 20.1 kI mol ™!

Application of eqn 2.32 gives:

AH® = AfH®(Nat,aq) + AfH® (CH3COOH, aq) + 3ArH® (H20,1)
— AfH®(H',aq) — AfH®(NaCH3COO - 3H;0,5)

(where the water coefficient is 3 not 4 because one water in the chemical equation is part of the hydrated
hydrogen ion}. Solving for AfH®(Na*,aq) and substituting ArH® values found in Tables 2.5 and 2.7

gives.
AfH® (Nat,aq) = A[H® — A¢H®(CH3COOH, aq) — 3A¢H®(H20,1) + AfH®(H*, 2q)
+ ArH® (NaCH3COO - 3H20, 5)

AfH®(Nat,aq) = {20.1 — (—485.76) — 3(~285.83) + (0) + (—1604)) ki mol™!

=|241kJ mol™!
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P2.14 We must relate the formation of DyCl,
Dy(s) 4+ 1.5Cla(g) — DyCl3(s)

to the three reactions for which for which we have information. This reaction can be seen as a sequence
of reaction (2), three times reaction (3), and the reverse of reaction (1}, so

ArH® (DyCls,s) = AH®(2) + 3AH®(3) — AH®(1),
AfH®(DyCly, s) = [—699.43 + 3(—158.31) — (—180.06)) kI mol ™"

=|—994.30 k¥ mol ! |

P216  (a) AH® = AH®(SIH30H) — ArH®(SiHs) — 1 AcH®(0y)

=[—67.5—343 = L)1 kI mol~' = —101.8KI moi~! |

(b) AH® = AH?(SiH20) — ArHT(H20) — ArH® (SiHy) — ArHT(02)

= [~23.5 + (—285.83) — 34.3 — 0]k mol ™' = | —344.2kI moi~! |

© AH® = A(H®(5iH20) — ArH® (SiH30H) — ArH® (Hy)

= [~23.5 — (=67.5) — O] kI mol™' =

aH aH oH
p2.18 dH = (—) dT+|— ) dp or dH = (—) dp [constant temperature]
ar P ap T ap T

aH 2
(—ﬂ) = —pCpm [2.53] = — (—“ - b)
p )+ RT

~ (2) x (3.60 dm® atm mol %)
- (0.0821 dm? atm K~ ! mol™'} x (300K)

— 0.044 dm?> mor‘)

= ~0.2483 dm? mol ™!

() a3 — —
AH = [ dH = f (—0.2483 dm> mol~') dp = —0.2483(p; — pi) dm> mol ™!
Pi M

- _RT 9 121b]
P=Va—b V2

m

(0.0821 dm® atm K=" mol~'} x (300 K)) (3.60 dm® atm mol~2

V

j = = 1.225atm
P ( (20.0dm* mol™") — (0.044 dm® mol~") (20.0dm’ mol ') )
-

(0.0821 dm? atm K~ mol™1) x (300 K)) (3.6{) dm® atm mol~2

— —— —— 5 | =2438am
(10.0dm”* mol~') — (0.044 dm’ mol~") (10.0dm* mol™"y?
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AH = (—0.2483dm® mol™") x (2.438 atm — 1.225 atm)

[ 3 1.013 x 105P
— (0301 dm®ammol™!) x | — ) x { 222X Y [ 230,55 mol-!
10dm atm

Solutions to theoretical problems

P2.20 A function has an exact differential if its mixed partial derivatives are equal. That is, f(x,¥) has an exact
differential if

a [of af
ax (a_y) ay (ax)

@ &)=
© &)

g (d
and — f) = —(—x?sinxy)} = —2xsinxy — x>y cosxy
X x

lI

9 9 (UN_ 9 2 _
(Q.xy) and ™ (ay) 3x(x +6y) =

o
a

of
ax

=—/{cosxy — xysinxy)

- - bl - 2
= — xsinxy — xsinxy — x“ycosxy = —2xsinxy — x"ycosxy

3 /4 3
(—) = i(3;:2)72) = 6x%y and — (—f) = — (%) =622y
ay dx \ dy ox

y \ 9x
a [af a a [af ad
d === n=2¢ — | = = —{(2¢ 5} = gf
(d) 8!( S) ar(!e +1ly=e and as(a:) as( +ey=¢e
P2.22
aT /,

aC & falU o (a3l
(B_VV)T = (B—V (B—T) v)r = (ﬁ (W)T)v [derivatives may be taken in any order]

(B_U) = 0 for a perfect gas [Section 2.11(b)]
av /),

aCy
Hence, (W) =0

Likewise C —(E) S0 (ﬁ) = i(B_H) —(i (B_H) )
TP \er/, ap Jr \d\aT /)~ \aT \dp/;/,

oH
(—) = (} for a perfect gas.
ap Jy

aC,
Hence, ( ”) =0
ap Jr
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P2.24 Using the Euler’s chain relation and the reciprocal identity [Further information 2.2)

(5),=- (%), G7),

Substituting into the given expression for C, — Cy

v 2
c-cv_—T(ap v
av ) \aT ),

Using the reciprocal identity again

T (3V/8T).

C,—Cv =
Py @V/3p)r

For a perfect gas, pV = nRT, so

(aV)2 (nR)z : (BV) nRT
PR - JE— an JEN— [ —
ar P P ap T p2

2

nRT /p

+
@ @
“"i|'<

P2.26 (a) V = V(p,T); hence,dV = ( ) dp

Likewise p = p(V,T),50dp = ( ) (
o= (1) () poros = ;)
euseq = v oT), 43l and k7 =
dl v—ldv—(l) av d+(l)(av) d7 = dp + adT
vvepar= (D) (%) w0 () () or =[rvto aar]

d 1 /3 i fa
Likewise dlInp= L_ (_p) dv + - (_P) dT
P p\3V/r p\3T Jy

a3
We express 22 ) in terms of Ky
v/,

1 /aV 3 -1 3 |
Ky = —— (_) —_— [V (_p) } 350 (_p) = —_——
V\ap/, av ), av /), krV

g
We express bl in terms of 7 and o
ar /y

(2),(2),(3),-5 = (2), -5z
aTjy\av /), \ap/r aT)y @BV/ap)T kT

ap
ar

[

)dT
(

v
8_) [2.44] and obtain

39
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dv adT l dv
50 dlnp = — + —=—|adT - —
prtV  prkr | peT 4

vz V2 gy » (Y2 dv
. =— dV = —nRT + nta —
P2.28 w fv." wwr [ fv‘ u

1
Vs — nb
= —nRTIn 2= —nla L—L
Vi —nb V2 Vi

By multiplying and dividing the value of each variable by its critical value we obtain

~ T (Va/Ve) = nb/Ve)\ _ (nPaN (Ve Ve
W= R X (i) Texn ((v./vc) - (nb/Vc)) ( Ve ) g (Vz Vl)
T v 8a

T =—, V,=—, To= —,
r T v, CT IR

_ (8na Vez —(1/3)\ _ (na 1
T (%) % T xcln (vr.l - (1/3)) (Bb) % (vr.z vr,.)

The van der Waals constants can be eliminated by defining w, = 3bw/a, then w = aw;/3b and

_|_8 Vea -3y _ (1 1
= 9"Tr]“(v,..—(1/3)) "(vr.z vm)

Ve =3nb [Table 1.7]

Along the critical isotherm, Tr = 1, V;; = 1, and V; 2 = x. Hence
wr 8 3x—1 |
—=|—=1 ——+1
n 9 n ( 2 ) X +
ar
P2.30 = (—) [2.51]
op /u

Use of Euler’s chain relation [Further information 2.2] yields

= — /ORI 15 53
Coun

(), - (), P52, - G), (5),+ 5
a Jr \dp /s op lr \oVm/r\ 3 /7 ap Ir

Use the virial expansion of the van der Waals equation in terms of p. {See the solution to Problem 1.9.)
Now let us evaluate some of these derivatives.

(aum) _ (E) = 77 = — [Exercise 2.30]
Vm /7 v /s Vr%

pvn = a7 [14 o (b= 7)o+ -
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a(pvm) e h — i (%) A _E

oH a RT a —aRT a
Substituti — ] == - b — ) — - —
wsiwing (51 = (7)< (=57) + (0= 77) ~ G + (0~ )

"
Since (3H /dp)y is in a sense a correction term, that is, it approaches zero for a perfect gas, little error
will be introduced by the approximation, (me)2 = (RT)z.

Thus (3H/3p)7 ~ (—a/RT) + (b — (a/RT)) = (b — (2a/RT)) and p = ((2a/RT) — 8)/Cpm

|1 faVv 1
a= v (ﬁ)p = Wp [reciprocal identity, Further information 2.2]

l i

= —x [Problem 2.31]
V " (T/(V —nb)) — (2ra/RV3) x (V — nb}

(RVY) x (V — nb)
(RTV?) — (2na) x (V — nb)?

1 fav -1
== =— i I identit
KT 7 (3!3)1 vV @p/aVy [reciprocal identity]

1 I
V ™ (CoRT/(V — nb)2) + (2n%a] V?)

KF = — {Problem 2.31]

VIV — nb)?
aRTV3 — 2n2a(V — nb)?

Then «7/a = (V — nb)/nR, implying that k7R = a(Vy — &)
Alternatively, from the definitions of a and x7 above

—(3V/o -1
kr_ - @V/op)y [reciprocal identity]

o (@v/aT), — (3p/8V)r (3V/3T),

aT . .
—_— [Euler chain relation]
/v
V —nb
= i [Problem 2.31],
nR

a(V —nb)
n

kTR =

Hence, k7R = a{Vy, — b)

Work with the left-hand side of the relation to be proved and show that after manipulation using the
general relations between partial derivatives and the given equation for (9U/3V)r, the right-hand side
is produced.
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1’4
(E) = (ﬁ) (3_) [change of variable]
ap/r av/r\ap/r

= (W)T (%)T [definition of H]

S(2) (2) + (%) (2
_(3V)T(3P)1' ( av )T 3P)'r
B ap av 3(pV) _ 1Y)
“[r (), ) (5), + (552, [commonrer(57) |
__(dp (BV) (BV) (BV)
—7(2) (&) —p(E) 4+v Ak

(ar)v o). P\% )T % ),

V —
=T (g_;)v (Z_p)T +V= é 4+ V [chain relation]
v »

v
=|-T|—=] + V |[reciprocal identity]
aT »

_ - 172
5 (8.314JK~"mol™') x (298K) x 3
F Ly ==, = =[322 m s~!
SEE Yy oe ( 30.95 x 10-3 kgmol! [s22.m 7]

Solutions to applications

{a) (i) One major limitation of Hooke's law is that it applies to displacements from a single equilibrium
value of the end-to-end distance. In fact, if a DNA molecule or any other macromolecular chain
that is susceptible to strong non-bonding intramolecular interactions is disturbed sufficiently
from one equilibrium configuration, it is likely to settle into a different equilibrium configuration,
a so-called "local minimum™ in potential energy. Hooke’s law is a good approximation for
systems that have a single equilibrium configuration corresponding to a single minimum in
potential energy. Another limitation is the assumption that it is just as easy {or as difficult) to
move the ends away from each other in any direction. In fact, the intramolecular interactions
would be quite different depending on whether one were displacing an end along the chain or
outward from the chain. (See Figure 2.4.)

I~

Figure 2.4
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(ii) Work is dw = —Fdx = +kg xdx. This integrates to

Xt xr
w =f kpxdy = %kpxz 0 = %kFx?
0

oo 1 /
o |\ /

N ]
IR /
N /

0.1 \ /

0

work

-1 08 06 04 02 0 02 04 06 08 1

displacement Figure 2.5

{(b) (i) One obvious limitation is that the model treats only displacements along the chain, not
displacements that take an end away from the chain. (See Figure 2.4.)

(il) The displacement is twice the persistence length, so

x=2 n=2,v=n/N=2/200=1/100

kT 1+ v (1381 x 107 B 1K) (298K) 1.0}
and [F] = 5 '“(1—u) 2%45% 109m “(0.99) 9:1x 10

(iii) Figure 2.6 displays a plot of force vs. displacement for Hooke's law and for the one-dimensional
freely jointed chain. For small displacements the plots very nearly coincide. However, for large
displacements, the magnitude of the force in the one-dimensional model grows much faster. In
fact, in the one-dimensional model, the magnitude of the force approaches infinity for a finite
displacement, namely a displacement the size of the chain itself {|v| = 1). (For Hooke’s law,
the force approaches infinity only for infinitely large displacements.)

kT | ENT 1
(iv) Workisdw:—Fdx:E{—ln(l—i_:)dx:Tln( +U)dv
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' — Hooke
--—1-D model

force
<

-1 -08-06-04-02 0 02 04 06 08 1
displacement Figure 2.6

This integrates to

o 1 KNT [
‘”=f ﬂm( +”)du=__f (n(l + v) — In(1 — 1)]dw
0 2 I—v 2 Jo

=¥[(1+u)ln(l+u)—u+(l = win(l = v)+ vl

kNT
= T[(l + ve) In(l + vy + {1 — ve) In(1 — wp)]

(v) The expression for work is well behaved for displacements [ess than the length of the chain;
however, for vr = £ 1, we must be a bit more careful, for the expression above is indeterminate
at these points. In particular, for expansion to the full length of the chain

. kNT
w= ll_r;nl —2-—[(1 +v)In(l +v) 4+ {1 —v)In(1 — v}]

ENT kNT In{1 -

— |1+ DIn{l + 1)+ lim(l —v)}In(l —v)| = — 2]n'2+|im—(—u)
2 v—1 2 v—1 (1 —U)_]

where we have written the indeterminate term in the form of a ratio in order to apply I’'Hospital’s

rule. Focusing on the problematic limit and taking the required derivatives of numerator and
denominator yields:

In{l—v) —(1 —w)~!

b BT R R R lim[=(1 =»)] =0

ENT
Theref = —2In2)=|iNTIn2
erefore w 3 {(2In2)
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(c) For v < |, the natural log can be expanded: In(1 + v) = v and In(1 — v) = —v . Therefore

KT (14+v\ T
|F|_Eln(l_v) = Z7lin(1 +v) = la(l —v)]

kT [ — (=] vkl nkT  xkT
r— —_ V)| =—— = —
2! { Ni Ni?

(d) Figure 2.6 above already suggested what the derivation in part (¢} confirms: that the one-dimensional
chain model and Hooke’s law have the same behavior for small displacements. Part (¢} allows us to
identify kT /NI? as the Hooke’s law force constant.

P2.40 The needed data are the enthalpy of vaporization and heat capacity of water, available in the Datea section.
Cpm(H20,1) = 753K~ mol™! AvupH® (H20) = 44.0kI mol ™!
65k
n(H20) = ————5 _ — 36 x 10° mol
0.018 kg mol™

From AH = nC, AT we obtain

AH 1.0 % 10%K)
AT = = =|+37K|
nCpm (3.6 x 103 mol) x (0.0753kJ K~ moi™") -

From AH = nAgpH® = %AMPHB

Mx AH  (0.018kgmol™") x (1.0 x 10*Kk))
m= = =|4.09kg
AvapH® 44.0kJ mol ™!

COMMENT. This estimate would correspend to about 30 glasses of water per day, which is much higher
than the average consumption. The discrepancy may be a result of our assumption that evaporation of water
is the main mechanism of heat loss.

P2.42 (a) gy = —nAU%; hence
(i) The complete aerobic oxidation is

CsH1206(s) + 602(g) — 6CO2(g) + 6H20(1)
Since there is no change in the number of moles of gas, A H = AU [2.21] and

AH® = AU® =|—2802 kI mol !

—qv _ —CAT _ —MCAT

() AU® = where m is sample mass and M molar mass

n n

m
180.1 -1 641 T K! 7.793K -
s0 Ay = - U80-16g mol ) x ¢ ) x( ) 2802 kJ mol~!
0.3212¢

(iti) AH® = 6AH®(COs, ) + 681HT(H20, 1) ~ ArH®(CgH 204, 8) — 6ArH® (02, 8)
50 AfH®{CH|206.5) = 6AH®(CO2, ) + 6ArH® (H20,1) — 6Ar_He'(Oz,g) — A H®
ArH®(CsH 204, 5) = [6(—393.51) + 6(—285.83) — 6(0) — (—2802)] kJ mol ™!

=|—1274 kI mol !
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(b) The anaerobic glycolysis to lactic acid is
CgH 20y —» 2CH3CH{OH)COOH

AcH® = 2ArH® (lactic acid) — ArH®(glucose)
= {(2) x (—694.0) — (—1274)}} kI mol ™! = —114kJ mol ™"

Therefore, aerobic oxidation | is more exothermic by 2688 kI mol~' | than glycolysis.

P2.44 The three possible fates of the radical are

(a) rert-CqHg — sec-CqHg
(b} tert-C4Hy — C3Hg + CH;
() tert-C4Ho — C2Hy + CaH5

The three corresponding enthalpy changes are

(a) AH® = ArH® (sec-CsHo) — ArH® (tert-C4Hg) = (67.5 — 51.3) kI mol ™!

=16.2k] mol™!

(b AH® = AtH®(C3Hg) + ArH®(CH3) — AH® (tert-C4Ho)

= (20.42 + 145.49 — 51.3) kI mol ' =/ 1146 kJ mol !

{©) AH® = AfH®(C3Hy) + ArH® (C2Hs) — ArH® (tert-CyHg)
= (52264 121.0 = 51.3) kI mol ! = 122.0 kJ mol~"
P2.46 (a) The Joule-Thomson coefficient is related to the given data by

w=—(1/Cp)BH[dp)r = —(=3.29 x 10* Tmol ™' MPa~")/(110.01K~" mol™)

=|299K MPa!

(b) The Joule-Thomson coefficient is defined as
u =0T /3p)y = (AT/Ap}u

Assuming that the expansion is a Joule—-Thomson constant-enthalpy process, we have

AT = pAp = (299K MPa™") x [(0.5 — 1.5) x 107 MPa] =| —2.99 K



3 The Second Law

D3.2

Answers to discussion questions

The device proposed uses geothermal heat (energy) and appears to be similar to devices currently in
existence for heating and lighting homes. As long as the amount of heat extracted from the hot source
(the ground) is not less than the sum of the amount of heat discarded to the surroundings (by heating
the home and operating the steam engine) and of the amount of work done by the engine to operate
the heat pump, this device is possible; at least, it does not violate the first law of thermodynamics.
However, the feasibility of the device needs Lo be tested from the point of view of the second law as
well. There are various equivalent versions of the second law; some are more directly useful in this case
than others. Upon first analysis, it might seem that the net result of the operation of this device is the
complele conversion of heat into the work done by the heat pump. This work is the difference between
the heat absorbed from the surroundings and the heat discharged to the surroundings, and all of that
difference has been converted to work. We might, then, conclude that this device violates the second
law in the form stated in the introduction to Chapter 3; and therefore, that it cannot operate as described.
However, we must carefully examine the exact wording of the second law. The key words are “sole
result.” Another slightly different, though equivalent, wording of Kelvin's statement is the following:
“It is impossible by a cyclic process to take heat from a reservoir and convert it into work without at
the same time transferring heat from a hot to a cold reservoir.” So as long as some heat is discharged to
surroundings colder than the geothermal source during its operation, there is no reason why this device
should not work. A detailed analysis of the entropy changes associated with this device follows.

Environment at 7,

Pump

Flow

“ground” water at Ty,

Figure 3.1 Cy and C, are the tlemperature dependent heat capacities of water
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Three things must be considered in an analysis of the geothermal heat pumps: Is it forbidden by the first
law? Is it forbidden by the second law? Is it efficient?

AEo = AEwuer + AEground + A Eenvironment
AEger =0

AEyoumd = —Cy (TaHTh — Tt
AEsvironment = —Cv (Ti){Th — Tt)

Adding terms, we find that AE,; = 0 which means that the first law is satisfied for any value of T},
and 7¢.

ASior = ASwater + ASground + ASenvironment

ASyater = 0
Qground —Cp(Ty){Th — T}
A-S.grouru;t = Ty = T
HGenvironment Cp(Tc){Th - Te}
ASenvironment = =
T T

Adding terms and estimating that C,(Ty,) = C,(T;) = C,, we find that

1 |
ASr =Cp{Th — T}y =— — —
tot p[ h c} ‘ T, Th
This expression satisfies the second law (AS,; > 0) only when 7, > 7. We can conclude that, if the
proposal involves collecting heat from environmentally cool ground water and using the energy to heat a
home or to perform work, the proposal cannot succeed no matter what level of sophisticated technology
is applied. Should the “ground™ water be collected from deep within the Earth so that 7, > T¢, the
resultant geothermal pump is feasible. However, the efficiency, given by eqn 3.10, must be high to
compete with fossil fuels because high installation costs must be recovered during the lifetime of the
apparatus.
T.
Eev=1——
TCY Th
with T, =2 273 K and T, = 373 K (the highest value possible at 1 bar), Ev = 0.268. At most, about
27% of the extracted heat is available to do work, including driving the heat pump. The concept works
especially well in Iceland where geothermal springs bring boiling water to the surface.

All of these expressions are obtained from a combination of the first law of thermodynamics with the
Clausius inequality in the form 7dS > dg (as was done at the start of Justification 3.2). It may be
written as

—dU — pexdV +dwygg +TdS = 0

where we have divided the work into pressure—volume work and additional work. Under conditions of
constant energy and volume and no additional work, that is, an isclated system, this relation reduces to

ds§ =0
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which is equivalent to ASi; = ASuniverse = 0. (The universe is an isolated system.)

Under conditions of constant temperature and volume, with no additional work, the relation reduces to
dA <0,

where A is defined as U/ — T5.

Under conditions of constant temperature and pressure, with no additional work, the relation reduces to
dG =0,

where G is definedas U +pV — TS =H - TS,
In all of the these relations, choosing the inequality provides the criteria for spontaneous charnge.

Choosing the equal sign gives us the criteria for equilibrium under the conditions specified.

See the solution to Exercise 2.30(a) and Example 3.6, where it is demonstrated that w7 = a/ Vﬁ, for a
van der Waals gas. Therefore, there is no dependence on & for a van der Waals gas. The internal pressure
results from attractive interactions alone. For van der Waals gases and liquids with strong attractive
forces (large a) at small volumes, the internal pressure can be very large.

The relation (3G/3T), = —S shows that the Gibbs function of a system decreases with T at constant P
in proportion to the magnitude of its entropy. This makes good sense when one considers the definition

of G, which is G = UJ + pV — TS. Hence, G is expected to decrease with T in proportion to § when p
is constant. Furthermore, an increase in temperature causes entropy to increase according to

f
AS = f dgrev/T
i
The cormesponding increase in molecular disorder causes a decline in the Gibbs energy. (Entropy is

always positive.)

Solutions to exercises

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

_ [ dgev _ ¢
AS“[ T T

_50x 105

=~ =18 2JK-!
(@) AS K x 10%J
50 x 10°J
b) AS=— " =|15x 102JK™!
(b) 70+ 2TH K X

At 250 K, the entropy is equal to its entropy at 298 K plus AS where

dgrev [ CymdT Tr
AS = = . =Cypqln—
[ T T v
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250K

—_ . -1 -1 ) — 8314 -1 -1
so §=15484JK " mol™" + [{20.786 — 8.3145)} J K~ "'mol ]xm298K

S=|152.65TJK ! mol™!

However the change occurred AS has the same value as if the change happened by reversible heating at
constant pressure (step 1) followed by reversible isothermal compression (step 2)

AS = AS| + AS;

For the first step

dgrey ComdT T
AS]:[ dre =f P =Cp|mln—_r

T T T,
7 _ (135 + 273 K
AS) = (2.00 mol - 83145JK 'mol™ ) xIn ————" > — 18.3JK™!
1= m°)x(2)x( mol ) < N e T K
and for the second
df]rev frey
a% = f T T
Ve Pi
where grey = —w = [ pdV =nRTIn — =nRTIn =
Vi e
- 1.50 at
50 A8 = nRIn 2 = (2.00mol) x (8.3145J K~ mol™') x In ot — _256JK"!
Pr 7.00 aim

AS = (183 - 256K~ =[=7.31k"

The heat lost in step 2 was more than the heat gained in step 1, resulting in a net loss of entropy. Or the
ordering represented by confining the sample to a smaller volume in step 2 overcame the disordering
represented by the temperature rise in step 1. A negative entropy change is allowed for a system as long
as an increase in entropy elsewhere results in ASq > 0.

q = grev = 0 [adiabatic reversible process]

AS = fr Y _ 0]

AU = nCymAT = (2.00mol) x (27.5JK™" mol™") x (300 — 250)K
=27501 =[+2.75kI|

w=AU —g =275kl — 0 =[2.75K]]

AH = nCpyn AT
Cpan = Cym+R=(27.5TK " mol™' 4+ 8.314JK™ moi~'y = 35.814 K™ mol ™!

So AH = (2.00mol) x (35814 K" mol™!) x (+50K) = 358741 =|3.58k]
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E3.5(b)  Since the masses are equal and the heat capacity is assumed constant, the final temperature will be the
average of the two initial temperatures,

Tr = 1(200°C +25°C) = 112.5°C

The heat capacity of each block is
C =mC; where C; is the specific heat capacity

so AH (individual) = mCsAT = 1.00 x 10° g x 0.449T K~ 1o~ x (£87.5K) = £39k]

These two enthalpy changes add up to zero:

Ti - =
AS =mCgIn (—r) 200°C =473.2K; 25°C =298.2K; 112.5°C =385.7K

5 o 385.7 o

AS = (1.00x 10°g) x (0.449JK™ ' g™y xIn| === | = 1155JK
208.2
385.7 =

ASy = (1.00 x 107 g) x (0.449)K " g™!)y x In{ —= ) = —91.802JK"!
473.2

ASieral = AS) + ASy =|24] K!

E3.6(b) (a) g = 0 [adiabatic]
10° Pa

1 m? )
m 106 cm?

{c) AU=g+w=0-230]=[-230]]

(d) AU =nCy AT

1.01
(b)  w=—psAV =—(l.5am) x (—;-—) x (100.0cm?) x (15cm) x (

ar = AU _ -2272)
T nCvm (1.5mol) x (28.8TK—'mol™'}

-]

(e) Entropy is astate function, so we can compute it by any convenient path, Aithough the specified trans-
formation is adiabatic, a more convenient path is constant-volume cooling followed by isothermal
expansion. The entropy change is the sum of the entropy changes of these two steps:

L

Ty Vi
AS = A8+ AS: =nuCyqln 7 +nRIn| — } [3.19 and 3.13]

Tr=288.15K — 526K = 2829K

_ nRT _ (1.5mol) x (8.206 x 10-2dm’ aim K~ mol™") x (288.2K)
- Pi - 9.0atm

= 3.942 dm?

Vi
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_ I dm?
Ve = 3.982 dm® + (100 em?) x (15em) x | —
1000 cm3

=3.942 dm® + 1.5 dm® = 5.44 dm’

»5
AS =(1.5mol) x { (28.8JK " mol™") x In ﬂ
288.2
544
+(8.314JK "mol™") x In —
3.942

= 1.5mol(=0.5346 JK~ ' mol™! +2.678 JK~'mol~") =|3.2TK"!
AvapH 3527 x 10° Jmol ™ N _
a} AyapS = = =+10458 K" ! = -104.6JK

(b) If vaporization occurs reversibly, as is generally assumed

ASeys + ASsur =0 50 ASgyr =|—104.6JK~!

a AS® = S2(Zn*F,aq) + S2(Cu, s) ~ $2(Zn,s) — S2(Cu®*, aq)
( ) m m m m

= [~112.1+33.15 — 41.63 + 99.6] JK~' mol~' =| ~21.0J K~ 'mol"!

)] AS® = 12855 (CO3, g) + 11Sa(H20,1) — S5 (C12H22011, 5) — 1254(02,8)
=[(12 x 213.74) + (11 x 69.91) — 360.2 — (12 x 205.14)] JK~" mol~!

=|4+512.0JK~! mol™!

(a) ArH® = AcH?(Zn?* aq) — AfH® (Cut, ag)
= —153.89 — 64.77 kI mol~! = —218.66kJ mol™'

AG® = —218.66kI mol~! — (298.15K) x (—21.0J K=" mol~!) =| —212.40kJ mol~! |

(b) AH® = AH® = —5645k]I mol ™!

AG® = —5645kT mol ™! — (298.15K) x (512.0J K~ ' mol™!) =| —5798 kJ mo! !

(a) 8,G® = AfG®(Zn?t aq) — ArG®(Cu®t, aq)

= —147.06 - 65.49 K mol~" = | —212.55 kI mol"! |

(b) AG® = 12A;G®(COq,8) + 11A{G®(H,0,1) — ArG®(C12H22011,5) — 12A¢G® (02, 8)
=[12 x (=394.36) + 11 x (—237.13) — (—1543) — 12 x 0] kJ mol™!

=|—5798 kI mol~!

COMMENT. In each case these values of AG® agree closely with the calculated values in Exercise 3.9(b).
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E3.11(b) CO(g) + CH30H(1) - CH3COOH(I)

AH® = ) vAH® — > vAH®[2.32]

Products Reactants
= —484.5kI mol~! — (—238.66kImol ") — (—110.53 k) mol~})
= —135.31kJmol~!
AS®= Y wsh— Y vSa321]
Producits Reactants
=159.8JK ' mol~' — 126,81 K~ mol~! = 197.67JK~! mol ™!
= —164.67J K~ mol™'

AGT = AH® —TAS5®

= ~1353TkImol™! — (298K) x (—164.67J K~ mol™!)

= —1353Tkimol™" 4+ 49.072 kI mol~' = | —86.2 kJ mol ™!

E3.12(b} The formation reaction of urea is

Clgr) + 102(g) + Na(g) + 2Ha(g) — CO(NHz)2(s)

The combustion reaction is

CO(NH2)2(5) + 302(g) — CO2(g) + 2H20(1) + Na(g)

AcH = AH®(COa, £} + 2ArH® (Hy0, 1) — AfH®(CO(NH3)2,5)

AcH® (CO(NH2)2, 5) = AfH®(CO3, 8) + 2ArH® (H20, 1) — A H{CO(NHa)2, 5)
= —393.51 kI mol™' + (2) x (—285.83 kI mol~") — (—632kJmoi™")
= —333.17kJ mol ™~

ArS® = S2(CONHz)2,5) — SS(C, 81) — 182(02, 8) — S5(N2, ) — 255 (Hz, g)
= 104.60 1K~ mol~' — 5.7401K ™" mol™! — £(205.138 1K~ mol™")
— 19161 JK ™  mol™! — 2(130.684 1K' mol ™)
= —456.687J K~ mol™!

AfG® = AH® — TAS®

= —333.17 Kk mol™" — (298 K) x (—456.687JK~' mol™")
= —333.17k¥ mol™! + 136.093 kJ mol~!

_Cisrama]
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Vi 2lg -1 -
; - — : - — = 314
E3.13(b) (a) AS(gas) = nRIn (Vi) [3.13] (39_95 ol ) x (8.314JK™ mol”"}In2

=3.0290K™' =|3.0iK™!
AS(surroundings) = —AS(gas) =| —3.0J K~! [[reversible]

AS(totaly =[0]

(b) AS(gas) =|+3.0JK~' |[S is a state function]

AS(surroundings) = @ [no change in surroundings]

AS(total) =
() grev =0 so AS(gas) = @

AS(surroundings) = @ [No heat is transfered to the surroundings]

AS(total) = @

E3.14(b) CiHg(g) + 502(g} — 3C02(g) + 4H0(1)
AG® = 3A;G®(COy,8) +4A;G®(H20,1) — AfG®(C3Hg, g) — 0
= 3(—394.36 kI mol™') -+ 4(~237.13kI mol™") = 1(~23.49k) mol™")
= —2108.11 kJ mol™!

The maximum non-expansion work is | 2108.11 kJ mol ™! Isince |waadl = |AG].

T, 500 K
E3.15(b =1- 2300 = 1 - 22 —[0500
O @ e 7, 10 1000 K

(b) Maximum work = glgn| = (0.500) x (1.0 kJ} =[0.50 kJ

©) Emax = &rev  ANd  Wyax| = lgn] — 1gc.minl
{geminl = lgnl — [Wmax|
= 1.0kJ — 0.50kJ
_
E3.16(b) AG =nRTIn (ﬂ) [3.56] = nRT In (%) [Boyle’s law]
i

AG = (25 x 107 mol) x (8314JK ™" mol™) x (298K) x In () =

3G aGr 8Gi
. — | =-§[350; h — | =-8, and | —
E3.17(b) (BT)P [ ] ence ( 9T )P f, an ( BT)

3G 3G 8(Gr - G;
o9 +(2) (%)
? ? P
3AG 3 T
= (229 __ 2 (73544285 x =
( aT ),, BT( + * K)

P
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dG = —8§dT + V dp [3.49]; atconstant T,dG = V dp; therefore

Pr
AG = f Vdp
P

The change in volume of a condensed phase under isothermal compression is given by the isothermal
compressibility (eqn 2.44),

1 fav 9 |
kr=—{— | =126x 107 Pa
Viadp/r

This small isothermal compressibility (typical of condensed phases) tells us that we can expect a small
change in volume from even a large increase in pressure. So we can make the following approximations
1o obtain a simple expression for the volume as a function of the pressure

1 [V -V 1 V-V
m‘%—( ')k—( ') so V =Vi{l —«xrp),
V\p-npi Vi P

where V; is the volume at 1 atm, namely the sample mass over the density, m/p.

100MPa
Ac=f () - krp) dp
100kPa @
" 100 MPa 100 MPa
=— [ dp — Krf pdp
L 100 kPa 100 kPa
100 MPa 100 MPa
m 1 ”
=—1|p — SKrp”
P 00KPa 2 100 %Pa

25¢

l
=—-—5 {999 % 10"Pa— —(I. 1072 Pa~! 1.00 16,2
0.791 gem—3 (9 x a 2(|26x 077Pa” ) x ( x 10°° Pa®)

3
=316em’ x (mlom ) x 9.36 x 107 Pa
cm

=296x% 10°) =[3.0kJ

AGy = Gnf — Cni=RTIn (ﬁ) [3.56]
Pi

252.0
= (8314JK ' mol™") x (323K) x In (9—20—) ={2.71 kJ mol~!

?

m &
P

For an ideal gas, GO = G, + RT ln( ) [3.56 with Gy, = GO

But for a real gas, Gy = Go + RT In (f ) [3.58]

m EE

So Gy — Gn01 = RTanI—; {3.58 minus 3.56]; -lii' =¢

=RTIng = (8314 TK~"mol™") x (290K) x (In0.68) =| —0.93kJ mol~!
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E3.21(b) AG =nVaAp [3.55] = VAp

1 3
AG = (1.0dm%) x (103': 3) x (200 x 10° Pa) = 200Pam’® =[2001]
m

o ! mol™ o
=(8.314JK 1 50 — | = .
) (8.3 mol™") x ( OK)XIH(SO.OkPa +2.88 ki mol

E3.22(b) AGm =RTIn (—_

i

Solutions to problems

Solutions to numerical problems

T CpmdT B bT
ASm=f C"L[MS]:f (“+ )dT:aln(2)+b(Tg—T|)
T T T T Tl

1 1

P3.2
a=9147JK 'mol™!, b=75x 1072 JK~Z mol~!

K
ASm = (91.47TK ' mol™") x In (%) (0.0751K 2 mol™!) x (27K)

=|10.7 K=" mol™!

P3.4 First, determine the final siate in each section. In section B, the volume was halved at constant temper:
ature, so the pressure was doubled: pgr = 2pp.i. The piston ensures that the pressures are equal in both

chambers, so par = 2pp; = 2pa.i- From the perfect gas law

T i 00dm?
Tar _pafVar _ (@pap) x (3.00dm7) 300 so Tas=900K.

Tai B pPaiVai B (pa) X (2.00dm3)

v,
(@  ASx =nCymln (M) [3.19] + nR In (ﬂ) [3.13])
Tai Vai

ASs = (2.0mol) x (20J K~ mol™") x In3.00

o 3.00dm?
+(2.00mol) x (8.314JK ™ mol™") x In | =——
2.00dm’

=[s07 3x-1]

v, 1.00 dm?
ASp = nR1n (—B-f) = (2.00mol) x (8314JK ' mol™') x In | ~—
v 2.00dm’

B.i
=|—-11.5JK"

(b) The Helmholtz free energy is defined as A = {/ — TS [3.29]. Because section B is isothermal,
AU =0and A(TS) =TAS, so

AAp = —TpASp = —(300K)(—11.5JK™') =3.46 x 10°] = | +3.46 kJ
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In Seclion A, we cannot compute A(TS5), so we cannot compute AU. AA in

both magnitude and sign. We know that in a perfect gas, I/ depends only on temperature; morecver,

U(T) is an increasing function of T, for al//8T =C (heat capacity), which is positive; since

AT > 0, AU > Oaswell. But A(TS) > 0too, since both the temperature and the entropy increase.
(¢} Likewise, under constant-temperature conditions

AG=AH —TAS

In Section B, AHg = 0 (constant temperature, perfect gas), so

AGg = —TpASp = —(300K) x (—F1L.5TK™") =|3.46 x10° §
AGy 18 in both magnitude and sign.
(d) AS(total system) = ASs + ASp = (50.7 — 11.5)JK™! =|4+39.2T K~!

If the process has been carried out reversibly as assumed in the statement of the problem we
can say

AS(system) + AS(surroundings) = 0

Hence, AS(surroundings) = | —39.2F K~}

Question. Can you design this process such that heat is added to section A reversibly?

P3.6 _
q W Al = AH AS ASsm- AS[U[
Path (@) 274 K] -~2.74kJ 0 0.13JK™! —9.13FK"! 0
Path (b) 1.66 kI —1.66 kI 0 9.13JK™! —5.53)JK! 3.60TK™!

Path (a)

Vi pi ,
w=—nRTInf — | [3.13] = —nRT In | — | [Boyle’s law]
Vi P

3.00atm
1.00 atm

= —(1.00mol) x (83141 K~ ' mol™") x (300K) x ln(

~[z7iw]

) =274 x 10°]

AH =AU = @ [isothermal process in perfect gas]

g=AU—-—w=0—(=274k]} =} +2.74Kk]
v 274 x 10°}
AS = q% [isothermal] = IS(;CT ={49.13JK™!

ASiot = @ [reversible process)

ASioi = ASeur = ASit — AS=0-9.13]JK~' =| =9.13]K™!
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Fath (b)

RT RT
W= —pex(Vr — Vi} = —pex (”— - L) = —nRT ([E - @')
pr Pi Pr Pi

1.00atm 1.00 atm
1.00atm  3.00aim

= —(1.00mol} x (8.314J K1) x (300K) x (
=—166x 10°] =|—1.66kJ
AH =AU = @ [isothermal process in perfect gas)
g=AU—w=0-(—1.66kl]) =|+1.66kl
274 x 10°1
AS = ‘“% [isothermal] = _?(;:)T =|+9.13J K-

{Note: One can arrive at this by using g from Path (a) as the reversible path, or one can simply use AS
from Path (@), realizing that entropy is a state function.}

Fsur —q —1.66 x 10°] )
ASqyp = o = T ="~ "~ ° :_5.53.11(
sor Tsur TSLll' 300 K
ASior = AS + ASqr = (9.13 = 5.53) JK™! =| +3.60JK~!

T
P3.8 AS depends on only the initial and final states, so we can use AS = nCpm In Fr [3.19]
i
I*Rt
Since ¢ =nCpm(Tr = T), Tr=Ti+ —— =Ti + lq =1V =R
"Cp.m nlpm
That is, AS Comln{ |l + IR
at is, =n
pm nCpmT;
500
Since 1 = ———b2— = 7.87mol
63.5g mol™

AS = (7.87mol) x (24.4JK " mol™!) x In (1 +

=(192JK™ 1) x (In 1.27) =| +45.4 JK~!

[1J=1AVs = 1 A’Q5]

(1.00 A)2 x (100082} x (15.0 s))
(7.87) % (244TK™ 1) x (293K)

For the second experiment, no change in state occurs for the copper hence, AS(copper} = (. However,
for the water, considered as a large heat sink

g PR (1LO0AY x (1000€) x (1505) —
AS(water) = T - T - 203K -

P3.10 Consider the temperature as a function of pressure and enthalpy: T = T(p, H)

dT—(aT ap+ (2L am
=\ /), el ),
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The Joule-Thomson expansion is a constant-enthalpy process (Section 2.12). Hence,

aT
dT=(—) dp =pdp
w/

Pr
AT = [ pdp = pAp  [jeis constant]
pi

= (021 Katm™!) x (1.00atm — 100 atm) =

Tr=Ti+ AT =373 -21)K =352K [Mean T = 363 K]

Consider the entropy as a function of temperature and pressure: § = S(T', p}

a5 as
Therefore,dS = | — } dT + —) dp
T/, ap/r

as) Cy (3S) (BV)
) == — ] =—(—=—=] [Table3.5}
(BT P T BP T aT P

RT
For Vip = — (1 + Bp)
P

av, R
— ] ==(1+8p
aT p P

C R

Then dSpm = 22 dT — —(1 + Bp)dp
r P
C R

or dSp= 20 d7T — “dp— RBdp
T P

Upon integration

2 T
ASp =[ dSpm = Cpm In (?3) -~ Rln (’2) —RB(p> — p1)
1

1 I
5 352 1 0.525atm ™!
= — —_— — —_— —Rl-— - t
2R1n (373) R[n(loo) ( 63 )x( 99 atm)
=[+359) K~ mol~! |
P3.12 AH® = Y wAHCU) = ) wAHT()[2.34)
products reaclanis

AHT(298K) = 1 x AH®(CO,g) + 1 x AfH®(H20,8) — 1 x AfHT(CO2,8)

{—110.53 — 241.82 — (=3935} kI mol™! =| +41.16 kI mol ~!

AS®= Y uSay— Y wSa)B21]

products reactants

ASP(298K) = | x Sp(CO, g) + 1 x Sm(H20,8) — | x Sg(CO2,8) — 1 x Sm(Ha, g

= (197.67 + 188.83 — 213.74 — 130.684) kI mol ! =] +42.08F K=" mol !
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IMK
AH®(398K) = AHC(298K) + f A C,dT [2.36]
298K

= AH®(298K) + AC,AT [heat capacities constant]
ACp=1x C,,‘m(CO. g +1x Cp‘m(Hzo, g) ~ 1 x Cpm(CO2,8) — | x Cym(Ha, g)

= (29.14 4+ 33.58 = 37.11 — 2882 J K~ ' mol™! = =321 JK ™' mol™!
AH®(398K) = (41.16 kJ mol™") + (—=3.21F K~ mol™") x (100K) = | 4-40.84 kI mol~!

For each substance in the reaction

T 398K
ASm = Cpm In (}i) = CpmIn ( ) [3.19]

) 298K
Thus
& T: T¢
AST(398K) = AST(298K) + D wComDIn{—}— Y uCumMln{—
T T
producis reactants
= AS5%(298K) + A Cyln 398K
- PN 298K

K
= @201JK "mol™") + (=321JK " mol ) In (398 )

298K

= 4201 — 0.93)JK~" mol ™' =|+41.08 JX~! mol~! |

COMMENT. Both AH® and A;S® changed little over 100 K for thig reaction. This is not an uncommen
resulf.

P3.14 Draw up the following table and proceed as in Probiem 3.11.

TIK 14.14 16.33 20.03 3115 44.08 64.81
(Cpam/T) U K2 mol™") 0.671 0.778 0.908 1.045 1.063 i.024
TIK 100.90 14086  183.59  225.10 26299  298.06

(Com/T)IU K~2mol™") 0.942 0.861 0.787 0.727 0.685 0.659

Plot C,,m against T(Figure 3.2(a)) and Cp, /T against T (Figure 3.2(b)), extrapolatingto T = 0 with
Cpm = aT” fitted at T = 14.14 K, which gives @ = 3.36 mIK~! mol ~!. Integration by determining
the area under the curve then gives

298K

Cpm dT =|34.4kJ mol !

HE (298 K) — HE(0) = f
0

298K C
Sm(298 K) =sm(0)+f %dT:Sm(0)+|243JK-'mor'
[\
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(Con/THIK T mol™")

7K 7K Figure 3.2

P3.16 The Gibbs—Helmholtz equation [3.52] may be recast into an analogous equation involving AG and AH,
since

(57),-(7),- (%),
T /, aT aT
and AH = Hy — Hj

Thus,

3 A ) _ AH®
aT oo

A£G 3 AG® AH®
( ) ( ! ) dT [constant pressure] = — ;_ dT
p

=

orT T 2
_ T AH®AT
= Tc 73
o [T dT 11
=N H ch 72 = AH® (? - Fc) [AH® assumed constant]

(T AGE(T, 1 |
Therefore, AG(D  AG (Te) ~ AH® (-— - )

T. T T.
o T -3 T
ArG (T) = FArG (Tc) +{1- F ArH&(Tc)
c c

and so

T
=1AGT (T + (1 — T)AHT(T,) where T = =

c

For the reaction
2C0O(g) + Ox(g) — 2C0a(g)
AG®(T,) = 2A;G®(COy, ) — 28:G®(CO, g)
= [2 x (—=394.36) — 2 x (—137.17)] kImol™' = —514.38kJ mol "



P3.18

P3.20
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AH® (T) = 2ArH® (CO2, @) — 2A¢H®(CO, g)
=[2 % (—393.51) — 2 x (—110.53)] kI mol~' = —565.96 k] mol '

Therefore, since v = 375/298.15 = 1.258

AGP(375K) = {(1.258) x (—514.38) + (1 — 1.258) x (—565.96)} kJ mol~'

=|—501 kJmol ™"

PeZ—1
A graphical integration of In ¢ = f (T) dp [3.60] is performed. We draw up the following table
0
p/atm ] 4 7 10 40 70 100
3 Z-1 -1
10°f — atm —-29 =301 -303 -3.04 -317 =319 -3.13
]

The points are plotted in Figure 3.3. The integral is the shaded area, which has the value —0.313, so at
100 atm

p=c0 =073

and the fugacity of oxygen is 100 atm x 0.73 =

—270 | L] T T I T T T T T T I T T T I T T T ]
E ]
2 290 T ]
= [ : : ]
T C 5
N 300 e .
E : : ]
-310 E y
_320 C 1 1 1 I L 1 1 ] 1 1 L I—
0 20 40 60 80 100
piatm Figure 3.3

Solutions to theoretical problems

Paths A and B in Figure 3.4 are the reversible adiabatic paths which are assumed to cross at state 1. Path
C {dashed) is an isothermal path which connects the adiabatic paths at states 2 and 3. Now go round the
cycle (Il — 2,step 1,2 — 3, step2;3 — 1, step 3).
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vV Figure 3.4

Step I AUy =q +w =w [q) = 0, adiabatic]

Step 2 Al/» = g2 +wa = 0 [isothermal step, energy depends on temperature only]

Step3 AUz = g3 + w3 = wa [g3 = 0, adiabatic]

Forthecycle AU =0=w| + g2 + w2 + waorw(net) =w| + w2 + w3 = —q2

But, AU = ~Al3 [AT) = —AT2]; hence w; = —ws, and w(net) = wa = —g3, or —w(net) = g».

Thus, a net amount of work has been done by the system from heat obtained from a heat reservoir at
the temperature of step 2, without at the same time transferring heat from a hot to a cold reservoir.
This violates the Kelvin statement of the Second Law. Therefore, the assumption that the two adiabatic
reversible paths may intersect is disproven.

Question. May any adiabatic paths intersect, reversible or not?

183 RT
P3.22 y= (_) 350 =| X s 54 op+ 2
ap/r p

which is the virial equation of state.

P3.24 We start from the fundamental relation

di/ =TdS — pdV [3.43]
But, since / = U (8§, V), we may also write

at au
di/ =| — ds — ] dV
(as)v +(3V)s

Comparing the two expressions, we see that

olf au
(ﬁ)v =T and (a—v); K

These relations are true in general and hence hold for the perfect gas. We can demonstrate this more
explicitly for the perfect gas as follows. For the perfect gas at constant volume

dU = CydT
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and
s = erev — CydT
T T
dU ouv CydT
Th — 1 == =——-—=T
o (dS)V (as)v (CvdT)
T

For a reversible adiabatic (constant-entropy) change in a perfect gas

dUV=dw=—-pdV
Therefore, (&) =—p
av /g

P3.26 = 4 38 = ! ov 3.14
' «=(v)(a), oo r=-(3)=(5), =19
(a) ( ) ( ) [Maxwell relation]

G} av 3
(%)V = (BT) ( Ld ) [Euler chain relation, Further information 2.2]

BV

P [reciprocal identity, Further information 2.2)

( )T

O,
- WE), &=
(%;)P - (g)s [Maxwell relation]

(ﬂ)s T (g) (ﬁ)T [Euler chain] = _@

o s , ap T [reciprocal]

(&),

First treat the numerator:

as av '
— ) =—[= [Maxwell relation] = —aV
/) aT P

As for the denominator, at constant p

a5 dgrey dH CpdT
aS={2) dr and as=F T _ dg, = dH
S (BT)P an T T 7 U ]
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Therefore, (ﬁ) = & and (B_Y_) = ﬂ
aT/, T as/, Cp
aT
(b) (8_p =-—{—| [Maxwell relation]
a5/ y v/

a5
(),
38
) (),
&) -(), ()
=7V [Maxwell relation] = BV /r \ BT P [Euler chain]
as v as au
(50), G7), (50), (7).
(7), Gs
= 3?/T P B?JS L [reciprocal identity, twice] = K:gv [(%) ) = T]
5). ),
First use an identity of partial derivatives that involves a change of variable
LAY (BH (BS 4 aH
(.é._f’-)r ~\as )p 5)7 (3P )S

We will be able to identify some of these terms if we examine an expression for dff analogous to the

fundamental equation [3.43]. From the definition of enthalpy, we have:

[reciprocal]

- (B—T) = —l— [Euler chain] =
s

= (§
arT

P3.28

dH = dU +pdV + Vdp = TdS —pdV [343] +pdV + Vdp =T dS + Vdp

Compare this expression to the exact differential of H considered as a function of § and p:

H
dH = (3_) ds + (a—H) dp
as /, ap /s

BH) =T, (E) = V [dH exact]
14 S

Thus, | —
( a5 ap

as av
=T (—) +V=|-T (—) + V| [Maxwell relation]
T r

a
Substitution yields (—) =
ap Jr ap

(a) For pV =nRT

v R H —
(3_) =1 , hence (8—) = nRT +V =|E|
aT r P a]) T P

RT 2
e ‘% [Table 1.7]

b) F = —
(b) Forp V —nb
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Because we cannot express V in closed form as a function of T, we solve for T as a function of ¥ and

evaluate
il T ad +V -7 + V [reciprocal identity]
e = — R = — 1 1 1
)=\, T i ’
av P
p(V —nb) na(V — nb)
T=
nk RV2
( ) na 2na(V — nb)
R RZ RY3
oH =T
Therefore, (a)r ) na  2na(V —nb) v
nR  RV? RV3

which yields after algebraic manipulation

- 2na T 1%
1— [ — } 2%
(RTV)

b
Whenv— & 1, A= ]and

m

ap

2na
b — 2
8H " (RT)}L nb
S Ve R W I e
T

2na _ 2na 1 2na P 2pa

—_— e —— X =z b4 =
RTV RT v RT nRT  RT?
2na
nwh — [ —
. (%)
Therefore, (——) =z —RT
T | 2pa
~ AR

ap
For argon, @ = 1.337dm% atm mol 2, b = 3.20 x 10~2dm® mol~!,

2na _ () x (1.0mol) x (1.337dm°atmmol™*) 3
RT ~ (8.206 x 10~2dm* atm K~ mol™") x (298K}
2pa  (2) x (10.0atm) x (1.337 dm®atm mol~2) — 0045

R*T* "~ {(8206 x 10-2dm>atmK~' mol=!) x (298K)]’

aH 320 x 1072 — (0.11}} dm?
H(_) o (G20 X 1079 = QIDJ M _ ) oe17 dm? = [Z837 aem)
r

ap 1 —0.045

AH s (%)Tf_\p 2z (—8.3Jatm_') x (latm) =




_{aT Co = (SU)
P3.30 ny = v/, v=A\9T y
-1
wiCy = (Z%)U (%)v = T [Euler chain relation]
au
ou p
= —= - 4
(BV) [reciprocal identity] = p — T( T)v [3.48]

(B_p) e (Euler chain] = ( )”
"

T ar) (BV) (
av /), \ap /s

\._./‘“‘1|'<
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T
Therefore, | £;Cv = p— 2
KT
P3.32 is=— (LY (YY) oL
Y
v /g
The only constant-entropy changes of state for a perfect gas are reversible adiabatic changes, for which
pVY = const
ap & const const —yp
Th — ] =~ = _F
e (av) (av vy )5 v (VY+1) v

-1 +1

v (—VP) 144
%

Hence, | pyks = +1

Therefore, ks =

P3.34 The starting point for the calculation is eqn 3.60. To evaluate the integral, we need an analytical expression

for Z, which can be obtained from the equation of state.

(a) We saw in Section 1.4 that the van der Waals ccefficient a represents the attractions between
molecules, so it may be set equal to zero in this calculation. When we neglect « in the van der

Waals equation, that equation becomes

__RT
P=v "%
and hence
bp
Z=14+—
RT

The integral in egn 3.60 that we require is therefore

Pz 1 Pl b bp
l -_— — = —_
ne jo( P )d” fo(RT)d” RT



68 INSTRUCTOR'S SOLUTIONS MANUAL

Consequently, from eqns 3.60 and 3.59, the fugacity at the pressure p is

From Table 1.6, b = 3.71 x 10~2dm> mol~!, so pb/RT = 1.516 x 1072, giving

f = (10,00 atm) x %1515 =

COMMENT. The effect of the repulsive term (as represented by the coefficient b in the van der Waals equation)
is to increase the fugacity above the pressure, and so the effective pressure of the gas—its “escaping
tendency” —is greater than if it were perfect.

{b) When we neglect & in the van der Waals equation we have

_ RT a
P=y. 2
and hence
a
Z=1-
RTV.,

Then substituting into eqn 3.60 we get

In ¢ jp(2—1)d fp —4_ 4
0 P o PRTVp
In order to perform this integration we must eliminate the variable Vi, by solving for it in terms of
p. Rewriting the expression for p in the form of a quadratic we have

. RT a
Vie —Vu+-=0
P P

The solution is
1 /RT 1
Vo==|— %= /(RT)? —4dap
2Z\p p
Applying the approximation (RT)? > dap we obtain

| {RT  RT
Vi = £ (_ +7)
2\ p P
Choosing the 4 sign we get

RT
Vm = — which is the perfect-gas volume.
Then

_ ”_ a _|__ap
1"“’_]0 &2 P =| " wry
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For ammonia @ = 4.169 atm dm® mol—2

4.169 atm dm> mol ™' x 10.00at
B 69a;n m° mo : atm — —0.06965
(0.08206 dm? atm K- mol~! x 298.15K)?2

¢ = 09237 = !
P

f=¢p=09237 x 10.00atm =|9.237 atm

Ingg =

Solutions to applications
Taking the hint, we have
AusS®(25°C) = AS; + ASii + ASqi.
We are not given the heat capacity of either the folded or unfolded protein, but if we let Cp, i be the heat

capacity of the folded protein, the heat capacity of the unfolded protein is Cp + 6.28 kKJ K~ ! mol~!.
So for the heating and cooling steps, we have:

Ty 348.7K
1= 1 —_— = —_— .
ASi=Cpln (Ti) Cpmln (298.2K) [3.19]

and  ASj = (Cpm + 6.28kI K™ ' mol™!) In (
348.7K
298.2K

348.7K

298.2 K)
) + (Cpm + 628 kI K™ mot~") In (

298.2K
s0 AS + ASji; = CymIn ( )

348.7K
2982K
348.7K

= (6.28kJK~! mol_')ln( ): —0.983KI K" mol ™!

For the transition itself, use Trouton’s rule (eqn 3.16):

AusH®  509kI mol ™! T
AS; = = = 1.460kI K I
=T 3482K e

Hence, AysS® = (1.460 — 0.983) kI K~ mol~! = 0477kIK " mol™! ={477 ) K=! mol™!

(a) At constant temperature,

AH — AG

AG=AH-TAS so AS= T

—20 — (=31 -1
and A,S = =2 gf&“mo{ — +0.035KIK~" mol~! = | +35JK~" mol~!

(b) The power density P is

_ |AGIn
Y

P
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where » is the number of moles of ATP hydrolyzed per second

N 1005!

— — — 3 -8 -1
_N-—A_m—l66)(lo mol s

n

and V is the volume of the cell

V=4rr =3r(10x 107 m)’ =4.19 x 107 m?

3

1A:Gln (31 x 103 Tmol™") x (1.66 x 107" mols™") —
Thus P = = =[12Wm™
us ¥

4.19 x 1019 m?
This is orders of magnitude less than the power density of a computer battery, which is about

I5W 100cm\? " =
Prayery = 100 e X( Im ) =|l.5 x 107 Wm J

(¢) Simply make a ratio of the magnitudes of the free energies

14.2kJ (mol glutamine) ™' mol ATP
3kl (mol ATP)"! | mol glutamine

P3.40 The Gibbs—Helmheltz equation is

3 (AGY _ AH
ar\ T /) T

so for a small temperature change

A (AFGQ) _ AH® AT and AG;  AGY AH®

T T2 T2 Ty T2AT
AG® AH®AT AGH AGS. 1 1
50 fd; = —f d 5 and 190 1220, AHE | — — )
T T Tiop T20 Tigo  Tao

T T
MG = AGhHy—2 4+ A H® (1 -
= T0 T2

For the monohydrate

190K 190K
AG Py = (46.2 kI mol ") x ( ) +(127kImol™') x (| - _)

220K 220K
A,Grgo =|57.2 kI mol™'

For the dihydrate

190K 190K
A£G, = 694k mol™y x 9— 4+ (188 kI mol~ty x | 1 .
190

220K 220K
ArGrop = 85.6 kJ mol ™!
190
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For the trihydrate

1
B,Gigg = (932kImol ™) x ( QOK) + (237kI mol™') x (1 — —IQOK),

220K 220K
ArGTog =|112.8kI mol™!

P3.42 In effect, we are asked te compute the maximum work extractable from a gallon of octane, assuming
that the internal combustion engine is a reversible heat engine operating between the specified temper-
atures, and to equate that quantity of energy with gravitational potential energy of a 1000-kg mass. The

efficiency is
Jw| [w] 7. T
£ =—[38] = =g =1 — —[3.10] so |w|=[AH|{1-=
|gh] I Th Th

3.00 x 10% g 1 mol

= 1.448 x 10%]
lgal 114.23g *

|AH| = 5512 x 10° Jmol ™' x 1.00 gal x

1073 K

=148 x 108 x [ | — ——
S0 |w| x x( 73K

) =7.642 x 107]

If this work is converted completely to potential energy, it could lift a 1000-kg object to a height /1 given
by [w| = mgh, so

[ 7.642 x 1071 3
h=—= =779 % 10°m =|7.79k
'= g (1000kg)(98I ms-2) m
P3.44 (a) As suggested, relate the work to the temperature-dependent coefficient of performance

[Impact 13.11:

Gt _

T C
(Th - T)
Integrating yields

Toar 7
Th — 4+ dT| = Cp
Ti T T

(b} The heat capacity is C, = (4.184J K1 g=!) x (250 g) = 1046 JK ', s0 the work associated with
cooling the water from 293 K to the freezing temperature is

293K
[Wleooting = 10467 K~ x (293 K x In S = 293K 4273 K) = 7481

|dw|

_ |dee| _
==

ThdT ’
—— —dT
T

[w| = Cp

T Ti
Thln = — (T = T) :c,,(rhln—‘ —Ti+Tf)
Ti Tr

The refrigerator must also remove the heat of fusion at the freezing temperature. For this isothermal
pracess, the coefficient of performance does not change, so

|gel Ay Th—T.
[l frecze = TC = + = ApsH _“?;_t
Th—T¢

= 6.008 x 10° Jmol ™! x 208 (22283 61135
18.0 g mol™! 273
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The total work is

Whotat = [Wlcooting + IWlireere = (748 + 6113}] =| 6.86 x 10° ] =6.86 kJ

At the rate of 100 W = 100} s~!, the refrigerator would freeze the water in

3
t=6.86x]0 J=

1007s~!



Physical transformations
of pure substances

D4.2

Da.4

D4.6

E4.1(b)

Answers to discussion questions

Refer to Figure 4.9 of the text. The white lines represent the regions of superheating and supercooling.
The chemical potentials along these lines are higher than the chemical potentials of the stable phases
represented by the colored lines. Though thermodynamically unstable, these so-called metastable phases
may persist for a long time if the system remains undisturbed, but will eventually transform into the
thermodynamically stable phase having the lower chemical potential. Transformation to the condensed
phases usually requires nucleation centers. In the absence of such centers, the metastable regions are
said to be kinetically stable.

At 298 K and 1.0 atm, the sample of carbon dioxide is a gas. (a) After heating to 320 K at constant
pressure, the system is still gaseous. (b) Isothermal compression at 320 K to 100 atm pressure brings the
sample into the supercritical region. The sample is now not much different in appearance from ordinary
carbon dioxide, but some of its properties are (see /mpacr 14.1). (¢} After cooling the sample to 210 K
at constant pressure, the carbon dioxide sample solidifies. (d} Upon reducing the pressure to 1.0 atm at
210 K, the sample vaporizes (sublimes); and finally (¢) upon heating to 298 K at 1.0 atm, the system
has resumed its initials conditions in the gaseous state. Note the lack of a sharp gas to liquid transition
in steps (b) and (¢). This process illustrates the continuity of the gaseous and liquid states.

The Clapeyron equation is exact and applies rigorously to all first-order phase transitions. It shows
how pressure and temperature vary with respect to each other {temperature or pressure) along the phase
boundary line, and in that sense, it defines the phase boundary line.

The Clausius—Clapeyron equation serves the same purpose, but it is not exact; its derivation involves
approximations, in particular the assumptions that the perfect gas law holds and that the volume of
condensed phases can be neglected in comparison to the volume of the gaseous phase. It applies only to
phase transitions between the gaseous state and condensed phases.

Solutions to exercises

Assume vapor is a perfect gas and Av,pH is independent of temperature

n? =yl (1L
p R T T*
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*

n?

n —

Avpfl  p

I 83143 K~ mol™! (58.0)
x In

= + —_—
293.2K 327 x 10° mol™! 66.0
=3378 x 1073 K"!

: =296K =123°C]

r=—
3378 x 10-3K-!

1 —_—

1
T ™

+

E4.2(b) dp _ ApsS
dT ~ ApV

dp Ap
ArgsS = AV —= 1 = AV —
fus fus (dT) fus AT
assuming Ag,sS and Ag, V independent of temperature.

12 x 10%Pa) — (1.01 x 10°P
AesS = (152.6cm® mol=! — 142.0em® mol -1y x L2 X 107 Pa) = (1.01 x 107 Pa)
42926K — 427.15K

1 3
= (106cm* mol™) x { ———
( ) (106 cm3

=552Pam*K "mol™! =551 K~ 'mol™!

ApeH = TrAS = (427.15K) x (5.52] K ' mot™")

=24k mol |

) % (521 x 10°PakK™h)

E4.3(b) Use[dln —f BvapHl (o
' P=) Trr?
A H
In p = constant — —
RT

Terms with 1/T dependence must be equal, so

_ 30368K _ AwpH
T/K =~ RT

AvapH = (3036.8K)R = (8.314T K™ mol™") x (3036.8K)

={25.25 kI mol™!

log p = constant — Ay, H/(RT(2.303))

Ed.4(b) (a)
Thus
AwpH = (1625K) x (83141 K™ "mol™!) x (2.303)

={31.11 kJ mol~!
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(b) Normal boiling point corresponds lo p = 1.000 atm = 760 Torr
1625
log{760) = 8.750 — ——
og(760) T/K
1625
—— = 8.750 — log(760
T/K 0g(760)
1625

= 8750 — log(760)

AnsV Tr AgusV TrApM I
E4.5(b) AT = 80" o ap= 20T o pnp= 100 xA(—)
AfsS Aqys AgysH

r

_ (269.50K) x (99.9 MPa)M 1 _ 1
B 8.68 kJ mot ! 0.789gcm=?  0.801 gcm=3

T/K = 276.87

AT

3
— (3.1077 x 108K PaJ~' mol) x (M) x (+0.01899cm?/g) x (m—)
105 cm?

=(+5880 x 107 2KPam? 17 g~ mol)M = (+5.88% x 107 2K g ! mol)M
AT = (46.07gmol™") x (+5.889 x 1072 K g~' mol)

=4271K
Tr =269.50K + 271K =[272K
d
E4.6(b) % = d—’; % Mu,0 where n = A a H
vap
dn  dg/dt (087 x 10° Wm™2) x (10* m?)
At AypH 44.0 % 103 mol™'

=19771s7'17" mol

=200 mols™"
dnt
dt

(1977 mols™'y x (18.02 gmol ™)

e

75

E4.7(b)  The vapor pressure of ice at —5°C is 0.40 kPa. Therefore, the frost will sublime. A partial pressure of

0.40 kPa or more will ensure that the frost remains.

E4.8(b) {a) According to Trouton’s rule (Section 3.3(b), eqn 3.16)

AvapH = 85T K™ ' mol™") x T, = (85T K" mol ') x (342.2K) =[29.1 kJ mol ™!

(b} Use the Clausius—Clapeyron equation [Exercise 4.8(a)]

(P2 Bwf (1 1
P R nn T
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AtTy = 342.2K, p2 = 1.000 atm; thus at 25°C

gy = — (29.Tx 103Jmor1) 5 ( L ) S
8314J K~ mol™! 2982K 3422K

P = = 168 Torr

A160°C,

29.1 x 10%J mol™! 1 1 _

e == (3.3141 KT mol " ) ) (333.21( } 342.21() = 0276

pL= = 576 Torr

E4.9(b) AT = Ty (10 MPa) — T1ys(0.1 MPa) = ZEEMASLHMA (%) [See Exercise 4.5(b)]

ApsH = 6.01 kI mol™!

AT — | ZT3ISK) x 99 x 106 Pa) x (18 x 102 kg mol™")
B 6.01 x 10%J mol™'

y { 1 _ I ]
998 x 12kgm™  9.15 x 102kgm~>

= -074K
Trus(10MPa) = 273.15K — 074K =| 27241 K
E4.10(b) AvapH = AvnpU + Avnp(PV)

AvapH = 43.5 kI mol™"
Avap(PV) = pAvgpV = p{Vias — Viig) = PVgas = RT [per mole, perfect gas)
Avap(pV) = (83141 K~ mol™") x (352K) = 2927 mol ™!

Avp(pV) 2927 kI mol ™!
AvapH T 435k mol™!

=[6.73 x 1072 | = 6.73 percent

Solutions to problems

Fraction =

Solutions to numerical problems

P4.2 Use the definite integral form of the Clausius—Clapeyron equation {Solution to Exercise 4.8(b)].
DoapH | 1
In (‘2) =2 x (— — —) ;  T) = normal boiling point; p; = 1.000 atm
f25 R T T
20.25 x 10% ] mol ™! 1
1 tm) = - = 2.206
"(p2/atm) ( 83147 K" mol™! ) (244.0:( 313.21{)
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COMMENT. Three significant figures are not really warranted in this answer because of the approximations
employed.

Pa.4 (a) (w) - (a“ ) ) = —Sm (1) + Sm(s) [Section 4.7, eqn 13]
7 P

aT aT
~AgH
= —ApsS = T2 AngH = 601K moi™' (Table 2.3]
f
—6.01 kI mol™!
= MY | 220K 'mol™!
273.15K d "‘°1J

(b) Bu(g)) B (au(l)) _ __
(—BT , T , Si(g) + Smll) AygpS

—AwpH  —40.6k) mol ™! -
= = =|—109.0J K~' mol™!
T 373.15K | e

du
| — = —S,.AT [4.
(© Ap (ar)p AT = —§, [4.1]

Au(l) — Ap(s) = p(1,—5°C) — p(1,0°C) — pu(s, —5°C) + (s, 0°C)
= pu(l, =5°C) — u(s, —~5°C) [u(1,0°C) = u(s,0°C)]
& —{Sm(D) = Sm(SNAT = —AnsSAT

= —(5K) x (=220 K ' mol™") =|+110J mol™!

Since, p(l, —=5°C) > u(s, —5°C), there is a thermodynamic tendency to freeze.

d_p = Af_"ss [4.6] = BrusH
dT ApsV TApsV

T2 Poor T Ac YV
AT = f d7 = [ b LA
T P AnsH

P4.6

m.l lop

~ TmAfusV

AT == x Ap [T, ApusH, and Ag,V assumed constant]
AgusH

Ap = poor — Prop = pgh

Therefore
AT = TmoghApsV
AngH
_(2343K) x (13.6 x 10°kgm™>) x (9.81ms™2) x (10m) x (0517 x 10~ m® mol™")
B 2.292 x 10% Y mol~!

=0.070K

Therefore, the freezing point changes to] 234.4 K

dinp _ AygpH

P4.8 =
dT RT?

[4.11], vields upon indefinite integration

AvapH

In p = constant —
P RT
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Therefore, plot In p against 1/T and identify —A,pH /R as its slope. Construct the following lable

8/°C 0 20 40 50 70 80 90 100

T/K 273 293 313 323 343 353 363 373
1000 K/T  3.66 341 319 310 292 283 275 2.68
In(p/kPa) 0652 1.85 2.87 332 413 449 483 5.4

The points are plotted in Figure 4.1. The slope is —4569 K, so

—AvpH
T“" = —4569K, or AwpH =|+38.0kImol™!

In{p/kPa)

26 28 30 32 34 36 3.8
(10%T) K Figure 4.1

The normal boiling point occurs at p = 760 Torr, or at In(p/Torr) = 6.633, which from the figure
corresponds to 1000 K/T = 2.80. Therefore, T}, = | 357 K (84 °C) | The accepted value is 83 °C.

P4.10 The equations describing the coexistence curves for the three states are

{a) Sohd-liquid boundary

AnsH T
s In — [4.8]
AgysV ™

p=p"+

(b) Liquid—vapor boundary

AvanH L1
p=pre™X, yx=_—2F x(———) [4.12]

{c) Solid—vapor boundary

Agupfl 1 1
[JZP*C_X, x = sub w (

— — — |} [similar to 4.12]
R LA
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We need AguH = ApsH + AwpH = 41.4kImol !

l ! 78.11 ! l 1 =
AngV =M x (——— (B () = 41.197cm® mol ™!
oy p(s) gem—3 0.879  0.89I

After insertion of these numerical values into the above equations, we obtain

@ v [ 106 10% ¥ mol~! T
=p B —
p=l £.197 x 10~6 m3 mol~! T

— T T
=p*+8.855x 10°Pa x In == pt 4+ (6.64 % 107 Torr) In T= (I Torr = 133.322 Pa)
This line is plotted as « in Figure 4.2, starting al (p*, T*) = (36 Torr, 5.50°C (278.65 K)).

30.8 x 10%J mol™! 1 | — 1 |
(b) ¥ = ) (— - —) = (3705 K) x (— - —)
83147 K~ mol™ T T T T

p = pre~ Y Kx(T=1/T")

This equation is plotted as line b in Figure 4.2, starting from (p*, T*) = (36 Torr, 5.50°C (278.65 K)).

© 414 x 103 ] mol™! (1 | ) (4980 K) (l : )
= ® T T - * T
X =\ 83141 K L mol™! ror rr

*6—4986Kx(l/?'—l/?")

P=p
These points are plotted as line ¢ in Figure 4.2, starting at (36 Torr, 5.50°C).

The lighter lines in Figure 4.2 represent extensions of lines # and ¢ into regions where the liquid and
solid states respectively are nol stable.

80 -
B 60 i
e :
3 :
£ :

40 i

2 i

Figure 4.2
P4.12 The slope of the solid—vapor coexistence curve is given by

d_P _ AsubHG

dp
= — AwbH® =T AV —
ar = Tawve O w" ar
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The slope can be obtained by differentiating the coexistence curve graphically (Figure 4.3)

d
P 441PaK”!
dr
according to the exponential best fit of the data. The change in volume is the volume of the vapor
=47.8m*

So

v _RT _ (831457 K~ mol™"y x (150K)
"o 26.1Pa
AwpH® = (150K) x (47.8m%) x (441 PaK™') = 3.16 x 10* T mol~' =|31.6 kJ mol™'

“":;.";5’_5’5'5'3'"; "1'61':6;6'.'7'35s|_;

150
Figure 4.3

144 146 148
T/K

Solutions to theoretical problems
dH = C,dT + Vdp implying that dAH = AC, dT + AV dp

P4.14
However, along a phase boundary dp and d7T are related by
d AH
ﬁ =Fav [Clapeyron equation, e.g. 4.6, 4.7, or 4.10]
AH
T

Therefore,
dAH = | AC AV x
( rt TA

AH
) dT = (AC,, + T) dT and I =AC, +

Then, since
_1dAH AH | (dAH AH
dT T

d {AH
dr\r /" TdT T T
substituting the first result gives
d (AHN AC,
daT\ T/ T

Therefore,
AH AC,dT
—) =—L — =|AC,dInT

d
(T T
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P4.16 p = poe MERT (Iupaci 11.1]
- AwH (1
= p¥e X = w|——- — 4.12
p=pe” X=7% T ) W

Let T* = Ty, the normal boiling point; then p* = | atm. Let T = Ty, the boiling point at the altituede h.
Take pg = | atm. Boiling occurs when the vapor (p) is equal to the ambient pressure, that is, when
p{TY = p(M), and when this is so, T = T, Therefore, since pg = p*, p(T) = p(h) implies that

e—Mgh/RT = exp _A‘”‘PH x L — L
R Th Ty

It follows that

1 1 Mgh

To To TAwpH

where T is the ambient temperature and M the molar mass of the air. For water at 3000 m, using

M =29gmol™"
1 1 (29 x 1073 kg mol™') x (9.81 ms~2) x (3.000 x 10°> m)
— + -
Tw 373K (293K) x (40.7 x 1037 mol™!)
1 1
= +
373K ' 1397 x 104K

Hence, T, = (90°C).

P4.18 ) V=V(T,p)

av av
dV:(—) dT+(—) dp
a7/, 3 )r

av av
(_) - av‘ (_) - —KTV
T/, )y

hence, dV = oV dT —xrVdp
This equation applies to both phases 1 and 2, and since V is continuous through a second-order
transition

o1 dT —«r, 1 dp = a2 dT —kra2dp

. dp . dp a2 — o]
Solving for — yields — = —————
ing for T yields a7 = ks — ]

2) Sm =Sm(T.p)
a5m AT
dSm=|—] dT — | dp.

(asm) — Cp.m
aT P T

as 8V,
[Problem 3.26] ( “‘) =— (—ﬂ) [Maxwell relation]
3[) T oT ]

= —oVn
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C
Thus, dSy, = ’T’“ dT —aVudp

This relation applies to both phases. For second-order transitions both S, and V,;, are continuous through
the transition, Sy = Sm.2Vm1 = V2 = Vin. so that

C c
PG — g Vi dp = LT"‘J dT — aa Vi dp

d_P _ Cp.m.Z - Cp.m.l

) dp .
Solving for — 1d = X
olving for iT yields a7 TET R —

The Clapeyron equation cannot apply because both AV and AS are zero through a second-order
transition, resulling in an indeterminate form 0/0.

Solutions to applications

(a) AGy = (n — DAnHn — (01— 2)Tn AnpSm (1)

The enthalpy term is justified by r — 4 independent hydrogen bonds for which each requires AppHm
of heat to break during melting dissociation. The entropy term is justified by n — 2 highly ordered,
but independent, structures for which each experiences an entropy increase of ApyS), during the
melting process. According to [3.39], the enthalpy and entropy terms give a Gibbs energy change
of AG = AH — TAS for a constant temperature process. Eqn (1) above has this necessary form.

AusH AH
{b) AysS = ;L [3.16] yields Tips = —=

us Irs

which here becomes

_ (=4 AppHm
{n — 2) AppSim

(c) See Figure 4.4

m

1
0.8 1
0.6
ThwS, _n—4
hme n-2 04 1
0.2 1
0 T T T T
0 5 10 15 20 25

" Figure 4.4

dn

. 1 dTn AmnpHum  d(Tm AnpSm/ AnpHm) n—2yd {n—4
Consider — — = =
Tm dn T AhbSm dn n—4 n—2

_(11—2)( 2 )_ 2
T\n—4/\ =22/ tn—Hn-2)
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This expression will be less than 1% when 2/((n — 4)(n — 2)) = 0.01 or when n equals, or is larger
than the value given by 1> — 6n 4 8 = 200. The positive root of this quadratic is n = . T
changes by about 1% or less upon addilion of another amino acid residue when the polypeptide

consists of 17 or more residues.

P4.22 (a) The phase boundary is plotted in Figure 4.5,

10 E
g ;
[ T -
£ f 3
'é‘ L J
Y y H h
0.1 ____ ..... .
3 : 3
F r
3 H I 1
1) [ ISR SRS S SR SR S
80 100 120 140 160 180 200
T/K Figure 4.5

(b) The standard boiling point is the temperature at which the liquid is in equilibrium with the standard
pressure of 1 bar (0.1 MPa). Interpolation of the plotted points gives Tp =| 112 K
(c) The slope of the liquid—vapor coexistence curve is given by

dp  AvpH
dT ~ TAypV

d
50 AupH = (TAmpV)ﬁ

The slope can be obtained graphically or by fitting the points nearest the boiling point. Thendp/dT =
8.14 x 1073 MPaK~!, so

8.89 — 0.0380) dm” mol !
AvpH = (112K) x (( ) dmr’ mo )x(8.14kpa1<-‘)= 8.07 kJ mol~!

1000 dm® m?



5 Simple mixtures

D5.2

D5.4

D5.6

E5.1(b)

Answers to discussion questions

For a component in an ideal solution, Raoult’s law is: p = xp*. For real solutions, the activity, a,
replaces the mole fraction, x, and Raoult’s law becomes p = ap*,

All the colligative properties are a result of the lowering of the chemical potential of the solvent due to
the presence of the solute. This reduction takes the form pa = g} + RT Inxs or p24 = wh +RT Inap,
depending on whether or not the solution can be considered ideal. The lowering of the chemical potential
results in a freezing point depression and a boiling point elevation as illustrated in Figure 5.21 of the text.
Both of these effects can be explained by the lowering of the vapor pressure of the solvent in solution
due to the presence of the solute. The solute molecules get in the way of the solvent molecules, reducing
their escaping tendency.

The Debye—Hiickel theory is a theory of the activity coefficients of ions in solution. It is the coulombic
(electrostatic) interaction of the ions in solution with each other and also the interaction of the ions with
the selvent that is responsibie for the deviation of their activity coefficients from the ideal value of 1.
The electrostatic ion—ion interaction is the stronger of the two and is fundamentally responsible for the
deviation. Because of this interaction there is a build up of charge of opposite sign around any given ion
in the overall electrically neutral solution. The energy, and hence, the chemical potential of any given ion
is lowered as a result of the existence of this ionic atmosphere. The lowering of the chemical potential
below its ideal value is identified with a non-zero value of RT In y4. This non-zero value implies that y4
will have a value different from unity which is its ideal value. The role of the solvent is more indirect.
The solvent determines the dielectric constant, &, of the solution. Looking at the details of the theory
as outlined in Further Information 5.1 we see that £ enters into a number of the basic equations, in
particular, Coulomb’s law, Poisson’s equation, and the equation for the Debye length. The larger the
dielectric constant, the smaller (in magnitude) is In y4.

Solutions to exercises

Total volume V = naVa + ngVp = n{xa Va + xpVp)
Total mass m = naMa + npMp

= nlxaMa + (1 —xa)Mp) wheren =np + np
m _
xaMa + (1 —xa)Mp -

n
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1.000kg(10° g/kg)

= _ 4l —_ 1
©3713) x (Al 1g/mol) + (1 — 03713) x (198 2g/mopy o701 me

n

V =n{xaVa +xpVB)
= (4.6701 mol) x [(0.3713) x (188.2 cm® mol™") + (1 — 0.3713) x (176.14 cm® mol™")]

=835 cm

Let A denote water and B ethanol. The total volume of the solutionis ¥V = naVa + nmgVp
We know Vg, we need to determine 115 and ng in order to solve for V.

Assume we have 100 cm? of solution; then the mass is
m=pV = (0.9687 gem™>) x (100 cm®) = 96.87 g

of which (0.20) x (96.87 g} = 19.374 g is ethanol and (0.80) x (96.87 g) = 77.496 g is water.

77.496 -
ny = ————5 = 430 mol H0
18.02 g mol™
19.374 —
= ———— 5 —0.4205 mol ethanol
46.07 g mol™
V-ngVp _, _ 100cm’ - (0.4205 mol) x (52.2 cm® mol™")
nA TUAT 430 mol
= 1815 cm®

=[18em]

Check that pg/xg = a constant (Kg)

xB 0.010 0.015 0.020
(pn/xg)/kPa 82 x 10> 8.1 x10° 83 x 10°

Kg = p/x, average value is| 8.2 x 10° kPa

In Exercise 5.3(b}, the Henry’s law constant was determined for concentrations expressed in mole
fractions. Thus the concentration in molality must be converted to mole fraction.

1000 -
m(A) = 1000g, corresponding to n{A) = ﬁg_l = 13.50 mol n(B) = 0.25 mol
74.1 g mol™
Therefore,
0.25 mol —
X8 mo —0.0182

~ 0.25 mol + 13.50 mol

using Kp = 8.2 x 10% kPa (Exercise 5.3(b)]

p=00182 x 8.2 x 10 kPa =| 1.5 x 10% kPa
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E5.5(b) We assume that the solvent, 2-propanol, is ideal and obeys Raoult’s law.

49.62
Ivent) = p/p* = —— = 0.9924
xa(solvent) = p/p 30.00
Ma{C3HgO) = 60.096 g mol !
250 —
HA = ———— B — 41600 mol
60.096 g mol™
xp = A na +ng = fa
Hpa + nB Xp
()
mp=nal|l — —1
XA
_ | — s
= 4.1600 mol — 1} =3186 x 107 mol
mo (0_9924 ) X mo
Mp = & =273 gmol~! ={270 g mol~!
3.186 x 10-2 mol
E5.6(b) K; = 6.94 for naphthalene
My = mass of B
ng

ng = mass of naphthalene - bg

AT (mass of B) x Kp
— 50 =
Kr B (mass of naphthalene) x AT

(5.00 g) x (6.94 K kg mol™") o
Mp = =|178 |
B (0.250 kg) = (0.780 K)

AT — Kb d b HB Np
= an = = =
E5.7(b) s B mass of water Vp

bg =

o= 10° kg m (density of solution = density of water)

v i
mp=— AT=Kf—— K;=186Kmol™'kg
RT RTp
(1.86 K kg mol™") x (99 x 103 Pa)

T 8314 TK " mol™!) x (288K) x (I0°kg m—)

E5.8(b) AmixG = nRT(xa Inxa + xg lnxg)

=77x 102K

pv

HAr = HNe, Xar = XNe = 0.5, n=nar+tpne = RT

AmisG = PV(% In % + %ln %) =—pVin2

1 k)
—(100 x 10*Pa) x (250em®) { —— }1n2
108 em?

= _|73Pam’ = -173]
—AminG 1731
T 273K

BmixS = =[634 x 102K |




E5.9(b)

E5.10(b)

E5.11(b)

SIMPLE MIXTURES 87

AmixG =nRT Y xylnx [5.18]
J

—Anix G

Amin$ = —"RZIJ Inxy [5.19] = T

I
1= 1.60mol + 1.00 mol = 2.00 mol
x(Hex) = x{Hep) = 0.500

Therefore,

AmixG = (2.00 mol) x (8.314 JK™ mol™") x (298 K} x (0.500 In 0.500 + 0.500 In 0.500)

=| =343 k]
P
S = = | I1.5JK!
Bmixd 298 K 411,517

AnmixH for an ideal solution is zero as it is for a solution of perfect gases [7.20]. It can be demonstrated
from

AmixH = AnixG -+ TApixS = (~3.43 x 10° 1) + (298 K) x (1L.5TJK™") =[0]
Benzene and ethylbenzene form nearly ideal solutions, so
Amixd = —nR(xa Inxa + xp Inxg)

To find maximum A, S, differentiate with respect to x4 and find value of xa at which the derivative
is zero.

Note thatxg = | — x4 s0O
ApinS = —nR(xa lnxa + (1 - xa) In(l —xa))

dinx i
use = -

XA

d
—(Amixrd) = —nR(nxa +1 —In{l —xp)—1)=—nRIn
dx 1 — XA

1
=0 whenxy = -
2
Thus the maximum entropy of mixing is attained by mixing equal molar amounts of two components.

ng 1 mp/Mpg  mg Mg 106.16%
_— = = —_— X — = — =

ng me/Ms  mp T Mg 78.115
m

7B _ 0.7358

Mg

With concentrations expressed in molalities, Henry's law [5.26] becomes pg = bpK.

= 1.3591

Solving for b, the molalily, we have bg = pg/K = xpoal/K and powl = pam
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ForNa, K = 1.56 x 10° kPa kg mol~! [Table 5.1]

0.78 x 101.3 kP
b= X a T = 0.51 mmol kg~!
1.56 x 10° kPa kg mol™

For Oz, K = 7.92 x 10* kPa kg mol~! [Table 5.1]

0.21 x 101.3 kP,
b= x 101.3 kPa - =(0.27 mmol kg!
7.92 x 104 kPa kg mol™

ps _ 20x1013kPa
K~ 3.01 x 103 kPa kg mol~"

by = = 0.067 mol kg™

The molality will be about 0.067 mol kg~! and, since molalities and molar concentrations for dilute
aqueous solutions are approximately equal, the molar concentration is about | 0.067 mol dm™?

The procedure here is identical to Exercise 5.13(a).

AgusH 1 1
Inxg = ruTr. x (F — ?) [5.39; B, the solute, is lead]

_(52x100Jmol”' Y /1 1 )
T \8314JK"! mol™! 600K 553K

= —0.0886, implying that xg = 0.92

APY) o Clving that n(Pb) = “BEY
_— -, 1l 1 =
2(Pb) + n(B)’ TP YInE thatn = xp

g =

1000 g

For I kg of bismuth, n(Bi) = ——————
208.98 g mol™

= 4.785 mol

Hence, the amount of lead that dissolves in 1 kg of bismuth is

92) x (4.
n(Pby = 022 1X_( 07925 Mol _ ssmol, or

COMMENT. It is highly unlikely that a solution of 11 kg of lead and 1 kg of bismuth could in any sense be
considered ideal. The assumptions upon which egn 5.39 is based are not likely to apply. The answer above
must then be considered an order of magnitude result only.

Proceed as in Exercise 5.14(a). The data are plotted in Figure 5.1, and the slope of the line is
1.78 em/(mg cm™) = 1.78 em/(g dm™>) = 1.78 x 1072 m*kg~'.
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¢/(mgem™) Figure 5.1

Therefore,

8.314 JK~! mol™! 15K
( mol ™) x {293.15K) =|14.0 kg mol™!

M=
(1.000 x 103 kgm™?) x (9.8l ms=2) x (1.78 x 10~2 m* kg™

E5.15(b) Let A = water and B = solute.

0.
an = PA (543 = 202239am _ oot

Pa 0.02308 atm
ap na
ya = — and xp =
XA na +np
0.920 k - 0.122k
na = —g—] =5105mol and npg = ;gl = (.506 mol
0.01802 kg mol™ 0.241 kg mol™

51.05 0.9701
=0990 and y4 = —— =|0.980

A = 51,05 + 0.506 0.990
E5.16(h) B = Benzene ug(l) = nj (1) + RT Inxp [5.25, ideal solution]

RT Inxg = (8.314 J K~ mol™") x (353.3K) x (In0.30) =

Thus, its chemical potential is lowered by this amount.
pr = appp [5.43) = yexepg = (0.93) x (0.30) x (760 Torr) =| 212 Torr

Question. What is the lowering of the chemical potential in the nonideal solution with y = 0.93?

E5.17(b) yA = Pa_ PA —0314
PA+ DB 101.3 kPa

pa = (101.3 kPa) x (0.314) =31.8 kPa

pe = 101.3 kPa — 31.8 kPa = 69.5 kPa
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31.8 kP
ap =P = 220 _T02436

ph 73.0kPa
N
= =
R
E5.18(b) =133 bi/b%) 2 [5.71]

and for an M, X, salt, by /6% = pb/b®, b_[b° = gb/b®, so

1= Ypzd +q2)b/p°
b(K3[Fe(CN)6l) | b(KCH  b(NaBp)
bQ be be-

f = I(K3[Fe(CN)g]) + I(KC1) + /(NaBr} = %(3 + 3%

= (6) x (0.040) + (0.030) + (0.050) =

Question. Can you establish that the staterent in the comment following the solution to Exercise 5.18(a)
holds for the solution of this exercise?
b
E5.19(b} I = HKNO3) = b_e(KNO3) =0.110

Therefore, the ionic strengths of the added salts must be 0.890.

(a) I(KNO3) = b%, so H(KNO3) = 0.890 mol kg™!

and (0.890 mol kg~ !) x (0.500 kg) = 0.445 mol KNO;
So (0.445 mol) x (101.11 g mol™') = 45.0 g KNO3 must be added.

1
(b) I(Ba(NO3)2) = 5(22 +2x lz)b% = 3‘% = 0.890

0.890 _
b= Tbe = 0.2967 mol kg '

and (0.2967 mol kg ') x (0.500kg) = 0.1484 mol Ba(NQO3)2
So (0.1484 mol) x (261.32 g mol™') =|38.8 g Ba(NO3)»

ES.20(b) Since the solutions are dilute, use the Debye—Hiickel limiting law

logy, = —|zyz_|AI?

1 o, |
=3 ;z?(b;/b )= 211 x (0.020) + 1 x (0.020) +4 x (0.035) +2 x (0.035)}

=0.125
logysy = —1 x 1 x 0.509 x (0.125)'/2 = —0.17996

(For NaCl) y,, = 1079179 —
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Alzgz |12

The extended Debye—Hiickel law islog y, = I BIE

Solving for B

. 1+A]z+z_|)__( 1 +0.509)
TN gy, /0 \/62V2 T logy,

Draw up the following table

b/(molkg™") 5.0x 1073 10.0x 1073 50.0 x 1073
Vi 0.927 0.902 0.816
B 1.32 1.36 1.29

B=[13]

Solutions to problems

Solutions to numerical problems

av av 1 —1
Va=| — [5.1, A =NaCl{aq), B = water] = | — mol™" [with b = b/(mol kg™ '}]
ona ng n(H20)

= ((16.62) +3 % (177 x ()" + (2) x (0.12b)) cm® mol ™!
= 17.5cm’ mol~! when & = 0.100

For a solution consisting of 0.100 mol NaCl and 1.000 kg of water, corresponding to 55.49 mol H»0,
the total volume is given both by

Vv

[(1003) + (16.62) + (0.100) x (1.77) x (0.100)*/% + (0.12) % (0.100)%]cm?
1004.7 cm?

and by

V = n(NaCl)Vyac) 4 n(H20)Vig,0 [5.3] = (0.100mob) x (17.5cm* mol™") + (55.49 mol) x Vi,0

1004.7 cm? — 1.75cm? PO
Therefore, Vi,0 = 5549 mol = 18.07 cm” mol
.49 mo

COMMENT, Within four significant figures, this resultis the same as the molar volume of pure water at 25°C.
Question. How does the partial molar volume of NaCl(aq) in this solution compare to molar volume of
pure solid NaCl?

Let m(CuSQy), which is the mass of CuSQy dissolved in 100 g of solution, be represented by

100 m
W= —" — mass percent of CuSOy
mga - nig
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where mpg is the mass of CuSQ4 and mp is the mass of water. Then using

ma —+ mp M
P=——FT" "Apa= —
Vv Mg

the procedure runs as follows
av av
ana dma /g

)
-9 (_Au) « M
dmpa o

Ma a 1
= — 4+ (ma +mp)Ma——
P dmp p

a 1 (aw a1l -w a1
BmAp_ ams ) dwp  ma+mp dwp

Therefore,
M a 1
VA = —-é —_ WMA— -
p dw p

and hence

I_VA+ d /1
p_MA wdw D

Therefore, plot 1/p against w and extrapolate the tangent to w = 100 to obtain Vg/Mg. For the actual
procedure, draw up the following table

w 5 10 15 20

p/(gcm™3) 1.051 1107 1.167 1.230
I/(p/eem™) 0951 0903 0857 03813

The values of 1/p are plotted against w in Figure 5.2.

10
o
E
% 0.5
s |
= ‘\\
N,
<
:
0

0 20 40 60 80 100
w Figure 5.2
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Four tangents are drawn to the curve at the four values of w. As the curve is a straight line to
within the precision of the data, all four tangents are coincident and all four intercepts are equal at
0.075g ' cm’. Thus

V(CuS04) = 0.075g ' em® x 159.6 g mol™" =] 12.0 cm® mol~!

*2

RT;"xp M(CH3COOH
AT =10 536) g B _ mMCICO0H
ApsH n{(CH3COOH) 1000 g
npMRT}? beMRT}?

Hence, AT =

= bp: molality of solution
AH < 10008 ~ Ao B 1 ion]

b x (0.06005 kg mol~') x (8.314J K~ 'mol™") x (290 K)?
- B 11.4 % 10 mol-|

= 3.68K x bg/(mol kg™")

Giving for bg, the apparent molality,

bg = vbY =

where bg is the actual molality and v may be interpreted as the number of ions in solution per one
formula unit of KCI. The apparent molar mass of KCl can be determined from the apparent molality by
the relation

by o _ 1 o _ 1 -1
Mg (apparent) = — x Mg = — x Mg = — x (7456 g mol™")
by v v
where M is the actual molar mass of KCI.

We can draw up the following table from the data.

53 /(mol kg™ " 0.015 0.037 0.077 0295  0.602
AT/K 0.115 0.295 0470 1381 267
bp/(molkg™") 0.0312 00802 0128 0375  0.726
v =bg/b} 2.1 22 1.7 1.3 1.2
Mp(app¥(g mol™!y 26 34 44 57 62

A possible explanation is that the dissociation of KCl into ions is complete at the lower concentrations
but incomplete at the higher concentrations. Values of v greater than 2 are hard to explain, but they could
be a result of the approximations involved in obtaining equation 5.36.

See the original reference for further information about the interpretation of the data.
(a) On a Raoult’s law basis, « = p/p*, a = yx, and ¥y = p/ap*. On a Henry’s law basis, a = p/K,

and y = p/xK. The vapor pressures of the pure components are given in the table of data and are:
pf = 47.12 kPa, P:\ = 37.38 kPa.
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(b) The Henry's iaw conslants are determined by plotting the data and extrapolating the low concentra-
tion data to x = 1. The data are plotted in Figure 5.3. K4 and K] are estimated as graphical tangents
at x; = 1 and x; = 0, respectively. The values obtained are: K5 =|60.0 kPa |and K = | 62.0 kPa

pfkPa

Figure 5.3

Then draw up the following table based on the values of the partial pressures obtained from the plots
at the values of x; given in the figure.

x| 0 0.2 04 0.6 0.8 1.0
p1/kPa 0 12.3 22.0 307 38.7 47.12*
pafkPa  37.387 30.7 24.7 18.0 10.7 0

n(R) — 1.30 1.17 1.09 1.03 1.000(p; /x1p}]
ya(R) 1.000 1.03 1.10 1.20 1.43 — [pa/xary)
1 (H) 1.000 0.990  0.887 0824 0780  0.760[p1/x1K;']

*The value of p3; *the value of p}.

Question. In this problem both I and A were treated as solvents, but only I as a solute. Exlend the table
by including a row for ya (H).

The partial molar volume of cyclohexane is

(&)
Vo= —
a”C p.T.na2

A similar expression holds for V},. V. can be evaluated graphically by plotting V against n and finding
the slope at the desired point. In a similar manner, Vj, can be evaluated by plotting V against 7. To find
Ve, V is needed at a variety of #; while holding n1, constant, say at 1.0000 mol; likewise to find Vg, Vis
needed at a variety of np while holding n. constant. The mole fraction in this system is

ne Xelp

Xe = S0 M. =
ne + ity | — xc

From n, and s, the mass of the sample can be calculated, and the volume can be calculated from

m o ucMe +npMp
P o
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@) (b)
1400 - 240
y=279.45 + 108.96x . b y=109.00 + 279.28x -
1200 | RY= 1000 odoend 220 |
g 5 180
= 800 =
160
600 ...... 140
400 N S SRS S S 120 RS S S S S
2 4 6 8 10 0.1 0.2 0.3 0.4 0.5
nfmol apfmol Figure 5.4

The following table is drawn up

ngfmol(np = 1) V/em®  x.  p/gem™ nmp/moline =1) V/jem?

2.295 5294  0.6965  0.7661 0.4358 2307
3.970 7122 07988  0.7674 0.2519 179.4
9.040 1264 09004  0.7697 0.1106 139.9

These values are plotted in Figures 5.4(a) and (b).

These plots show no curvature, so in this case, perhaps due to the limited number of data points, the
molar volumes are independent of the mole numbers and are

Ve =[109.0cm® mol~!| and Vv, =|279.3 cm’ mol™!

The activity of a solvent is
Pa
as = — = XAVA
A

so the activity coefficient is

Pa yap
VA = _ * = " *
XaPa XA

where Lhe last equality applies Dalton’s law of partial pressures Lo the vapor phase.

Substituting the data, the following table of results is obtained.

p/kPa xr yr Yr YE
23.40 0.000 0.000

21.75 0.129 0.065 0.418 0.998
20.25 0.228 0.145 0.490 1.031
18.75 0.353 0.285 0.576 1.023
18.15 0.511 0.535 0.723 0.920
20.25 0.700 0.805 0.885 0.725
22.50 0.810 0915 0.966 0.497

26.30 1.000 1.000
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§ = Spe™/T may be written in the form In S = In Sg + (r/T), which indicates that a plot of In S against
1/T should be linear with slope T and intercept InSp. Linear regression analysis gives ,
standard deviation = 2 K

In(Sg/mol dm™?) == 2.990, standard deviation = 0.007; Sp = e***moldm~> =|19.89 mol dm—3
R =0.99978

The linear regression explains 99.98 percent of the variation.

Equation 5.39 is
xp = o CH(F=7)) _ omdwH/RT dnoH R

Comparing to S = Sge™/7, we see that

| Sp = e~ BusH/RT® |

where T* is the normal melting point of the solute and A H is its heat of fusion| T = AnH /R

According to the Debye—Hiickel limiting law

B\ 12
log y+ = —0.509|z4z_|1/* = —0.509 (b_e) [5.71]

We draw up the following table

b/(mmol kg™") 1.0 2.0 5.0 10.0 20.0
2 0.032 0.045 0.071 0.100 0.141
v+ (calc) 0.964 0.949 0.920 0.889 0.847
v+ (exp) 09649 09519 09275 09024 0.8712
log yz (calc) —00161 —0.0228 —0.0360 —0.0509 —0.0720
log v (exp) —0.0155 -0.0214 -0.0327 -0.0446 —-0.0599

The points are plotted against /'/2 in Figure 5.5. Note that the limiting slopes of the calculated and
experimental curves coincide. A sufficiently good value of B in the extended Debye—Hiickel law may
be obtained by assuming that the constant A in the extended law is the same as A in the limiting law.
Using the data at 20.0 mmol kg™' we may solve for B.

A I 0.509 1
logys 1127 (=0.0599) 0.141

= 1.405

Thus,

0.509/!/2

logys =~ 1 40572
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_0-06 i......é.......é........‘..
Figure 5.5

In order to determine whether or not the fit is improved, we use the data at 10.0 mmol kg™

| —(0309) x (0100)
log ¥t = {1y (1.409) x (0.100) — 0.0446

which fits the data almost exactly. The fits to the other data points will also be almost exact.

Solutions to theoretical problems
xa duep + xg dpep = 0 [5.12, Gibbs—Duhem equation]

P5.18
Therefore, after dividing through by dxa

3 3
IA(ﬂ) +x3(_“_“) —0
pT xa /ot

dxa
or, since dxg = —dxa,asxa +xpg = 1
(3),e = (55)
XAl — —XB\ — =0
Oxa pT dxp pT

dpen IR dx
or, = dlnxy = —
p.T dlinxg p.T x

aInxp
f alan) _(Blnfg)
( Blnxa p.T

Then, since . = u® + RT In =;, =
P dlnxa /o1

al al
On replacing f by p, ( npA) = ( an)
dlnxp p.T dlnxg p.¥

If A satisfies Raoult’s law, we can write pa = xapj, which implies that

al 8 Inp*
_ nxa pA=l+0

(Blnp,q +
dlnxa/px  Odlnxa  dlnxg

97
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al
Therefore, ( nPB) =1
dlnxg pr

which is satisfied if pg = xppp (by integration, or inspection). Hence, if A satisfies Raoult’s law, so
does B,

Inxa = —AnpsG/RT (Section 5.5 analogous to equalion for In xg used in derivation of eqn 5.39)

dlInxp 1 d (ArusG

dr ~ ROT\ T

TN T T
f dinxa =f Bl iy o, A“"*Hf a
|  RT? R Jp. T2

—AgqsH b |
Inxg = X\ =— =
R T T

) [Gibbs—Helmholiz equation)

The approximations ln xa = —xp and T ~ T* then lead to eqns 5.33 and 5.37, as in the text.

Retrace the argument leading to eqn 5.40 of the text. Exactly the same process applies with a4 in place
of xa. At equilibrium

Balp) = ta(xa.p+1T)

which implies that, with it = u* + RT In a for a real solution,

P+
ur(P) = up(p+ ) +RTInags = u;;(p)+] Vmdp + RT Inay
P

p+i7
and hence that f Vmdp = —RT lnaa
i
For an incompressible solution, the integral evaluates to Vy,, so Vi, = —RT Inap

In terms of the osmotic coefficient ¢ (Problem 5.21)

XB ne Xa |
AVon=r$RT r=—=— ¢=—~—Inays = —-Inap
XA na XB r

For a dilute solution, na Vi, = V

Hence, V = ng¢pRT

and therefore, with [B] = RVB IT = ¢[B]RT

Solutions to applications

The 97% saturated haemoglobin in the lungs releases oxygen in the capillary until the haemoglobin is
75% saturated.

100 cm? of blood in the lung containing 15 g of Hb at 97% saturated with O; binds

134em’ g7! x 15g =20cm® Oz
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The same 100 ¢m? of blood in the arteries would contain

75%
97%

20 em?® O, x = 15.5cm’

Therefore, about (20 — 15.5) em® or of O3 is given up in the capillaries to body tissue.

EBuoun
u=[[]% and  (EBloouns = [EBJin — [EBlon

Draw up the following table:

[EBow/ (zmol dm™?) 0.042 0.092 0.204 0.526 1.150

(EBlbound/(pmol dm™3) 0250 0.498 1.000 2.005 3.000
v 0.250 0498 1.000 2.005 3.000

EBlo,
V/1EBlow 595 541 490 381 26l
2 pmol™

A plot of v/[EBJey is shown in Figure 5.6.

-]

— y=6.1124 +-1.1672 x RZ = 0.99511

(4] =]

O|||||||II|||||]ll||[||||||||| TTTT

YEBLout
R A

-

reran by Yo Py Yo 11
1 2 3 4 5 6
v Figure 5.6

(=]

The slope is —1.167 dm® zzmol~", hence K =| 1.167 dm’ zmol ™" | The interceptat v = Qis| N =5.24

and this is the average number of binding sites per oligonucleotide. The close fit of the data to a straight

line indicates that the identical and independent sites model | is applicable |

PX.(s) = P" + (aq) + vX~(aq)

This process is a solubility equilibrium described by a solubility constant K
K; =ap +ay_
Introducing activity coefficients and concentrations, &, we obtain

Ky = bpe + by}
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At low to moderate ionic strengths we can use the Debye—Hiickel limiting law as a good approximation
for y+

log ys = —lz4z-1AI2

Addition of a salt, such as (NH4)2504 causes / to increase and log y4 to become more negative and
y4 will decrease. However, K is a true equilibrium constant and remains unchanged. Therefore, the
concentration of P'T increases and the protein solubility increases proportionately.

We may also explain this effect with the use of Le Chatelier’s principle. As the ionic strength increases
by the addirtion of an inert electrolyte such as (NH4)2SO4, the ions of the protein that are in solution
attract one another less strongly, so that the equilibrium is shifted in the direction of increased solubility.

The explanation of the salting out effect is somewhat more complicated and can be related to the failure
of the Debye-Hiickel limiting law at higher ionic strengths. At high ionic strengths we may write

log i = —|z4 ATV + KT

where K is the salting out constant. At low concentrations of inert salt, /'/2 > 7, and salting in occurs,
but at high concentrations, / > '/?, and salting out occurs. The Le Chatelier’s principle explanation is
that the water molecules are tied up by ion—dipole interactions and become unavailable for solvating the
protein, thereby leading to decreased solubility.

We use eqn 5.41 in the form given in Example 5.4 with ff = pgh, then

= + c

il RT B RT RTB
— = (1t =)=+ s
¢ M M2

where ¢ is the mass concentration of the polymer. Therefore plot [T/c against ¢. The intercept gives
RT/M and the slope gives RT /M?.

The transformed data to plot are given in the table

c/(mg cm™3) 133 210 452 718 987
(T/cy/(Nm~2mg='cm®) 2256 2429 2920 3426 39.51

The plot is shown in Figure 5.7. The intercept is 29.09N m~2/(mgem™3). The slope is
1.974N m~2/(mg cm~3)2_ Therefore

RT
M=——
29.09 Nm~2/(mg cm—3)

83145 K~ mol~' x 303.15K y ( g ) (106cm3)
= x

20.09N m~2/{mg cm3) 10% mg 1m3

= 1.255 x 10° g mol”! =| 1.26 x 105g mol~"




O/MNm™ 2 mg~' cm®)

¥ =20.093 + 1.9741x, R =0.99983

SIMPLE MIXTURES

40.0 T T T T T l T T T I T T T T T

350

llllllllllllllllll]

|ll|‘111|1|l|||||lJ.

30.0 .

25.0 i v

200 1 L L I 1 1 L l 1 1 L i L 1 1 i L
0 2 4 6 8

M _
B= o X 1.974N m~2/(mg cm~>)?

@

1.255 x 10% g mol™! x 1.974N m~2/(mg cm™3)?

% 1.974 Nm~2/(mg cm™3)?

20.09N m~2/(mg cm=3)
=123 x 10* g mol™' /(mg cm™3)
1.23 x 107 g mol~' /(g em™)

=[123 x 10* am® mol " |

—
[=

Figure 5.7
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6 " Phase diagrams

D6.2

D6.4

Answers to discussion questions

The principal factor is the shape of the two-phase liquid—vapor region in the phase diagram (usually a
temperature—composition diagram). The closer the liquid and vapor lines are to each other, the more
theoretical plates needed. See Figure 6.15 of the text. But the presence of an azeotrope could prevent the
desired degree of separation from being achieved. Incomplete miscibility of the components at specific
concentrations could also affect the number of plates required

See Figures 6.1(a) and 6.1(b).

P = conslant
Aa1—Tp
Liquid A and B
T 1qul Al m T
T A&B
Solid B
Tae. —>7 Liquid A & B
Solid B Solid AB, Solid A °
and _/ ‘L T.
Solid AB, Eutectic
Solid AB; and Solid A
f
B 0.33 Xe A

XA —» Figure 6.1(a)
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E6.1(b)

p = constant

See Figure 6.2.

Liquid
A&B

Xy —>

Liquid (A & B)

Solid B

Solid A

Sold A

Solid A,B

Two solid phases

Solid A,B

Solid B,A

Two solid phases

Solid B

Solid B,A

Twao solid phases

0.333
AqB

g —*> (.666
B, A

Solutions to exercises

p=pa+ps=xaph + (1 —xa)pp

P— Py
xa= LB
Pp— P

PHASE DIAGRAMS

Figure 6.1(b)

Figure 6.2

103
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19 kPa — 18kP
Xa = m—z— =[(0.5)| Ais I, 2-dimethylbenzene

AP (0.5) x (20kPa)

= = =0.526 ~|0.5
YA P+ (ph = ph)xa  18KkPa+ (20kPa — 18kPa)0.5 -
yg = | —0.526 = 0.474 =~ 0.5
EG.2(h) Pa = yap = 0.612p = xap3 = xa(68.8 kPa)

pe =ypp = (1 —ya)p = 0388p = xgpp = (| — xa) x B2.1kPa

YAP _ XA an 0612  68.8x5
YBp  XBPh 0.388 ~ 82.1(1 — x4)

(0.388) x (68.8)xs = (0.612) x (82.1) — (0.612)(82.1)xa
26.694xs = 50.245 — 50.245x,

50.243

- 22 _[0653] xp = 1~ 0.653 = [0.347]
26.694 + 50.245 (0653 [0347]

p = xaph + xpply = (0.653) x (68.8kPa) + (0.347) x (82.1kPa) =|73.4kPa

XA

E6.3(b) (a) If Raoult’s law holds, the solution is ideal.
pa = xaph = (0.4217) x (110.1 kPa) = 46.43 kPa
pB = xppg = (1 —0.4217) x (94.93kPa) = 54.90kPa

p=pa+ps = (4643 + 54.90) kPa = 101.33kPa = 1.000 atm

Therefore, Raoult’s law correctly predicts the pressure of the boiling liquid and[lhe solution is ideal |,
(b) PA 46.43 kPa 0
= —=——+—— =|04582
A= T 10133kPa
yg =1—ya =1.000—04582 =;0.5418

E6.4(b) Let B = benzene and T = toluene. Since the solution is equimolar zg = z1 = 0.500

(a) Initially xg = zg and x7 = zT; thus
p =xppp + xrpy [6.3) = (0.500) x (9.9kPa) + (0.500) x (2.9kPa)

= 4.95kPa + 1.45kPa =| 6.4 kPa

e 4.95 kPa
®)  ye =3 164]= [0.77] 37 0.77

(c) Near the end of the distillation

yg = 25 = 0.500 and yr = zr = 0.500
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Equation 6.5 may be solved for x4 [A = benzene = B here]

YBPT {0.500) x (2.9kPa)
xp = = =023
Ph+ (Pt —ph)ys (9.9KkPa) + (2.9 — 9.9)kPa x (0.500)
x1=1-023=077

This result for the special case of zg = z1 = 0.500 could have been obtained directly by realizing that

yg (initial) = xr (final); yr (initial) = xg (final)
plfinal) = xpp} + xrph = (0.23) x (9.9kPa) + (0.77) x (2.9kPa) =

Thus in the course of the distillation the vapor pressure fell from 6.4 kPato 4.5 kPa

E6.5(b)  See the phase diagram in Figure 6.3.

(a) ya =|0.81
(®)  xa=[067] ya=[0925]

155
150
145
140

8/°C
135

130

125

120

Figure 6.3

E6.6(b) AL, Ht, AICls, Al{OH);, OH™, CI~, H2O giving seven species. There are also three equilibria

AlCI3 + 3H20 = Al(OH); + 3HCI
AICI; = AP + 301
H;O = HY + OH™

and one condition of electrical neutrality
[H¥] + 3[A*] = [OH™] +[CI7]

Hence, the number of independent components is

c=7-3+1=[3]
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E6.8(b)

E6.9(b}
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NH,4Cl(s) = NHa(g) + HCl(g)

() For this system [Example 6.1] and (s and g).

(b) If ammonia is added before heating, (because NH¢Cl,NH3 are now independent) and

(s and g).
(a) Still (NazSO4, H20), but now there is no solid phase present, so (liquid solution,

vapor).

(b) The varianceis F=2—-2+2= . We are free to change any two of the three variables, amount
of dissolved salt, pressure, or temperature, but not the third. If we change the amount of dissolved
salt and the pressure, the temperature is fixed by the equilibrium condition between the two phases.

See Figure 6.4

{Solid NH1 + NoHy |

0 x(N2Ha4) I Figure 6.4

See Figure 6.5. The phase diagram should be labeled as in figure 6.5. (a) Solid Ag with dissolved
Sn begins to precipitate at a|, and the sample solidifies completely at a;. (b) Solid Ag with dissolved
Snbegins to precipitate at 1, and the liquid becomes richer in Sn. The peritectic reaction occurs at bz, and

(a)

b a
200 - Liqguid | 7 |/ baeceaoo2d
a

L + Ag solid e

conlaminaled b
S with Sn 460°C
S A IR

g;Slll + Ag
L+ Sn conlaminaled -
solid~_| with Sn
[ VARG 7 N R [ S— N
200 4 Sn -+ AgaSn solids a

Sn Ag)Sn Ag Time Figure 6.5
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as cooling continues Ag;Sn is precipitated and the liquid becomes richer in Sn. At b3 the system has its
eutectic composition (e) and freezes without further change.

See Figure 6.6. The feature denoting incongruent melting is circled. Arrows on the tie line indicate the
decomposition products. There are fwo eutectics: one at xp = m, T= ; another at xg = ,

T=.

Temperature, 7

T

¢ 0.33 0.67
A xg B Figure 6.6

The cooling curves corresponding to the phase diagram in Figure 6.7(a) are shown in Figure 6.7(b).
Note the breaks (abrupt change in slope) at temperatures corresponding to points ay, &, and &2. Also
note the eutectic halts at az and b3.

(a) (b}

Temperature, T

“ N

033 0.67 |

o
-
=

w

Figure 6.7
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E6.13(b) Rough estimates based on Figure 6.37 of the text are
(a) x & (b) xaB, * (€) XABy &

E6.14(b) The phase diagram is shown in Figure 6.8. The given data points are circled. The lines are schematic

at best.
000k Liquid
Ligquid
+ .
900 - Solid
&) Liquid,
< +
Solid
800 |
100 Solid
1 1 1 1 ) 1 1
0 0.2 04 0.6 0.8
x(ZrF,)

Figure 6.8

A solid solution with x(ZrF4) = 0.24 appears at 855°C. The solid solution continues to form, and
its ZrF4 content increases until it reaches x(ZrFs) = 0.40 and 820 °C. At that temperature, the entire

sample is solid.

E6.15(b) The phase diagram for this system (Figure 6.9) is very similar to that for the system methyl ethyl ether
and diborane of Exercise 6.9(a). The regions of the diagram contain analogous substances. The solid
compoeund begins to crystallize at 120 K. The liquid becomes progressively richer in diborane until the
liquid composition reaches 0.90 at 104 K. At that point the liquid disappears as heat is removed. Below
104 K the system is a mixture of solid compound and solid diborane.

0 I{BzHg) 1

Figure 6.9



PHASE DIAGRAMS 109

EG.16(b) Refer to the phase diagram in the solution to Exercise 6.14(a). The cooling curves are sketched in

Figure 6.10.
(2) (b) (e) (d} (e)
95
93 |
21 |
o
= 89
87 |
85
8 - r — Figure 6.10

E6.17(b) (a) When x4 falls 1o 0.47, a second liquid phase appears. The amount of new phase increases as x4 falls
and the amount of original phase decreases until, at x4 = 0.314, only one liquid remains.

(b) The mixture has a single liquid phase at all compositions.
The phase diagram is sketched in Figure 6.11.

4 r

52 F

50 F

48 |

8/°C

46

44 -

42 |

40

38 1 ) 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 10
XA Figure 6.11

Solutions to problems
Solutions to numerical problems

P6.2 (a) The phase diagram is shown in Figure 6.12.

(b) We need not interpolate data, for 296.0 K is a temperature for which we have experimental data.
The mole fraction of N, N-dimethylacetamide in the heptane-rich phase (z, at the left of the phase
diagram) is 0.168 and in the acetamide-rich phase (8, at right) 0.804. The proportions of the two
phases are in an inverse ratio of the distance their mole fractions are from the composition point in
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310

305
-E 300

295

290

0.0 0.2 0.4 0.6 0.8 1.0
X Figure 6.12

question, according to the lever rule. That is

nefng = lgfly = (0.804 — 0.750)/(0.750 — 0.168) = [0.093

The smooth curve through the data crosses x = 0.750 at| 302.5 K |, the temperature point at which
the heptane-rich phase will vanish.

P6.4 The phase diagram is shown in Figure 6.13(a). The values of xg corresponding to the three compounds
are: (1) P4S3, 0.43; (2) P4Sq, 0.64; (3) P4Sj0, 0.71.

350
|
300
250
1t
200 ]
EL.). ! €3
>~ ’7
150
)
€2
104} ty P
]
Sz S:‘ ed
50
d o 043 064] |07 &
0 '151 1 ‘/ l\" "/ 1
0 0.2 04 0.6 0.8 1.0
Xy Figure 6.13(a)

The diagram has four eutectics labelled ey, €2, €3, and e4; eight two-phase liquid-solid regions, 7| through
fg; and four two-phase solid regions, S|, S2, S3, and S4. The composition and physical state of the regions
are as follows:

I liquid § and P;

S1: solid P and solid P4S3; S»: solid P4S3 and solid P45,
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S3 :solid P4S7 and PySyp; S4: solid P4Sp and solid S

—~

1 : liquid P and S and solid P

32 liquid P and S and solid P4S3
t5: liquid P and S and solid P45
71 liquid P and S and solid P4Sg

—
D

2: liguid P and § and solid P4S3
: liquid P and S and solid P457
: liquid P and S and solid P4Sp
g : liquid P and S and solid §

—-—
—_
o

—
=%

-
-—

A break in the cooling curve (Figure 6.13(b)) occurs at point by &= 125°C as a result of solid P4S3
forming; a eutectic halt occurs at point ey & 20°C.

300

250

200

érC

100

50

' Figure 6.13(b)

P6.6 See Figure 6.14{a). The number of distinct chemical species (as opposed to components) and phases
present at the indicated points are, respectively

(a) (b

1200 +
a
7 Q
1
E
800 A <13
L a AT
°_ i 2
== gl :
T DN~ paa--l
1 €3
R
400 - : Y.
! €3
)
1
|I 1 1 T
Cu MgCu; Mg:Cu Mg Time Figure 6.14(a)

b(3,2), d(2,2), e(d,3), f(4,3), g4 3), k(2,2)

[Liquid A and solid A are here considered distinct species.]
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The cooling curves are shown in Figure 6.14(b).

g/°C

(a)

(b)

©

(2) (b)

1200 <
a
7 Q@
]
:
800 - ba
a AT
4 e i
AP O .
i)
i
400 | v
; (2
1]
1
[I T T T
Cu MgCu: Mg Cu Mg Time Figure 6.14(b)

The AmixGlxpy) curves show that at 1500 K lead and copper are totally miscible. They mix to form
a homogeneous solution no matter what the relative amounts may be. However, the curve at 1300 K
appears to have a small double minimum, which indicates two partially miscible phases (Sections
5.4b and 6.5b) at temperatures lower than 1300 K (1100 K curve of the figure) there are two very

distinct minimum and we expect two partially miscible phases. The upper critical temperature is
about 1300 K at 1500 K,

F=C-P+2=2—1+2=[3]a1100K
F=C-P+2=2-2+2=2]

When a homogeneous, equilibrium mixture with xpy, = 0.1 is cooled from 1500 K to 1100 K, no
phase separation occurs. The solution composition does not change.

If an xp, = 0.7 homogeneous, equilibrium mixture is cooled slowly, two partially miscible phases
appear at about 1300 K. The separation occurs because the composition lies between two minimum
on the Apix G curve at 1300 K and phase separation lowers the total Gibbs energy.

The composition of the two phases is determined by the equilibrium criterion p; () = u;(#) between
the & and B8 phase. Since the chemical potential is the tangent of the Apy;x G curve, we conclude that
the straight line that is tangent to ApmixG(x) at two volumes of x (a double tangent) determine the
composition of the two partially miscible phases. The 1100 K data is expanded (this can be done
on a photocopy machine) so that the numerical values may be extracted more easily. The double
tangent is drawn and the tangent points give the composition | xpp(a) = 0.19 | and | xpn () = 0.86 |
See Figure 6.15. (Notice that the tangent points and the minimum do not normally coincide.) The
relative amounts of the two phases is determined by the lever rule (egn 6.7).

{ 0.86 — 0.70
T 2227 (036
ng ey  070-0.19
Solubility at 1100 K is determined by the positions of the two minimum in the AnyixG curve. The
maximum amount of lead that can be dissolved in copper yields a mixture that has xp, = 0.17, any
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more lead produces a second phase.

: 0.17 metP5Y  [207.19gPb I met€i
lubility of Pbin Cu = [ ~o oD ) o (217870 (SRR ) TG 67g Pb/gC
solubility of Pbin Cu (o.samam) 8 ( L metPt ) * (63.54gCu) 067g Pbig Cu

The second minumum in the A G curve at 1100 K is at xpp, = 0.86.

0.14 met€ii >((63.54gCu . 1 mol Pb
0.86 mol Pb 1 met€u 207.19gPb

=|0.050 g Cu/g Pb

Cu-Pb maxwres at 1100 K

solubility of Cu in Pb = (

composition at min: 0.86

composition at min: 0.17

double tangent line

tangent composition 0.19 tangem composition 0.86 Figure 6.15

P6.10 The data are plotted in Figure 6.16. At 360 °C, KyFeCly(s) appears. The solution becomes richer in
FeCl; until the temperature reaches 351 °C, at which point KFeCl3(s) also appears. Below 351 °C the
system is a mixture of KsFeCls(s) and KFeClj(s).

ST W98
44Kl \

g Renhy
s

¢ Liquid + FeCl, i
: : feemeann Peemrindann

e[
KFeCly |

0 0.2 0.4
x(FeCly) ‘ Figure 6.16



114 INSTRUCTOR'S SOLUTIONS MANUAL

Solutions to theoretical problems

P6.12 The implication of this problem is that energy in the form of heat may be transferred between phases and
that the volumes of the phases may also change. However, Uy + Uy = constant and V; + ¥ = constant,
Hence,

dUg = —dU, (b) and dVg= —dV, (c)
The general condition of equilibrium in an isolated system is dS = 0; hence
dS =dS; +dSg =0 (a)

S=8U.V)

LAY 05, d5g AT
ds = du, _— dv, — | dU — dv,
(BUH)V(, a+(ava)ua a+(aUﬂ vy = 3Vp Uy ?

Using conditions (b) and (¢), and eqn 3.45

! ! Pa P8
dS=[— — — }dvu, 2 22 ldv, =0
(n 'Q) “+(n Ts “

The only way in which this expression may, in general, equal zero is for

1 I

=0 and 22_PE_g

T, Tp T« Tp

Therefore, | Ty = Tp and pe = pg

Solutions to applications

P6.14 Above about 33 °C the membrane has the highly mobile liquid crystal form. At 33 °C the membrane
consists of liquid crystal in equilibrium with a relatively small amount of the gel form. Cooling from
33°C 1o about 20 °C, the equilibrium persists but shifts to a greater relative abundance of the gel form.
Below 20°C the gel form alone is stable.

P6.16 Kevlar is a polyaromatic amide. Phenyl groups provide aromaticity and a planar, rigid structure. The
amide group is expected to be like the peptide bond that connects amino acid residues within protein
molecules. This group is also planar because resonance produces partial double bond character between
the carbon and nitrogen atoms. There is a substantial energy barrier preventing free rotation about the
C—N bond. The two bulky phenyl groups on the ends of an amide group are trans because steric
hinderance makes the cis conformation unfavorable.
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—C > N=C
7 Q resonance 4 Q
H H
trans trans
+ energy
H\ /O
4
Q N—C
cis o

The flatness of the Kevlar polymeric molecule makes it possible to process the material so that many
molecules with parallel alignment form highly ordered, untangled crystal bundles. The alignment makes
possible both considerable van der Waals attractions between adjacent molecules and for strong hydrogen
bonding between the polar amide groups on adjacent molecules. These bonding forees create the high
thermal stability and mechanical strength observed in Kevlar.

-?

ERey

hydmgen bond

0 (5‘
hydrogen bond N C 5+
D polar, covalent bonds
Q O &
H/ polar cavalent bonds

Kevlar is able to absorb great quantities of energy, such as the kinetic energy of a spreading bullet,
through hydrogen bond breakage and the transition to the cis conformation.

P6.18 In the fteat zoning (FZ) method of silicon purification, a polycrystalline silicon rod is positioned atop a
seed crystal and lowered through an electromagnetic coil. The magnetic field generated by the coil creates
electric currents, heating, and local melting in the rod. By slowly moving the coil upward impurities
move with the melt zone. The lower surface of the melt zone solidifies to an ultrapure, single crystal as
it stowly cools. See Figure 6.17. Search www.nrel.gov
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feed rod

crystal
(boule)

Figure 6.17

Advantages Disadvantages

Produces ultrapure silicon for high efficiency Requires a smooth, uniform diameter, and

photovoltaic cells and infrared detectors for crack-free feed rod

space, defense, and environmental applications

No crucible contamination High cost of heating

Produces large boules (10 cm diameter} Process must be conducted under helium or
argon and 10~% Torr vacuum
Boron impurity is not removed from silicon
Boule must be sliced with a diamond saw into
thin wafers for microelectronic devices. This
reduces the useful volume of the boule

P6.20 The temperature—composition lines can be calculated from the formula for the depression of freezing
point [5.36].

_ RT*2xg
S H

AT

For bismuth

RT*?  (8.314JK™"'mol~!) x (5445K)*

= =227K
At 10.88 x 103 Jmol™!
For cadmium
*2 314JK ! mol™! 4.5 K32
RT*?  (8314]K!mol™'} x (594.5K) 483K

AnsH 6.07 x 103 I mol~!
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We can use these constants to construct the following tables

x(Cd) 0.1 0.2 0.3 0.4

AT/K 227 454 681 90.8 (AT =x(Cd) x 227K)
/K 522 499 476 454 (Te=TF — AT)

x(Bi) 0.1 0.2 0.3 0.4

AT/K 483 966 145 193 (AT = x(Bi) x 483K)
/K 546 497 449 401 (Tr =T} — AT)

These points are plotted in Figure 6.18(a).

(a} (b}
600 B H d

400

Time

Figure 6.18

The eutectic temperature and concentration are located by extrapolation of the plotted freezing point
lines until they intersect at ¢, which corresponds to Tg =2 400 K and xg(Cd) = 0.60

Liguid at @ cools without separation of a solid until @’ is reached (at 476 K). Solid Bi then separates, and
the liquid becomes richer in Cd. At "' (400 K) the composition is pure solid Bi + liquid of composition
xg; = 0.4. The whole mass then solidfies to solid Bi + solid Cd.

(a) At460 K (point &), uiO) = Hs) /2 5 by the lever rule.
n(s)

(b) At375 K (point " there is| no liquid |. The cooling curve is shown in Figure 6.18(b).

COMMENT. The experimental values of T and xg(Cd) are 417 K and 0.55. The extrapolated values can be
considered to be remarkably close to the experimental ones when one considers that the formulas employed
apply only to dilute (ideal) solutions.
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Dr.2

D7.4

D7.6

D7.8

Answers to discussion questions

The thermodynamic equilibrium constant involves activities rather than pressures. See eqn 7.16 and
Example 7.1. For systems involving gases, the activities are the dimensionless fugacities. At low pres-
sures, the fugacity may be replaced with pressures with little error, but at high pressures that is not a
good approximation. The difference between the equilibrium constant expressed in activities and the
constant expressed in pressures is dependent upon two factors: the stoichiometry of the reaction and
the magnitude of the partial pressures. Thus there is no one answer to this question. For the example of
the ammonia synthesis reaction, in a range of pressures where the fugacity coefficients are greater than
one, an increase in pressure results in a greater shift to the product side than would be predicted by the
constant expressed in partial pressures. For an exothermic reaction, such as the ammonia synthesis, an
increase in temperature will shift the reaction to the reactant side, but the relative shift is independent of
the fugacity coefficients. The ratio In(K2/K) depends only on A H. See eqn 7.25.

The physical basis of the dependence of the equilibrium constant on temperature as predicted by the
van’t Hoff equation can be seen when the expression A,G® = A H® — TAS® is written in the form
RIn K =—AH®/T 4+ A.5%. When the reaclion is exothermic and the temperature is raised, In K and
hence K decrease, since T occurs in the denominator, and the reaction shifts to favor the reactants. When
the reaction is endothermic, increasing 7 makes In X less negative, or K more positive, and products
are favored. Another factor of importance when the reaction is endothermic is the increasing entropy of
their reacting system resulting in a more positive In K, favoring products.

The potential difference between the electrodes in a working electrochemical cell is called the cell
potential. The cell potential is not a constant and changes with time as the cell reaction proceeds. Thus
the cell potential is a potential difference measured under non-equilibrium conditions as electric current
is drawn from the cell. Electromotive force is the zero-current cell potential and corresponds (o the
potential difference of the cell when the cell (not the cell reaction) is at equilibrium. Infinitesimally
small changes from this equilibrium are reversible with constant concentration and, consequently, it is
possible to relate emf to thermodynamic properties.

Construct a cell using a standard hydrogen electrode and an electrode designed around the redox couple of
interest. The cell potential £ is measured with a high impedance voltmeter under zero current conditions.
When using SHE as a reference electrode, E is the desired half-reaction potential [7.13]. Should the
redox couple have one or more electroactive species {i) that are solvated with concentration 4;, E must
be measured over a range of b; values.
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The Nernsl equation [7.29], with Q being the cell reaction quotient, is the starting point for analysis of
the E(b;) data,

RT
E=E% ——]|
e nQ

It would seem that substitution of £ and ( values would allow the computation of the standard redox
potential £ for the couple. However, a problem arises because the calculation of ( requires not only
knowledge of the concentrations of the species involved in the cell reaction but also of their activity
coefficients. These coelficients are not usually available, so the calculation cannot be directly completed.
However, at very low concentrations, the Debye—Hiickel limiting law for the coefficients holds. The
procedure then is to substitute the Debye-Hiickel law for the activity coefficients into the specific form
of the Nernst equation for the cell under investigation and carefully examine the equation to determine
what kind of plot to make of the E (&) data so that extrapolation of the plot to zero concentration, where
the Debye—Hiickel law is valid, gives a plot intercept that equals E°. See Section 7.8 for the details
of this procedure and an example for which the relevant graph involves a plot of £ + (2RT/F) In b
against b'/2.

Solutions to exercises

N204(g) = 2NO2(g)

Amount at equilibrium (1 —a)n 2an
1 — 2
Mole fraction « ad
| + e | 4o
. (Il —a)P 2aP
Partial pressure
| + o 1+«

; )
Assuming that the gases are perfect, ay = p_e
7

_ (pnoy/pT)E . 4a?p
(PN20,/P°) (1 —a?)p®

2

v

3
| — -

(a) at equilibrium
4(0.201)* —
h) a = 0.201 K= 1_(6T)12 =|(0.16841

(©) AG® = —RTInK = —(8.314JK ™ mol™") x (298 K) x In(0.16841)

=|4.41 kI mol™!

Forp =p®.K =



120 INSTRUCTOR'S SOLUTIONS MANUAL

E7.2(b) (a) Bra(g) = 2Br(g) o =024

Amount at equilibrium (1l —an 2an
. l —¢ 2o
Mole fraction
| 4+« |+«
. (1l —a)P 2aP
Partial pressure

I+« 1 +a

Assuming both gases are perfect a; = p_;

42 2
K=(PBr/P3= 4a2pe= da b =p°]
PBr. /P (I —a)p |-«

4(0.24)2

(b) AG® = —RTInK = —(8.314JK "' mol™!) x (1600 K) x In(0.2445)
AH® 1 |
(©) In K(2273K) = InK(1600K) — — (22731{ - 16001{)
= In(0.2445) — (%) x (—1.851 x 107
= 1.084
K(2273K) = !0 =
E7.3(b) v(CHCl3) = 1, v(HCl) =3, u(CHz)=—1, u(Clp)=-3

(@)  AG® = AfrG®(CHCl3, 1) + 3A¢G® (HCl, g) — A¢G®(CHy, g)

= (=73.66kI mol™") + (3) x (—95.30kImol™!) — (—50.72kJ mol ')

=] —308.84 kJ mol~!

© —(—308.84 x 10° -1
1nK=—ArG (7.8 { X Jmol™")

RT - (8.3145J K=" mol™") x (298.15K)

(b) AH® = AfH®(CHCl, 1) +3AcH®(HCL, g) — ArH®(CHg, g)

= 124.584

= (—13447kImol™") + (3) x (=92.31 ki mol™!) — (—74.81 kI mol™")
= —336.59kJ mol ™!
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In K(50°C) = In K{25°C) AHT : ' [7.25])
n = R \3232K 2982K/ '~

—336.59 x 10° Jmol™!
83145JK~ mol™!

= 124,584 — (

AG®(50°C) = —RT In K (50°C) [7.17] = —(8.3145T K~ mol™!) x (323.15K) x (114.083)
=|306.52 kJ mol~!

E7.4(b)  Draw up the following table.

) % (—=2.594 x 107K~y = 114.083

A + B = C + 2D Total
Initial amounts/mol 2.00 1.00 0 3.00 6.00
Stated change/mol +0.79
Implied change/mol —7.09 —7.09 +7.09 +1.58
Equilibrium amounts/mol 1.21 0.21 0.79 4.58 6.79
Mole fractions 0.1782 0.0302 0.1162 0.6742 0.9999

(a) Mole fractions are given in the table.

(b) K\' = nxl-'j‘
J

(0.1163) x (0.6745)2

T (0.1782) x (0.0309)

(¢) py = x;p. Assuming the gases are perfect, aj = p;/p®, so

& o2
g = pc/p?) x po/p7)” K, (i) =K. when p=100bar
(pa/p®) x (pB/P®)

£

D
@ AG® = —RTInK = —(8.314JK~ ' mol™") x (298K) x In(9.609)
=|—5.6kJ mol~!

E7.5(b) At1120K, A,G® =422 x 10° Jmol ™!

AG® (22 x 10° Tmol™!)

=— = —2.363
RT (8314TJK " mel™!) x (1120K)

InK(1120K) =

K = ¢ 238 = 94T x 1072

AHE [ ] 1
1nK2=1nK.—-‘R—(———)
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SolveforTh atin K2 = 0(K2 = 1)

I RInKy 1 (8314JK~'mol™') x (-2.363) 1 —
= = + = + =736 x 10
T AH® T (125 x 1037 mol™1) 1120K

dinK) _ —AH®
T R

E7.6(b) 9]

1 1y?
We have inK = —2.04 — 1176 K ("T_) +2.1 x 107K? (?)

2

AH® 1
_fT =—1176 K + (2.1 x 107 K% x 3(?)

T =450K so

9

1 = —
=—176K+ 21 x 100K x3[ ——— ] = —865K
+ (2.1 x ) % (4501() 865

AH® = +(865K) x (8314)mol "' K™y =

Find A S® from A,G®

AH®

AG® = —RTInkK

1176 K N 2.1 x 107 K3
450K (450 K)3

—(8314JK 'mal™") x (450K) x [—2.04 -

16.55 kJ mol™!

AG® = AH® —TA,S®
e AH®—AG®  7.191kImol”" — 16.55k] mol™'

ASE = = =—20.79JK " mol™!
r T 450K mo
=|-21TK ' mol™!
E7.7(b) U(s) + 3Hz(g) = UH3(s), A;G® = —RTInK

At this low pressure, hydrogen is nearly a perfect gas, a(Ha) = (p/p®). The activities of the solids are 1.

-372
Hence, InK = In (%) = —E In 2
P 2

e=

p

3
AG® = ZRTIn -5
3
—(2) x 83141K~" mol~"} x (500K) x In { —22F2
7 1.00 % 10° Pa

=[—41.0kI mol™!
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K, = 1_[).’] " [analogous to 7.16]
)

The relation of X, to K is established in flustration 7.5

vy
K, = l_[ (%) |:7.l6 with a) = %]

J

pn v
= I_[xj"’ (p_;) [p1 = xpl =K, x (%) |:v = Zu1:|
AN P

]

Therefore, Ky = K {p/p®)™", K. o p™" (K and p° are constans]

v=141—=1-=1=0, thus [Kr(zbar)=1<,‘.(1bar)|

Na(g) + Oa(g) = 2NO(g) K = 1.69 x 10~ 2a1 2300K

5.0 —
Initial moles Ny = ———5— = 0.2380 mol Ny
28.01 gmol™
2.0 —
Initial moles O = ——~—0—— = 6.250 x 102 mol O;
32.00 gmol™
N» 03 NO Total
Initial amount/mol 0.2380 0.0625 0 0.300
Change/mol -z -z +2z 0
Equilibrium amount/mel 0.2380 — z 0.0625 — z 2z 0.300
0.2380 — z 0.0625 — z 2z
Mole fracti ]
ol frachons 0.300 0.300 0.300 M

I
K=K,r(£9) v=Y w=0{, then
4 1
. (22/0.300)2
K=K = 0.2380 — 2 N 0.0625 — z
0.300 0.300
_ 472
T (0.2380 — 2)(0.0625 — 7)

=169 % 1077

472 = 1.69 x 1073{0.01488 — 0.3005z + z°)

1l

2.514 x 107 — (5.078 x 107"z 4 (1.69 x 107372
400 —169x 107 =400 so

472 + (5.078 x 1079z — 2514 x 107 =0

123
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—5.078 x 1077 £ {(5.078 x 10792 — 4 x (4) x (=2.514 x 107%)}1/2
8

=

1 —
= g(—5.078 x 107 £ 2.006 x 1072)
z> 0 [z < 0is physically impossible] so

= 2.44_Z X 10_3

2 2(2.444 x 1073
w0 = 535 = : 03;00 =[16x107]

K AHZ /1]
E7.10(b) W=7\

K
T =310K, T =325K; let? =K

314TK! mol™! —
Now A7H® = — o MOl ) tnk = 5584k mol~ Ink
(1/310K) — (1/325K))

(@) k =2  ArH® = (5584kImol™') x (In2) = |39 kJ mol ™!
b) « = % AH® = (5584kImol™") x (In 1) =| =39 kI mol ™

E7.11(b) NH4Cl(s) = NHz(g) + HCl(g)
p = p(NH3) + p(HCI) = 2p(NH3) [p(NHs3) = p(HCD)]

vj 71
(a) K= | [a’ [7.16); a(gases) = —; a(NH,4CI, s) = |
’ i g pe

K = (PfN:[:s)) y (p(ngn) _ p(NIe{;)z _L ( 2 )2
P P P 4 \p

1 [608kPa\?
° K=-x|—-0) =|9.
AL 427°C (T00K), i (100kPa)

AL459°C (T32K), K =+ x [ LL1oKPa ‘o 31.08
’ T4 100kPa /] ~— =
(b) A,G® = —RTInK [7.8] = (—8.314JK " 'mol™!) x (700K) x (In9.24)

=|—129kImol~!| (at427°C)

RIn(K'/K) [7.25]

(/1= 1/T1)

-1 -1
o B3M4TK mol™) x In (3108/9.24) _ 77 n oo
(1/700K) — (1/732K)

(c) AH® =

AH® — AG® =1y — (~12.9kJ mol™!
(@) AS® =T rG® _ (161 kImol™") — (=129 kI mol ™)

= | 42481 K~ mol™!

T 700K
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E7.12(b} The reaction is
CuS0Oy4 - 5H;0(s) = CuSQ4(s) + 5H2O(g)
For the purposes of this exercise we may assume that the required temperature is that temperature at
which K=1, which corresponds 1o a pressure of 1 bar for the gaseous products. For K = 1,InK =0,
and A,G® =0.

AG® = AH® —TASS® =0  when AH® =TAS®

Therefore, the decomposition temperature (when K = 1) is
AH®
T =
AS®

CuSOy4 - 5H20 (s) = CuSOy4 (5) + SH20 (g)
AH® = [(=T71.36) + (5) x (—241.82) ~ (—2279.7)] kJ mo!~' = +299.2 kI mol™"
AS® = [(109) + (5) x (188.83) — (300.4)] JK~' mol~! = 752.8TK ! mol™"

299.2 x 10% Jmot™!
Therefore, T = = -397 K
75281 K~ ! mol™!

Question. What would the decomposition temperature be for decomposition defined as the state at which
K=1/27

E7.13(b) Pbly(s) = Pbla(aq)  Ks =14 x 1078
AG® = —RTInKs = —(8.314JK " mol™") x (298.15K) x In (1.4 x 10"8)
= 44.83 kI mol !
AG? = ArG® (Pblg, aq) — ArG? (Pbly, s)

ArG® (Pbls,aq) = A.G® A + A;G® (Pbly, s)
=44 83kI mol~! — 173.64 kI mol~"

= [-128.8KI mot~"!

E7.14(b) The cell notation specifies the right and left electrodes. Note that for proper cancellation we must equalize
the number of electrons in half-reactions being combined.

For the calculation of the standard emfs of the cells we have used £° = Ep —E[’, with standard electrode
potentials from Table 7.2.

(a) R: Ag,CrOa(s) +2e~ — 2Ap(s) + CrOi_ (aq) +0.45V

L: Cl(g) -+ 2e~ — 2Cl (aq) +1.36V
Overall (R —L):  Ag,CrOa(s) + 2Cl™ (aq) — 2Ag(s) + CrOi_ (ag) + (Clag) —-091V
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(b) R: Sn''(aq) +2e~ — Sn’*(aq) +0.I5V
L: 2Fe’*(aq) +2¢~ — 2Fe’*(aq) +0.77V
Overall (R — L) :  Sn**(ag) + 2Fe?*(ag) — Sn’*(aqg) + 2Fe** (aq) —062V

() R: MnOs(s) +4H*(aq) + 2~ — Mn*t(aq) + 2Fe’*(aq) +1.23V
L: Cuz"'(aq) + 2e~ — Cul(s) +0.34V
Overall (R —L): Cu(s) + MnQa(s) + 4H*(aq) — Cu* (aq) + Mn’*(aq)

+2H20(1) +0.89V

COMMENT. Those cells for which £¢ = 0 may operate as spontaneous galvanic cells under standard condi-
tions. Those for which £ <0 may operate as nonspontaneous electrolytic cells. Recall that £€ informs us
of the spontaneity of a cell under standard conditions only. For other conditions we require E.

E7.15(b) The conditions (concentrations, etc.) under which these reactions occur are not given. For the pur-
poses of this exercise we assume standard conditions. The specification of the right and left electrodes
is determined by the direction of the reaction as written. As always, in combining half-reactions
to form an overall cell reaction we must write half-reactions with equal number of electrons to
ensure proper cancellation. We first identify the half-reactions, and then set up the corresponding
cell.

(a) R: 2H,0(l)+ 2e~ — 20H (ag) + Hz(g) —0383V
L: 2Na+(aq) 4 2e~ — 2Na(s) 271V

and the cell is

Na(s)|Na™ (aq)|, OH™ (aq) [Ha(g) Pt

or more simply

Na(s)|NaOH(aq)|Haz(g)| Pt |

(b) R: 1Ia(s) +2e~ — 2{"(aq) +0.54V
L: 2H%(aq) +2e~ — Hz(p) 0

and the cell is

Pt [Ha(2)| H¥ (2q), 17 (aq) [la(s)] Pt

or more simply

Pt/H(g)[HT (ag)| Ta(s)| Pt

() R: 2H%(ag) +2e — Ha(g) 0.00V
L: 2H0(1) + 2e~ — Ha(g) + 20H (aq) 0.083 V

and the cell is

Pt|Hz(g)| H* (ag), OH ™ (aq)|Hz (2) Pt
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or more simply

[ PH: ()| HoO(D) [ Ha(g) Pt

COMMENT. All of these cells have £ > 0, corresponding to a spontaneous cell reaction under standard
conditions. if £2 had turned out to be negative, the spontaneous reaction would have been the reverse of
the one given, with the right and left electrodas of the cell also reversed.

RT
E7.16(b) (a) E=E°———InQ v=2

el el e
Q= n ayl = ay+ gy~ [all other activities = 1]
)

b
= aiai = ()q.b+)2 % (y_b.)? [b = b—ehere and bclow]

= (yay-)? x (bab_y’ = yjb' [566, by =b, b =1b]

_ pe RT 44Y | o 2RT
Hence, £ = E —ﬁln(yib)— E ——E—ln(yﬂ:b)

(B AG = —vFE[7.27] = —(2) x (9.6485 x 10* Cmol~!) x (0.4658 V) =| —89.89J mol”' |

(c) log yy = —lz42-|AT'/2[5.69] = —(0.509) x (0.010)'/* [I = b for HCl{aq}} = —0.0509

y, = 0.889

2RT
E® = £+ == In(yyb) = (04658 V) + () (25.693 x 1073 v) x In (0.889 x 0.010)

- [V

The value compares favorably to that given in Table 7.2.

vIFE®

E7.17(b) Ineach case In K = [7.30]

(a) Sn(s) + CuSO4{aq) = Cu(s) + Sn504(aq)

R: Cu™t(aq)+2e” — Cu(s) +0.34V

A48V
L: Sn2+(aq)+28‘—>Sn(s) - 014V }+048

_ (2) x (0.48V)

ln K = =+374 K =|17x 106
f 5603my ot

(b) Cu’*{(aq)+ Cu(s) = 2Cu*(aq)

R: Cu™(ag)+e” — Culaq) +0.16V
L: Cuf(ag)+e — Cu(s) +052V

-036V _
InKk=———— =—14.0, K=|82x 1077

} —-036V
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R: 2Bi**(aq) + 6~ — 2Bi(s)
L: BisS3(s) -+ 6e~ — 2Bi(s) + 352 (aq)
Overall (R — L) : 2Bi3+(aq) + 352_(aq) — BizS3(s) v=6

VFE®  6(0.96V)

= =224
RT  (25.693 x 1073 V)

InK =

229

K=e

4Bi;55(5) _ M’ 223
oS-y [BF] [T
{n the above equation the activity of the solid equals | and, since the solution is extremely dilute,
the activity coefficients of dissolved ions also equals 1. Substituting [$?~] = 1.5[Bi**] and solving
for [Bi**] gives [Bi**] = 2.7 x 10~2% M. Bi,S3 has a solubility equal | to 1.4 x10720 M.

(a) K=

(b} The solubility equilibrium is written as the reverse of the cell reaction. Therefore,

Ks=K"' =1/ =52 x 10~

Solutions to problems

Solutions to numerical problems
CHy(g) = C(s) + 2Ha(g)
This reaction is the reverse of the formation reaction.
(a) AG® = —A(G®
ArG® = AH® — TA(S®
= —74850 Jmol ™' — 298K x (—80.67J K™  mol™!)
= —5.08 x 10* Ymol ™!

AGE 5.08 x 104 Jmot™!
In K = [7.8] = : 1 = —20.508
—RT —8.314JK ' mol~! x 298K
K ={124 %1077
(b) A;H® = —ApH® = 74.85kImol ™!
AH® 1 1
In K(50°C) = InK(298K) — - 7.25
nKG0°C) =InK(298K) — —5 (3231( 298K)[ !

7.4850 x 10* I mol™!
8.3145J K" mol™!

= —20.508 — (

K(50°Cy =129 x 1078

) X (—2.59? x 10-“) — 18170
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(¢) Draw up the equilibrium table

CHa(g) Ha(g)

Amounts (I —a)n 2an
1 — 2
Mole fractions ¢ al
|+« |4+ o
. l -« 2o
Partial pressures P
l+ea 1+«
K =]aP17.16] = (prslp®)°
Y (pcu./p®)
o @a)} (p
124x 1077 = —— ~da’p o« 1)
P

1.24 x 10~°
= =[18x 107
a=

(d) Le Chatelier’s principle provides the answers.

As pressure increases, o decreases, since the more compact state (less moles of gas) is favored at
high pressures. As temperature increases the side of the reaction which can absorb heat is favored.
Since A H® is positive, that is the right-hand side, hence ¢ increases. This can also be seen from
the results of parts (a) and (b), X increased from 25 °C to 50 °C, implying that v increased.

COa(g) = CO(g) + 302(g)

Draw up the following equilibrium table

CO» cO o))
1
Amounts (1 —aln ot Eom
(1l —a) o 1/

Mole fractions

(0 +(/2)) (+(/2) 1+ (/)

{1 —a)y ap ap
(L+1(/2)) (I+{a/2)) 2(1+ (a/2))

Partial pressures

1/2

K= (H“J”’)) [7.16) = (po/p®) x (PC;z/P )
I equilibrium (pco./p®)

_ @)/ (1 A+ (@/2)) x ((@/D)/(1 + (a/2))'? % (p/pe)l/z
- (0 —a)/(L+ @/2)

3/2
K = ol [a < 1 at all the specified temperatures)

N
AG® = —RTInK [7.8]
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The calculated values of K and A;G are given in the table below. From any two pairs of K and T, A/
may be calculated.

e | 1
InkKa =InkKy — % (— - —) [7.25]

Solving for A H®

7.23 x 1076
(8314JK-'mol=") x In [ 252X 2
122 x 10-6

[
L
e
|
—’
™
-
4
o,
wm
]
~
=
Il

| 1
(13951( B 1493}()

[3.00 x 10 Jmol~1 |

o _ AH® — AGP

ArS T

The calculated values of A.S are also given in the 1able.

T/K 1395 1443 1498
a/1074 144 250 471
K/107¢ 122 280 723
A:G® (kI mol™") 158 153 147

A:S® /UK mol™ !y 102 102 102

COMMENT. AS° is essentially constant over this temperature range but it is much different from its vatue at
25°C. AdH, however, is only slightly different.

Question. What are the values of A, 7 and AS® at 25°C for this reaction?
P7.6 A:G®(H2CO, g) = AG®(H2CO, 1) + A5G (H2CO, 1)

For HyCO(l) = H,CO(g), K(vap) = =
14

AvpG® = —RTInK(vap) = —RTIn & p® = 750 Torr
P

1500 Torr

= _(8.314JK ' mol! 208K) x In [ ——
(8.3 mol ") x (298 K) x n(?’SOTorr

) = —1.72k) mol~!
Therefore, for the reaction
CO(g) + Ha(g) = H2CO(g),

AG® = (+28.95) + (—=1.72) kI mol~" = 4+27.23 kI mol

3 -1 [ T _
Hence, K = e(—27.23x10 Jmol " )}/(8.314JK™" mol™ ") x (298 K} =e 10.99 =|1.69 x 10—5
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P7.8 Draw up the following table using Ha(g) + Iz == 2HI(g)
Ha I> HI Total
Initial amounts/mol 0.300 0.400 0.200 0.900
Change/mol —x —x +2x
Equilibrium amounts/fmol  0.300 — x 0.400 — x 0.200 + 2x 0.900
Mole fraction (0.300 — x)/0.900 (0.400 — x)/0.900 (0.200 + 2x)/0.900 1
(p(HI) ) ?
° x(HI)? (0.200 + 2x)? .
= = D= = = 870
PHDY ()Y xBat) 2O = P = (6300 — 10406 — 0 (given]
pe pe

Therefore,

(0.0400) + (0.800x) + 4x% = (870) x (0.120 — 0.700x + x¥) or
866x° — 609.80x + 104.36 =0

which solves tox = 0.293 {x = 0.411 is excluded because x cannot exceed 0.300]. The final composition

is therefore | 0.007 mol H; |, 0.107 mol 11, and [ 0.786 mol HI |.

P7.10 If we knew A H® for this reaction, we could calculate AfH ®(HCLO) from
AH® = 2A¢H®(HCIO) — AfH®(C1;0) — AfH® (H20)
We can find A H® if we know A;G?® and A.S5%, since
AG® = AH -TAS
And we can find A,G® from the equilibrium constant.
K =exp(—AG®/RT) so AG® =—RThK,
AG® = —(8.3145 x 1073 KIK ' mol ™) x (298K) In8.2 x 1072
=6.2kImol™’
AH® = AG® +TAS®
=62kImol”' + (298K) x (1638 x 1073 kI K~" mol~h),
AH® = 11.1kImol™!

Finally,
i
AHTHCIO) = E[ArHe + AcH®{CL0) + AcH ® (H20)],

!
ArH®(HCIO) = 5[1 1.1+ 77.2 + (—241.82)] kJ mol !

=|76.8kJ mol~!
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P7.12 The equilibrium to be considered is (A = gas)

o
Alg, 1 bar) = A(sol'n) K = (c/c”) s

(p/p°)  s°
dink
d(1/T)

InK = In (sie) = 2.303 log (sie)

AH® = —Rx

[7.23]

d(1/T)

= 2.303R x 768K = | +[4.7 kI mol !

AH® (Ha) = —(2.303) x (R) x —2 (_5_39_ﬂ)

. _ d [ ... 980K
AH®(CO) = —(2.303) x (R) x d(lm( 5.98 —)

= 2.303R x 980K = | +18.8 kI mol~!

P7.14 (a) The cell reaction is

Ha(g) + 30a(g) — H20(1)
AG® = ArG® (Hy0, 1) = —237.13 kI mol ™! [Table 2.7]

po _ AGT [(7.28 +237.13 kJ mol ™!

= . = =[4+123V
3 ] (2) % (96.485kCmol™")

(b)  CaHyo(g) + $£02(2) — 4CO2(g) + SH,0(1)

ArG® = 4A;G®(COs, g) + 5ArG® (H20,1) — ArG®(C4Hip. 8)

= (4) x (—394.36) + (5) x (—237.13) — (—17.03)]kJ mol~! [Table 2.7)

= —2746.06 kJ mol ™!

In this reaction the number of electrons transferred, v is not immediately apparent as in part (a). To
find v we break the cell reaction down into half-reactions as follows

R: B0,(g) + 266 + 26H7 (aq) — 13H20()
L: 4CO;(g) + 26e~ + 26H1 (aq) — C4H o(g) + 8H,0(1)
R—L: CqHip(g) + $0:2(2) — 4C0Oa(g) + 8H20(1)

Hence, v = 26.
—AG® +2746.06 kI mol !
Therefore, E = =

_ — =[+1.09V
vF " (26) x (96.485kC mol 1)
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25.603 mV
@@ E=£°— 222NV 000 litustration 7.10, 25°C]
v

0 = a@n*H)ad?(C17)

b b\*
=y (b—) (Zn¥)y? (E;) (CI7Y; bZn*t) = b, BCIT) =2b; yyyi=v3

b
Therefore, 0 = y} x 4b° [b = ;5 here and below]

) \Y 3
andE = E® — % In(4b3yly = E® — (E) x (25.693mV) x In(4'3bys)

=|E®- (38.54mV) x In(41/3p)—(38.54 mV)In(yill

(b)  E°(Cell) = ES — Ef = E®(Hg,Cly,Hg) — E°®(Zn**,Zn)

= (0.2676 V) — (—0.7628 V) =

(@  AG=—vFE = —(2) x (9.6485 x 10* Cmol™!) x (1.2272 V) = —236.81 kI mot~’

AG® = —vFE® = —(2) x (9.6485 x 10° Cmol™') x (1.0304 V) = —198 84 kI mol~' |

AGP 1.9884 x 10° I moi™!
ink =217 _ x o =80211 K =16.84 x10%

RT ~ (83145JK~"mol™") x (298.15K)

(d) From part (a)
12272V = 1.0304V — (38.54mV) x In(4'/? x 0.0050) — (38.54mV) x In yx

(1.2272 V) — (10304 V) — (0.1863 V) _
nys = — — —02698: yi =063
nyE 003854V ve

(e) log y+ = —|z—z4|AI'/? [5.69]

1 b;
=3 Zj:z? (b_e) (5.70]

H(Zn*t) = b = 00050 molkg™'  H(CI") = 2b = 0.010 mol kg™’
1 = 1[(4) x (0.0050) + (0.010)] = 0.015
log yi = —(2) x (0.509) x (0.015)1/2 = —0.125; ys =

This compares remarkably well to the value obtained from experimental data in part (d).

A G
® ArS=—( = )P

= vF (Z—i) [7.39] = (2) x (9.6485 x 10* Cmol™") x (—4.52 x 1074 VK™)
P
—[—8723K " mol!|

AH = AG +TAS = (—236.8L kI mol ') + (298.15K) x (—87.2J K™ mol™")

=|—-262.4kJ mol~!

133



134 INSTRUCTOR'S SOLUTIONS MANUAL

P7.18 Pt|H, (g)|NaOH(aq), NaCl(aq)| AgCl(s) | Ag(s)

Ha(s) + 2AgCI(s) — 2Ag(s) + 2Cl (aq) + 2H (ag) v =2

E=E®— % InQ, @=alH"YaCl")Y¥ [f/p°=1

RT —Kya{Cl") RTI Kaysb(Cl™)

RT
=E9——l H+ Cl =Ee——] _EB

7 na(H™" )a(Cl) 7 I «(OH) 7 In - b(OF)
=E9—EIH_KWb(Cl_ ) =EQ—EIHKW_EID b(CI _)

F bH(OH™) F F  b(OHT)

RT RT . bH(CI7) —InKe
— E°4+(2303) 2 x pKy — 21 K = —log K =
20 x pRe = 0 oy (p W TR 5508 )

| (b(cr)

n

E—E® H(OH") E_E®

Hence, pKuw = = 0.05114
ence, PRv = o S0aRT/F T 2.303 2303RT/F

E® = Ef — EP = E®(AgCl, Ag) — E°(H* /Hy) = +0.22V — 0 [Table 7.2]

We then draw up the following table with the more precise value for E® = +0.2223 V [See the solution
to Problem 10.8, 7th edition]

8/°C 200 25.0 30.0

E/V 1.04774 1.04864 1.04942

2.303RT/F
(2.303RT/F) 0.05819 0.05518 0.06018

pKw 14.23 14.0t 13.79

dinKw AH®

a7 RTZ [7.23]

d
Hence, A H® = —(2.303)RTQH(pKw)

dpKw _ ApKy

then with
AT

1379 — 14.23

AH® = —(2.303) x (8.314J K™ mol™") x (298.15K) x 0K

+749kI mol~!
AG® = —RT In Ky = 2303 RT % pKy =| +80.0kI mol™!

AH® — AG®
8:5® = 2= = [ 172.5K " mol! |

See the original reference for a careful analysis of the precise data.
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The method of the solution is first to determine A.G®, A.H®, and A 5% for the cell reaction
THa(g) + AgCl(s) — Ag(s) + HCI(aq)

and then, from the values of these quantities and the known values of ArG®, AfH®, and 5, for all the
species other than Cl™ (aq), to calculate ArG®, AcH®, and §° for CI™ (ag).

AG® = —wFE®
At 298.15 K (25.00°C)

E®/V = (0.23659) — (4.8564 x 10™*) x (25.00) — (3.4205 x 107%) x (25.00)°
+ (5.869 x 1077) x (25.00)° = +0.22240V

Therefore, AG® = —(96.485kCmol™') x (0.22240V) = —21.46 kJ mol ™!

o [38G°\ _ [3E® __[9E®\ °C o
AS® = — ( - ),, - (a_f),, % VF = UF (ﬁ)p © [49/°C=dT/K] (a)
(3E®/38)
Tf’ = (—4.8564 x 107%/°C) — (2) x (3.4205 x 107%8/(°C)%)
+3) x (5.869 x 1072/ (°C)’)
(9E°/20), 4 6 (p o -8 g o2
= (—4.8564 % 10 ) - (6.8410 x 1076 (8/ c)) + (1.7607 x 1078 (9/°C) )

Therefore, at 25.00°C,
BEG -4 a
— | = —64566 x 107*V/°C
ae /,

and

dE® —4 o —d =]
B_T = (—6.4566 x 107" V/°C) x (°C/K) = —6.4566 x 107" VK
P

Hence, from equation (a)

AS® = (—96.485kKC mol™") x (6.4566 x 107* VK ™!y = —62.30J K~ mol !

and AH® = AG® +TAS®
= —(21.46kImol ') + (298.15K) x (—62.30J K~ 'mol~") = —40.03 kJ mol ™

For the cell reaction

5Ha(g) + AgCl(s) — Ag(s) + HCl(aq)

AG? = ArGP(HT) + A1G°(C17) — ArG®(AgCl)
= ArG3(C1T) — AcG®(AgCl)  [AG®(HT) =0]
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Hence, A;G®(Cl7) = A.G® + ArG® (AgCl) = [(—21.46) — (109.79) kJ mol~']

=|-131.25KI mol~! |

Similarly, AfH®(CI7) = AH® + ArH® (AgChH = (—40.03) — (127.07kI mol™")

=|—167.10kI mol"! |

For the entropy of CI™ in solution we use
AS® = $®(Ag) + S(H™) + 5°(C17) — 15°(Hy) — $°(AgCh
with §°(H*) = 0. Then,

S°(CI7) = AS® — S°(Ag) + 35 (Ha) + S%(AzC)

= (~62.30) — (4255) + (}) x (130.68) + (96.2) = |+ 56.7 JK~! mol"!

P7.22 Electrochemical cell equation:
$Ha(g, 1 bar) + AgCl(s) = H" (aq) + CI™(aq) + Ag(s)
where f(Hz) = 1bar = p®ac- = yo-b
Weak acid equilibrium:
BH* =B+ H™*
where bgy = bp = b
and Ky = apay+/asu = ye ban+/veu b = ys ay+/vau
or ay = ¥sHKa/yB

Ionic strength (neglect by+ because by+ & b):
1 2 2
I= E{ZBHbBH + ZCl‘bCr} =b

according to the Nernst equation [7.29]

RT ay + de)- s RT In(10)
—pe D (dTdam )y _pe M MT .
£ 7o (T o oslantoar)

F Kn}’BH)’Cl‘b)
——(E—E%) =—1 -b) = —log | ———
' ln(10)( ) og(ay+yer-5) og( ™

= pK, — log{b) — 2log(y+)
24/

—  (E~E®)=pK, —log(h) + ——— —2kb
RTIn(10) " )= pka—log®)+ 77

where A = 0.5091.
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The expression to the left of the above equality is experimental data that is a function of b. The parameters
pKa, B, and k on the right side are systematically varied with a mathematical regression software until
the right side fits the left side in a least squares sense.

pK, = 6.736, B = 1.997 kg®*mol*>
k= —0.121 kg mol ™!

)-":I: = 10(|_+_’gfll%+kb)

(a) The Nemst equation appropriate to the fluoride selective electrode is
E=Ep+ .ﬂg In{ar— + kp— on-dou-)
at 298 K, this may be written, after setting 8 = 1,
E = E;p + 0.05916 Viog(ar- + kr_ on-aon-)
(b) Athigh pH, apy- is large, and the second term inside the parentheses may be a significant fraction

of ap_. At low pH, F~ is converted to HF, to which the electrode is insensitive. The activities of the
species involved are related to each other through Ka.

ay+ar— Kaagr 3.5 x 10~ *aypE
Ka =, aF_ = =
aHF ap+ ay+

ay+ and agy- are related through Ky = ayyaoy-.

Kw
E = E,p +0.05916 Viog | ar.. + kp_on- | —

ap+

In the following analysis, let us set all activity coefficients equal to 1. Let us draw up the following table
for £ — Eyp

[F‘]\pH 4 5 6 7 3 9
1077 ~0.414 —0.414 -0414 —0.412 —0.396 —0.353
10-6 —0.355 —0.355 —0.355 —0.355 —0.353 —0.337
1073 —0.296 —0.296 —0.296 —0.296 —0.296 —0.293
10~* —0.237 —0.237 —0.237 —0.237 —0.237 —0.236
10-3 -0.177 —0.177 —0.177 —0.177 -0.177 —0.177
10~2 —-0.118 —0.118 —0.118 —0.118 —0.118 —0.118
10-! —0.059 —0.059 —0.059 —0.059 —0.059 -0.059
1 0 0 0 0 0 0

We see that at pH < 8 the emf responds linearly to log ap—. At pH = 5 and below, the ratio

AaHF ay+ ay+ 10_5

= I _ = =0.029
ap- Ka  35x 1074 35x 1079
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indicates that a significant fraction (>0.03) of F7 has been removed from the test solution. Therefore,
the acceptable pH range for the use of this electrode is 5 < pH < 8.

Solutions to theoretical problems

P7.26 AG = AH—TAS

TI
AH = A H +f A CpdT [2.36]
T

) T AG, . .
ArS = AS +f T d7 [3.19, with A.S in place of §]

T
’ T ] i L ATCIJ
AG =AGH ACpdT + (T -THIAS-T dT

T T
T Yid
=AGH(T-THAS+ [ (l - ?) ACpdT
T
Ac
ACy = Aa+TAb+ =
T Ac  T'Aa . T’ Ac

T'ha  Ac  T'Ae

=Aa—-TAb+TAb—T+T2 B

4

T T 1 T
f 1— = | AG,dT = (Aa =T’ AT ~T) + ~(T? = THAL - T Aain =
T T 2 T

eaefl_] Loy (] 1)
(L _IN_ L (Lt
“\TrTT) 72 T2 7"

Therefore, | 8:G' = A,G + (T — TYAS + aha+ BAb + yAc|

7

T
wherea:T’—T—T’ln-T;-

B= %(T'2 —TH -7 ~T)

IR N Y )
Y=75 "7 3\ T2
For water,

Ha(g) + %Oz(g) — H0(I) ArGE(T) = —237.13kI mol ™!

ASE(T) = ~163.34 K™ mot™!
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Aa = a(Hy0) — a(Hy) — %(1(02) = (75.29 —27.88 — 14.98) JK~! mol~!

= +33.03JK~! mol™!
Ab =[(0) — (3.26 x 107%) — (2.09 x 107 )] JK 2 mol™! = —5.35 x 107> TK~> mol~!
Ac = [(0) — (0.50 x 10°) + (0.83 x 10*)]J K mol™! = 40.33 x 10° JK mol ™"

T=298K, T =372K, so
o=-85K, B=-2738K>, y=-8288x 107K

and so

ArGe(372K) = (—237.13kImol ™) + (=74 K) x (—163.34J K~ ' mol™!)
+(-85K) x (33.03 x 1077 KK ' mol™!)

+(—2738K%) x (=5.35 x 107 KK ? mol™ ")
+{—8.288 x 107K~} % (0.33 x 107 kI K mol™")

= [(=237.13) + (12.09) — (0.28) + (0.015) — (0.003)] kJ mol ™"

=1-22531 kIl mol~!

Note that the 8 and y terms are not significant (for this reaction and temperature range).

Solutions to applications

(a)

(b)

ATP hydrolysis at physiological pH, ATP{aq}+H,0(1) — ADP{(aq}+P; (aq)+H3 07 (aq), converts
two reactant moles in three product moles. The increased number of chemical species present in
solution increases the disorder of the system by increasing the number of molecular rotational,
vibrational, and translaticnal degrees of freedom. This is an effective increase in the number of
available molecular states and an increase in entropy.

At physiological pH the oxygen atoms of ATP are deprotonated, negatively charged, and the molecule
is best represented as ATP*~, The electrostatic repulsions between the highly charged oxygen atoms
of ATP*~ is expected to give it an exergonic hydrolysis free energy by making the hydrolysis
enthalpy negative. Also, the deprotonated phosphate species, Pi(ag), produced in the hydrolysis
ATP has more resonance structures than ATP*~. Resonance lowers the energy of the dissociated
phosphate making the hydrolysis enthalpy more negative and contributing to the exergonicity of the
hydrolysis.

The electrostatic repulsion between the highly charged oxygen atoms of ATP*~ is a hypothesis that is
consistent with the observation that protonated ATP, H4ATP, has an exergonic hydrolysis free energy
of smaller magnitude because the negative repulsions of oxygen atoms are not present. Likewise for
MgATP2~ because the Mg®T ion lies between negatively charged oxygen atoms, thereby, reducing
repulsions and stabilizing the ATP molecule.
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Adenosine triphosphate, ATP

/O_
0-"::-._-[; —
N-—\ 0
/ \N 0/ o Repulsion reduces the stability
HoN N4 of ATP and contributes o
— /P\ _ exothermicity of hydroysis.
0 g 0
N\/Nﬂ""" ""'“\“\)/P\»;O
¥

HO OH

Refer to fmpact 17.2 for information necessary to the solution of this problem. The biological stand-
ard value of the Gibbs energy for ATP hydrolysis is & —30k]J mol~'. The standard Gibbs energy of
combustion of glucose is ~2880kJ mol ™",

(a) If we assume that each mole of ATP formed during the aerobic breakdown of glucose produces
about =30 kI mol~’, then

38 x (—30kJ mol™"
efficiency = x2§i80k] mlo_l ) x 100% ==
- mo

{b) For the oxidation of glucose under the biological conditions of
pco, =53 x 107 2atm  po, = 0.132atm, and [glucose]) = 5.6 x 107> moldm ™ we have

AG =AGEPHRTINGQ

_ (pco./p®)® _ (5.3 x 10796
" [glucose) x (po,/p®)® 5.6 x 10-2 x (0.132)°

where Q

=325
Then

AG = —2880kImol™" +8.314TK~' mol™" x 310K x In(32.5)

=|—-2871kJI mol™~!

which is not much different from the standard value.

For the ATP — ADP conversion under the given conditions

' 4
AG = A6,G® +RT In o
[ADP][Pi][H30%] 1x 1 x 1077 _
h & _— = =10""7
where Q [ATP] ]
and
o= 1.0x 1074 x 1.0x 107* x 10774 Jo-114

1.0 x 10—4
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then

AG = =30kImol™! + RT In(107%4)

= —30kImol™" +8.314JK ' mol~! x 310K x (—10.1)

= =s6k1moi~!|

With this value for A.G’ the efficiency becomes

38 x (—56kJmol™!
efficiency = x{ mol ) =

—2871 kI mol~!

(¢} The theoretical limit of the diesel engine is

T I 873K

=1- = 55%
Th 1923 K

75% of the theoretical limit is 41%.

We see that the biological efficiency under the conditions given is greater than that of the diesel
engine. What limits the efficiency of the diesel engine, or any heat engine, is that heat engines
must convert heat (g & A H) into useful work (waddmax = ArG). Because of the Second Law, a
substantial fraction of that heat is wasted. The biological process involves A G directly and does
not go through a heat step.

P7.32 Refer to fmpact 17.2. ApH=-14
The contribution to AGp, from the potential difference is now

AGm = FA¢ = 9.6485 x 10*Cmol™! x 0.070V = +6.8kI mol ™!

The total AGp, is then + 8.0kImol~! + 6.8 kI mol™! or 14.8 kKImol ™.
For4molHt, AG=4 x 148 kImol~! = +59.2 kJ

Therefore, the amount of ATP that could be synthesized is

59.2k]
— —1!9%9mol=x -2m0]
31 kI mol™!

P7.34 {a) The equilibrium constant is given by

K (—A,G‘*) (—A,He) exp (ArSe)
= exp = exp
R RT R

—AH®  AS®
+
RT R

solnk = —
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A plot of In K against 1/7 should be a straight line with a slope of —A;H® /R and a y-intercept of
AS®/R (Figure 7.1).

y= 173204 87119y
R=0993

In K

e S TP I E ST IR IR ERTIETE FRTE

32 34 30 33 4.0 4.2 4.4
1000/(77/K) Figure 7.1

SoAH® = —R x slope = — (8.3145 x 10~3 kI mol ™! K") x (8.71 x 10° K)

=|—-72.4kI mol™!

and A;S® = R x intercept = (8.3145J K" mol™!) x (—-17.3) = | —144JK~! mol ™! l

(b)  AH® = AH® (ClO)y) — 2A¢H® (CIO) so  AfH® ((ClO),) = AH® +24H® (ClO),

ArH® ((Cl0)) = [-72.4 + 2 (101.8)] kI mol™" =| +131.2kI mol !

§° ((CIO)) = [~ 144 + 2 (226.6)] JK~' mol ™ = +309.2J K~ mol~'|

P7.36 IN2(g) + 3Ha(g) — NHa(gh Av=—1/2

First, calculate the standard reaction thermodynamic functions with formation thermodynamic properties
found in the appendix (Table 2.7).

AHO(298) = —46.11K)  and A;S%(298) = —99.38 JK !

Use appendix information 1o define functions for the constant pressure heat capacity of reactants and
products (Table 2.2). Define a function A,C,?(T) that makes it possible to calculate A.Cp, at | bar and
any temperature {eqn 2.37). Define functions that make it possible to calculate the reaction enthalpy
and entropy at | bar and any temperature (eqns 2.36 and 3.19}.

,
AH®(T) = AH® (298) +f AC(T)dT
298.15K

T ACS(T)
ASE(T) = Ar59(298)+[ e gy
298.15K T

For a prefect gas reaction mixture A/ is independent of pressure at constant temperature. Consequently,
AH(T.p) = AH®(T). The pressure dependence of the reaction entropy may be evaluated with the
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expression:

ArS(T))

e 5 ofl ()
| bar

Produclt. Reaclants

P
oo % (3
1bar

Product< Reactunts

) dP [Table 3.5]

] j') R
= AS%(T) — 3 y R
Producis—Reactants lb'” P
= AcSHUT) = Rin (-2
= b lbar

Products— RLaC[dﬂl‘i

= AS%(T) - 1/2R In (F

The above two eqns make it possible to calculate A G(T, p).
AG(T, p)y = AH{(T,p) - TAS(T, p)

Once the above functions have been defined on a scientific calculator or with mathematical software on
a computer, the root function may be used to evaluate pressure where A G(T,p) = —5007] at a given
temperature.

(i) (a) and (b) perfect gas mixture:
For T = (450 + 273.15) K = 723.15K, root(A,G(723.15 K, p) 4 5001) = | 156.5 bar
For T = (400 4 273.15) K = 673.15K, root(A;G(673.15 K, p) + 500]) =

For a van der Waals gas mixture A;H does depend upon pressure. The calculational equation is:

» -
AH(T,P) = AHS(T) + E Uj (B‘Hm) dp
1 T

' op
Products—Reactants bar #

i dH,
Al D+ Y v[ vm—T(—"‘) ap
I bar 3[) P

Producis—Reactans

[Theoretical Problem 3.28]

where (3Vin/0T)p = R(Vig — b)Y~ "RT (Vi — 0) 2 = 2aV7H ™!

nd Vi, (T,p) = t| P— + l
a P} =roo
mid P Vin — b V2

M

The functional equaiion for A.S calculations is:

e P Vm
AS(T, Py = AS%(D) > ufl = pdp

Products—Reactants bar

where (3Vn /8T, and Vi (T, p) are calculated as described above. As usual, A G(T,p) = AH(T,p) —
TAS(T,p).
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(a) and (b) van der Waals gas mixture:

For T = 723.15K, root(A;G(723.15K,p) + 500]) =| 132.5 bar
For T = 673.15K, root(A,G(673.15K,p) + 5003) =| 73.7 bar

van der Waals gas approximation

1000 T T T T T
sob- % i
I L 613K 723K
g :
E 0
2 0Of 1
Q
<]
500 F ;
_ | -"L | I )
h000 60 80 100 120 140 160
plbar Figure 7.2

(c) A;G(T, p) isotherms Le Chatelier’s principle. Along an isotherm, A, G decreases as pres-
sure increases. This corresponds to a shift to the right in the reaction equation and reduces the stress
by shifting to the side that has fewer total moles of gas. Additionally the reaction is exothermic, so
Chateliet’s principle predicts a shift to the left with an increase in temperature. The isotherms confirm
this as an increase in A.G as temperature is increased at constant pressure. See Figure 7.2.
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Quantum theory:
introduction and principles

D8.2

D8.4

D8.6

Answers to discussion questions

A successful theory of black-body radiation must be able to explain the energy density distribution of
the radiation as a function of wavelength, in particular, the observed drop to zero as A, — 0. Classical
theory predicts the opposite. However, if we assume, as did Planck, that the energy of the oscillators
that constitute electromagnetic radiation are quantized according to the relation £ = nhv = nhc/i,
we see that at short wavelengths the energy of the oscillators is very large. This energy is too
large for the walls to supply it, so the short-wavelength oscillators remain unexcited. The effect
of quantization is to reduce the contribution to the total energy emitted by the black-body from
the high-energy short-wavelength oscillators, for they cannot be sufficiently excited with the energy
available.

In quantum mechanics all dynamical properties of a physical system have associated with them a cor-
responding operator. The system itself is described by a wavefunction. The observable properties of the
system can be obtained in one of two ways from the wavefunction depending upon whether or nort the
wavefunction is an eigenfunction of the operator.

When the function representing the state of the system is an eigenfunction of the operator §2, we solve
the eigenvalue equation (eqn 8.25b)

2V = wl

in order to obtain the observable values, w, of the dynamical properties.

When the function is not an eigenfunction of £, we can only find the average or expectation value of
dynamical properties by performing the integration shown in eqn 8.34.

(£2) = [ ¥*Qedr.

See Figs. 8.16, 8.26-8.30 of the text.
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Solutions to exercises

E8.1(b) The de Broglie relation is

h h 6.626 x 10735
A=s=-=— 50 v=—=

p v mh (1675 x 10727kg) x (3.0 x 10~2m)
v={13x10"2 ms™! | extremely slow!

E8.2(h) The moment of a photon is

R 6626 x 10~*71 5

=7 T 189 % 107¥k -1
%~ 350 x 10°m l ol gms

p:

The momentum of a particle is

p 1.89 x 107¥ kgms™!
p=myv S0 v=—= — > —
m  2(1.0078 x 10—3kgmol ™' /6.022 x 10 3 mol™h

v={0.565 m s~!

E8.3(b}  The uncertainty principle is

1
ApAx = zh
50 the minimum uncertainty in position is

A A 10546 x 107375
28p  2mAv . 2(9.11 x 10-3kg) x (0.000010) x (995 x 10°ms—1)

=58 x10%m

h
EBA(b) E =hv = Tc; E(per mole) = NaE

Ax =

_ Nahc
A

he = (662608 x 10724Js) x (2.99792 x 10¥ms™!) = 1.986 x 1072 Im
Nahc = (602214 x 1083 mol™!) x (1.986 x 1072 Jm) = 0.1196J m mol !

I. 1072 ] 0.1196) -1
Thus. E — 986 x . m E(per mole) = %

We can therefore draw up the following table

A E/S E/(kJ mol™")
(a) 200 nm 0.93 x 10717 598
(b) 150 pm 132 x 10715 7.98 x 10°

(¢) 1.00 cm 1.99 x 10~ 0.012
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EB.5(b}  Assuming that the “He atom is free and stationary, if a photon is absorbed, the atom acquires its
momentum p achieving a speed v such that p = mv.

m=4.00 x 1.6605 x 1077 kg = 6.642 x 107*7 kg

6.626 x 1073 s
@ p=—F—TF5
200 x 107 m

p 3313x107% kgms™! 3
=— = =10.499
=1t

6.642 x 10-27kg

= 3313 x 107 kgms™!

6626 x 1073 s

(b) = T50x10-Cm =4417 x 1072 lrcgms‘l
. Ty

(c} = %j% =6.626 x 1072 kgms~!
vE 5 - 6-62.66:212_13;}2%:;_‘ =[98 x107¢me 1}

E8.6(b)  Each emitted photon increases the momentum of the rocket by /. The final momentum of the rocket
will be Nk/A, where N is the number of photons emitted, so the final speed will be Ni/Amocker- The
rate of photon emission is the power (rate of energy emission) divided by the energy per photon (fc/A),

S0
tP) tPx h tP
N=— oand v=|[—] x =
he hc Afioeket Cllracket

(10.0yr) x (365dayyr—!) x (24hday™') x (3600sh™!) x (1.50 x 107 W)

(2.998 x 108 ms—1) x (10.0kg)

EB.7(b) Rate of photon emission is rate of energy emission {power) divided by energy per photon (hc/A)

P (0.10 W) x (700 x 107° m) 7 1
_ =(352x 10
@ e = = 6626 x 10-775) x (2998 x [0®ms 1) —
(IIOW) X (700 s 10—915)
t — = 3. 1
by et = % 103 1s) = (2998 x 108 ms—) 2x10

E8.8(b)  Conservation of energy requires

Ephoon = @ +Ex =hv =hc/h so Ex =hc/A—@

2EK)”2

and Ex = %mev2 50 v=
e
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(6.626 x 107*Js) x (2998 x 108ms™")
650 x [0 9m

But this expression is negative, which is unphysical. There is no kinetic energy or velocily because

the photon does not have enough energy to dislodge the electron.

(6.626 x 10734 J5) x (2.998 x 108 ms™ 1)
195 x 10—%m

=684 % 107197

(2(6.84 x 10719])
and = _—
9.11 x 10-31 kg

(@ Ex= —(2.09eV) x (1.60 x 1071%Jev— )

b  Ex= —(2.09eV) x (1.60 x 10717 Jev—1)

12
) =123 x105 m 5~

E=hv=1l/t 50

(@ E=6626x 107%75/2.50 x 107195 =|2.65 x10~'? J = 160 kJ mol ! |

B  E=6626x10"%15/221 x 10755 =|3.00 x10"1% J = 181 kJ mol ! |

(© E=6626x10"Js/10x 107 s =[6.62 x10~3' J =40 x10~'* kJ mol ~! |

The de Broglie wavelength is
h
A=-
I3
The momentum is related to the kinetic energy by
2

Ex = 2 50 p= (2mEK)'/2
2m

The kinetic energy of an electron accelerated through I Vis 1 eV = 1.60 x 107'%J, so
N h
"~ (2mEx)‘2

6626 x 107*]s

(a) A= 73
(2(9.11 x 103 kg) x (100eV) x (1.60 x 10-19Tev~ly) "
=123 x10~0
6.626 x 107¥Js
by ri= 7
(2€9.11 x 1073l kg) x (1.0 x 10%eV) x (1.60 x 10-193ev—ly) "~
=[39 x10~' m|
6.626 % 10~™7Js
(C) A=

(2(9.11 x 10-3kg) x (100 x 103eV) x (1.60 x 10-127Jev-1)"?

3.88 x 1072 m
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EB8.11(b} The upper sign in the following equations represents the math using the A+iB operator. The lower sign
is for the A — iB operator. 7 is a generalized coordinate.

fw,.*pi:tifwjdr = [ w:lﬁwjdriifwu@mdr
= [[qfﬂﬁwf,-dr}* +i ij*uﬁm,-dr}* A and B are hermitian [8.30]
={ [ =i [ pibac )
:[fwﬁxﬂmmr

This shows that the A £ iB operators are not hermitian. If they were hermitian, the result would be

[£upia+iBrydc}”

E8.12(b) The minimum uncertainly in position is| 100 pm |. Therefore, since AxAp = %h

h 1.0546 x 107 ¥ Is
Ap 2 oo =
2Ax  2(100 x 10712 m)

A 53 x 107Pkgms™!
& 22 e —|58x10°ms™!
m 9.11 x 10-3 kg

=53x%x 107 P kgms™!

Av =

E8.13(b} Conservation of energy requires

Ephoon = Ebinding + %mcvz =hv="hc/} so Epjnding = hc/h — %me Ve
(6626 x 1073 15) x (2998 x 10¥ ms™1)

121 x 10-12m
~ 50911 x 107 kg) x (5.69 x 10" ms™!)?

=167 x10~!6 ]

COMMENT. This calculation uses the non-relativistic kinetic energy, which is only about 3 percent less than
the accurate {relativistic} value of 1.52 x10~1% J. In this exercise, howsver, Evinding is a small difference of
two larger numbers, so a small error in the kinetic enargy results in a larger error in Epinging: the accurate
valug is Eginging = 1.26 % 10716,

and Epinding =

E8.14(b) The quality Q] f)g - f)g.é. [Hlustration 8.3] is referred to as the commutator of the operators .Q| and
£25. In obtaining the commutator it is necessary to realize that the operators operate on functions; thus,
we form

21 8of (x) — 2821 f ()
_ﬁ,d

Py = T I

d . d
Therefore a = (.i"' + ha) and e’ = (.1' - ha)
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Then aa’f(x) : "+ﬁd x [ X rd Fflx)
)= - X — X —h— X
aa 2 dx dx

and a-"'af(_t) = % (.i - fi%) X (i + ﬁ%)f().’)

The terms in 52 and (d/dx)* obviously drop out when the difference is taken and are ignored in what
follows; thus

+ | .. d d
ﬂﬂ‘f().') = E (—Aha + hax)f(x)
tafn) = 5 (xnSx - nx) f)
= = -x—h—x|fx
a aj\x 2 X I.d ldx
These expressions are the negative of each other, therefore
(aa” — dTa)f(x) = ﬁiif(x) - rzi-if(x)
T dx
d d
— (g -2 ) =

Therefore, (aa” — a'a) =

Solutions to problems

Solutions to numerical problems

a1 he
P8.2 Amaxd = 3 where¢c; = T

Therefore, AnaxT = he/Sk and, if we find the mean of the Apg 7 values, we can obtain /1 from the
equation £t = 5k/¢ (Amax T )mean- We draw up the following table.

8/°C 1000 1500 2000 2500 3000 3500
T/IK 1273 1773 2273 2773 3273 3773
Amax/Nm 2181 1600 1240 1035 878 763

AmaxT /(108 0mK) 2776 2.837 2819 2.870 2.874 2.879

The mean is 2.84 x 10° nm K with a standard deviation of 0.04 x [0% nm K

) B3 K-l 284 x 1073 mK
and f = (5} x (1.38066 x 107="] ) x ( x m K) (652 <10-* 15
. 299792 x 108 ms—!

COMMENT. Planck’s estimate of the constant / in his first paper of 1900 on black body radiation was
6.55 x 10~27 ergsec(1 erg = 10-7 J) which is remarkably close to the current value of 8.626 x 10734 s
and is essentially the same as the value obtained above. Alsc from his analysis of the experimental data he
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P8.6
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obtained values of k {the Boltzmann constant), Na (the Avogadro canstant), and e ({the fundamental charge).
His values of these constants remained the most accurate {or almost 20 years.

The full solution of the Schrédinger equation for the problem of a particle in a one-dimensional box
is given in Chapter 9. Here we need only the wavefunction which is provided. It is the square of the

2

; . . 2 Lmx - .
wavefunction that is related to the probability. Here 2 = 7 sin” — and the probability that the particle

will be found between a and b is

b
P(a.b) = f ¥2dx [Section 8.4]
o

b b
2 . g WX X I 2mx
=—f sin®—dr=|—+— —sin—
LJy L L 2 L
a

b—a 1 ( 2 h . 2710)

sin — — sin —

L 27 L L
L =10.0nm
_ 0.10 I . {2m) x (5.05) . (2m) x (4.95)
{a) P(4.95,5.05) = 100 2n (sm 100 — sin 0.0 )
=0.010+0.010 =
_ 0.10 | . (2m) x (2.05) . 2m) % (1.95)
(b) P(1.95,2.05) = 00 2n (sm 100 sin 100 )

=0.010 — 0.0031 =

0.10 1 (s_ (2m) x (10.0) (2rr)x(9.90))

P(9.90,10.0) = — — —
©  PO0100) = 75— o 10.0 00

= 0.010 — 0.009993 =
d  P(5.0,100) = [by symmetry]

1 2 1 1 4 2
PloL oL )=z = ——{sin-— —sin — | =|0.
(e) (3 3 ) 3" 5m (sm 5~ SiD 3) 0.61

The average position (angle) is given by:

eiure,ﬁ e —tmgh 1 2r

2n
) =f¢r*¢wdr=f0 e = o [ 046 =

=[x}

Note: this result applies to all values of the quantum number m, for it drops out of the calculation.

1¢22J‘r
27[20

The expectation value of the commutator is:
([ p1) = J ¥ [% Pl d.

First evaluate the commutator acting on the wavefunction. The commutator of the position and
momentum operators is defined as

. n P kd hd
B pl=%p—pi=xx —— — -—x
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so the commutator acting on the wavefunction is

“ o~ hd hd
[RPIY = x x Ti_—i—(xw).

where ¢ = (2a)!/2e—ar,
Evaluating this expression yields

h h
GBI = — 2a)'Pae= — =
1 1

[(za)uz e~ +Xa(2(1)l/2 e—m']'

hi2 1/2 n—ax i
u(m - | — xa) = ih(2a) /% ™™,

(%, pl¥ =

which is just i times the original wavefunction. Putting this result into the expectation value yields:

=]

[s.0]
(&M=£ @mmfﬂmawﬂfﬂu=mmf ey
o0

0
[

0
Note: Although the commutator is a well defined and useful operator in quantum mechanics, it does not
correspond to an observable quantity. Thus one need not be concerned about obtaining an imaginary
expectation value.

—2ax

{[x.p]) = 2iah x

Solutions to theoretical problems

We look for the value of A at which g is a maximum, using (as appropriate) the short-wavelength
(high-frequency) approximation

8mhe 1
p= A5 ehc/AkT _ ] [8'5]

dp 5 he ( efte/AT

da ——IP+ 12T ehc/).kT_l)'o=0 at A = Amax

ke ehc/ AT

Then,—5+M—Tx§;~W—_l=

0

Hence, 5 — Selc/MT 4. h_c el /MT — g
kT

If he/AkT 33 1 [short wavelengths, high frequencies], this expression simplifies. We neglect the initial
5, cancel the two exponents, and obtain

he
he = 50kT  for A = hpax and T > 1

he o, . .
or | Amax T = 3 = <t in accord with observation.

COMMENT. Most experimental studies of black-body radiation have been done over a wavelength range of
a factor of 10 to 100 of the wavelength of visible light and over a temperature range of 300K to 10 000K,
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Question. Does the short-wavelength approximation apply over all of these ranges? Would it apply to
the cosmic background radiation of the universe at 2.7 K where Agx = 0.2 cm?

P8.12 (a) With a little manipulation, a small-wavelength approximation of the Planck distribution can be
derived that has the same form as Wien's formula. First examine the Planck distribution,

8mhe
PPlanck = m.

for small-wavelength behavior. The factor A~ gets large as A itself gets small, but the other factor,
namely 1/(e"/*T _ 1) gets small even faster. Focus on that factor, and try to express it in terms
of a single decaying exponential (as in Wien’s formula), at least in the small-A limit. Multiplying
it by one in the form of e~¢/AT jo=he/AT yio|ds e ~he/MT 11 _ e=he/MT ywhere e ~1</MT is small,
so let us call it £. The factor, then, becomes /(1 — €), which can be expressed as a power series
in¢g as g(l -+ £ + ---). For sufficiently small wavelengths, then, the Planck distribution may be
approximated as:

8ahce 87 hoe = e/ T

AS A0

PPianck =

This has the same form as Wien's formula:

a .
—b{AKT
PWien = )._5 C

Comparing the two formulas gives the values of the Wien constants:

a= and b=.

{b) The wavelength at which the Wien distribution is a maximum is found by setting the derivative of
the distribution function to zero:

dowein _ 0= 2 a—b/MT by S_He—bfkk?‘ = S biuT b 5
dx AS A2kT A8 A6 AKT '

b b ke
0 —— —5=0and hpg = e = ——_,
SO T aNe Amax = ST T kT

Putting this in the same form as the Wien displacement law, we get:
P : h he
= —c2, wherecz=—,
max 52 2 P

as was demonstrated in Problem 8.10.

The Stefan-Boltzmann law gives the energy density as a function of temperature. The energy density is
related to the distribution function by:

23]
dE = pdA  so E=f pdi.
0

The energy density implied by the Wien distribution is:

oo
E— f a e—bIKT g5
g A
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Integration by parts several times yields:

by} b\?_  6bT? aTk* |®  6aT%*
—ebur [ [ & 3{ 2 1 673 =
E=e ((kl) + (m) TR » |, B
E=48nk4T4‘
PEPS)

in other words, a constant times 7*, consistent with the Stefan-Boltzmann law.

P8.14 In each case form Nvr; integrate

[ v v o
set the integral equal to 1 and solve for V.

@ y=N (2 - L) e"/20
ap

2
w.z — N2 (2 _ L) c—r/{ln

ag
oo 4,_3 r4 T A
[\lfzdr=N2 f - — = e"/“Odrf sin @ d¢ d¢
0 ag ao Q 4}
6t 24
=nN? (4 x 2a3 —4x —2 + —2") x (2) x 2m) = 32maiN*;
ag ay

| /2
hence(| N = | ——
32na]

where we have used

o n!
f e % dx = —T [Problem &.13 and inside front cover]
0 a
¥ = Nrsin@ cos ¢ e~"/240)

o0 g 2
frp? dr =Nz]0 Fre=ria gy fo sinlesinadafo cos® ¢ dg

|
= N24!agf (1 —cosze)dcosﬂ X 7T
-1

\/2
2 I
= N24!ag (2 - —) T = 327ragN02; hence| N = s
3 R2ray
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where we have used fi cos” #sing do = — l_] cos"ddcosf = f_ll X" dy
and the relations at the end of the solution to Problem 8.13.

(b) The functions will be orthogonal if the following integral, which uses the unnormalized functions,
proves to equal zero.

fv'llwvdr—f{(Z——) ’ﬂo} lrsin@ cos¢eﬁ]dr
2m
=f[(2r——) ¢fa }drf sin Bdef cosg d¢
0

The integral on the far right equals zero.
2 2
[ cosp d¢p = sinq&|0’T =sin(27) —sin(0)=0-0=0
0

Consequently, the functions are orthogonal.

Operate on each funciion with 7, if the function is regenerated multiplied by a constant, it is an
eigenfunction of [ and the constant is the eigenvalue.

@  f=x—kx
fd — k) == + ke = —f

Therefore, f is an eigenfunction with eigenvalue,
) Jf =rcoskx
fcoskx = cos(—kx) = coskx =f

Therefore, f is an eigenfunction with eigenvalue,
(© f=x"+3x-1

ol +3x—1 =xr—3x—1 £ constant x f
Therefore, f is not an eigenfunction of .

ikx ikx 13 4

+ (sinx)e ™™ = ce*" 4 gyt

= (cos x)e . The linear momentum operator is py =
X P

hd

—— [8.26

idx [8.26]

As demonstraied in the text (Example 8.6), e js an eigenfunction of j, with eigenvalue +kk; likewise
e & is an eigenfunction of p, with eigenvalue —kh. Therefore, by the principle of linear superposition
(Section 8.5(d), Justification 8.4),

(a) P=cl=|cos?x

<3

=
]

>

(b) P=ci=
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() ¢l =090 = cos’ x, so cos x = 0.95

c% =0.10 = sin? X, so sin y = +0.32; hence

| ¥ = 0.95¢% +0.32e~%

hod
P8.20 pe = 7 (826)
IRz
h dyr
N — *1 2 ) de
_fvhady r‘f"’ (dx)
[ dx [y dx
(a) ¥ =elky, % = iky
Hence,
;ﬁ x ik [ >y dx

o)=L = kA
il Sty dx L3

(b) ¥ = coskx, fj_f = —ksinkx
o0 o0

[ w*ﬂd.r=—kf coskxsinkxdxr =0
oo dx e

Therefore, {p,} = [0]
—ax? dyr

_ L X =2 —ax?
(c) P =e I axe
e dy e et . . .
f Y —dr = -2« f xe **"dx = 0 [by symmetry, since x is an odd function]
oo dx oo

Therefore, {p) = [0]

1/2
1
P8.22 Y= (_) e~"/% [Example 8.4

(a) vy = [ vV de [f/ =- , Section 10.1}
4mwegr

—82 | 1 ""92 eo —2rla
(V):fl/f" = dr = — | — re =9 dr x 4x
dmeg r way \4mee/ Jo

P

45T egeg
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(b) For three-dimensional systems such as the hydrogen atom the kinetic energy operator is

ﬁz

7= —3 v? [Table 8.1, m, = p for the hydrogen atom]
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[Chapter 10]

Inserting ap =

mge?
el
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P8.24 <.{22) =]w*92wdr =[1,nﬂr*52521!;d1' = {f (.Qi,z'r) Qy'fdr] because {2 is an hermitian operator

The integrand on the far right is a function times its complex conjugate, which must always be a real,
positive number. When this type of integrand is integrated over real space, the result is always real,
positive number. Thus, the expectation value of the square of an hermitian operator is always positive.

Solutions to applications

l.44emK
P8.26 Amax = "—“% [See problems 8.2 and 8.10]
14dcmK 10° nm
=~ =50x107°
5(5800K) * B oem ( 102 cm)

Amax = | 500 nm, blue—green | [see Figure 10.1 in the text]
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where [ is the incoming energy flux, a the albedo {fraction of incoming radiation absorbed), M the
excitance and o the Stefan—Boltzmann constant. (See the solution to Problern 8.11.) Wien's displacement
law relates the temperature to the wavelength of the most intense radiation

2 |44 ecmK
5T~ 5(255K)

1.13 x 107 %em =in the infrared.

Thmax = €2/5, 80 Apax =



