INORGANIC CHEMISTRY

DPP No. 3

Total Marks: 27

Max. Time: 28 min.

Topic : Periodic Table and Periodicity					
Single Multipl Compre	of Questions choice Objective ('–1' e choice objective ('–1 ehension ('–1' negative tive Questions ('–1' ne	' negative markin marking) Q.7	g) Q.5 to Q.6	(3 marks, 3 min.) (4 marks, 4 min.) (3 marks, 3 min.) (4 marks, 5 min.)	M.M., Min. [12, 12] [8, 8] [3, 3] [4, 5]
1.	For an element 'A', the first ionisation energy will be numerically equal to : A) EA of A ⁺ (B) EA of A ²⁺ (C) IE of A ²⁺ (D) None of these				ese
2.	(A) 2 I.P. – E.A. – E.N.	Vhich of the following relation is correct if EN value is on Mulliken scale and IP & EA are in eV : A) 2 I.P. – E.A. – E.N. = 0 B) 2 I.P. – E.A. + E.N. = 0 C) 2 E.N. – I.P. – E.A. = 0 (D) E.N. – I.P. – E.A. = 0			
3.	The five successive ior ¹ respectively. The vale (A) 1	_	f an element 'X' are 800 (C) 3), 1427, 2658, 25024 and (D) 4	32824 KJ mole-
4.	Number of elements which has value of electronegative is less than 3. H, N, Li, B, O, P, F				
	(A) 3	(B) 4	(C) 5	(D) 6	
5.*	Which of the following statements are correct: (A) F is the most electronegative and Cs is the most electropositive element in periodic table. (B) The EN of halogens decreases from F to I. (C) The E.A. of Cl is higher than that of F, though their EN values are in the reverse order. (D) The E.A. of noble gases is low.				
6.*	For electron affinity of (A) Br > F	halogens which of t (B) F < CI	the following is correct (C) Br < Cl	? (D) F < I	
7.	Comprehension # Read the following comprehension carefully and answer the questions (a) to (c). The properties of the elements (atomic/ionic radii, electron gain enthalpy, ionization enthalpy, electronegativity, valency, oxidising/reducing power, acid/base character, etc.) which are directly or indirectly related to their electronic configurations are called periodic properties. These properties show a regular gradation on moving from left to right in a period or from top to bottom in a group. Down a group, the atomic/ionic radii, metallic character and reducing character increases while ionization enthalpy and electronegativity decreases. Along a period from left to right, atomic/ionic radii and metallic character decreases while ionization enthalpy, electronegativity, non-metallic character and oxidising power increases. However, electron gain enthalpy becomes less negative down a group but more negative along a period. In contrast, inert gases have positive electron gain enthalpies which do not show any regular trend.				
	(a). Which of the follow (A) K ⁺	ving isoelectronic io (B) Ca²+	ons has the lowest first (C) Cl	ionization enthalpy : (D) S²-	
	(b). The outermost elec (A) ns ² np ³	ctronic configuration (B) ns² np⁴	n of the most electrone (C) ns² np⁵	gative element is : (D) ns² np⁶	
	(c). Amongst the following elements (whose electronic configurations are given below), the one having the highest ionization enthalpy is : (A) [Ne] $3s^2 3p^1$ (B) [Ne] $3s^2 3p^3$ (C) [Ne] $3s^2 3p^2$ (D) [Ar] $3d^{10} 4s^2 4p^3$				
8.	. ,	ith atomic numbers	. ,	tomic number, an eleme (c) highly elect	nt which is :

Answer Kev

DPP No. #3

(C)

1. (A) 2.

(C)

3.

4.

(B)

(c).

(A,B,C,D) 5.*

6.*

(B,C)

7. (a). (D)

(b).

(C)

(B)

(a) ₉F (b) ₃₆Kr (c) ₁₂Mg 8.

ts & Solutions

DPP No. #3

2. EN =
$$\frac{I.P. + E.A.}{2}$$

3. ..

I.E., >> IE, Here

:. After removed of 3e® element obtain noble gas configuration.

- Li, B, P, H 4.
- Electron affinity is the measure of the ease with which an atom receives the additional electron in its 6.* valence shell in gaseous phase. Generally down the group, the electron affinity decreases due to increase in atomic size.
- $\mathbf{Z}_{\mathrm{eff}}$ for $\mathbf{S}^{2^{\odot}}$ is least. 7. (a).

(b). $F \rightarrow 1s^2 2s^2 2p^5$

- 8. (a) 。F
- (b) 36Kr
- (c) ,₂Mg