Chemical Thermodynamics

NET/JRF Previous Year's Question

Assignment 1

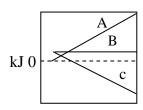
An ideal gas expands by following an equation PV^a = constant. In which case does one expect heating? Q1.

[NET June 2011]

- (a) 3 > a > 2
- (b) 2 > a > 1
- (c) 0 < a < 1
- (d) -1 < a < 0
- The chemical potential of component 1 in a solution of binary mixture is $\mu_1 = \mu_1^0 + RT \ln P_1$, when p_1 is Q2. partial pressure of component 1 vapour phase. The standard state $\mu_1^{\ 0}$ is: [NET June 2011]
 - (a) Independent of temperature and pressure
 - (b) Depends on temperature and pressure both
 - (c) Depends on temperature only
 - (d) Depends on pressure only
- For system of constant composition, the pressure (P) is given by. Q3.

[NET Dec. 2011]

(a)
$$-\left(\frac{\partial \mathbf{U}}{\partial \mathbf{S}}\right)$$


(a)
$$-\left(\frac{\partial \mathbf{U}}{\partial \mathbf{S}}\right)_{\mathbf{V}}$$
 (b) $-\left(\frac{\partial \mathbf{U}}{\partial \mathbf{V}}\right)_{\mathbf{S}}$ (c) $\left(\frac{\partial \mathbf{V}}{\partial \mathbf{S}}\right)$

(c)
$$\left(\frac{\partial V}{\partial S}\right)_T$$

1 mol of CO_2 , 1 mol of N_2 and 2 mol of O_2 were mixed at 300K. the entropy of mixing is Q4.

[NET Dec. 2011]

- (a) 6 R ℓn2
- (b) 8 R ℓn2
- (d) 16 R ℓn2
- For the liquid \rightleftharpoons vapour equilibrium of a substance $\frac{dP}{dT}$ at 1 bar and 400 K is 8×10^{-3} bar K⁻¹. If the molar Q5. volume in the vapour from is 200L mol⁻¹ and the molar volume in the liquid form is negligible, the molar enthalpy of vapourisation is (1.0bar L = 100J)[NET Dec. 2011]
 - (a) 640 kJ mol⁻¹ (b) 100 kJ mol⁻¹
- (c) 80 kJ mol⁻¹
- (d) 64 kJ mol⁻¹
- For the reaction $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(\ell)$, the value of $\Delta H \Delta U$ (in kJ) at 300K and 1 Q6. bar is [NET Dec. 2011]
 - (a) -5.0
- (c) 2.5
- (d) 5.0
- For the reaction $H_2O g + C$ graphite $\rightleftharpoons CO g + H_2O g$, the value of, the variation of energy Q7. parameter ΔG^0 , ΔH^0 and $T\Delta S^0$ of the reaction over a large temperature range is shown below. The correct identification of the curve is given by [NET Dec. 2011]

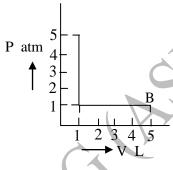
- (a) $A \rightarrow \Delta G^0$, $B \rightarrow \Delta H^0$, $C \rightarrow T\Delta S^0$
- (b) $A \rightarrow \Delta H^0$, $B \rightarrow \Delta G^0$, $C \rightarrow T\Delta S^0$
- (c) $A \rightarrow \Delta G^0, B \rightarrow T\Delta S^0, C \rightarrow \Delta H^0$
- (d) $A \rightarrow T\Delta S^0, B \rightarrow \Delta H^0, C \rightarrow \Delta G^0$

Q8.	An ideal gas was subjected to a reversible, adiabatic	expansion and then its init	tial volume was restored by a
	reversible, isothermal compression. If 'q' denotes the	ne heat added to the system	m and 'w' teh work done by
	the system, then		[NET June 2012]
	(a) $W < 0, q < 0$ (b) $W > 0, q < 0$ (c) $W < 0$	(0, q > 0) (d) W	>0, q>0
Q9.	Indicate which one of the following relations is NOT	correct:	[NET June 2012]
	(a) $-\left(\frac{\partial T}{\partial V}\right)_{S} = \left(\frac{\partial P}{\partial S}\right)_{V}$ (b) $-\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$	(c) $-\left(\frac{\partial S}{\partial V}\right)_{T} = -\left(\frac{\partial P}{\partial T}\right)_{V}$	$(d) - \left(\frac{\partial S}{\partial P}\right)_{T} = \left(\frac{\partial V}{\partial T}\right)_{P}$
Q10.	For water $\Delta H_{\rm vap} \approx 41 \text{ kJ mol}^{-1}$ The molar entropy of v	aporization at 1 atm pressu	ure is approximately.
			[NET Dec. 2012]
	(a) $410JK^{-1}mol^{-1}$ (b) $110JK^{-1}mol^{-1}$	(c) $41JK^{-1}mol^{-1}$	(d) 11JK ⁻¹ mol
Q11.	A carnot takes up 90 J of heat from source	kept at 300K. The co	rrect statement among the
	following is		[NET Dec. 2012]
	(a) It transfers 60 J of heat to the sink at 200K		
	(b) It transfers 50J of heat to the sink at 200K	1)	
	(c) It transfers 60J of heat to the sink at 250K	04	
	(d) It transfer 50J of heat to the sink at 250K	7	
Q12.	The internal pressure $(\partial U/\partial V)_T$ of a real gas in	s related to the compress	sibility factor Z=p \bar{V}/RT by
	$[ar{V}$ is the molar volume]		[NET Dec. 2012]
	(a) $(\partial U/\partial V)_{\rm T} = RT (\partial Z/\partial V)_{\rm T}$	(b) $(\partial U/\partial V)_{\rm T} = {\rm RT} / {\rm V}$	Z
	(c) $(\partial U/\partial V)_{\rm T} = (RT^2/\overline{V})(\partial Z/\partial V)_{\rm V}$	(d) $(\partial U/\partial V)_{\rm T} = (\overline{V}/{\rm RT}^2)$	$(\partial Z/\partial T)_{\rm V}$
Q13.	The fugacity of a gas depends on pressure and the co	ompressibility factor Z (=p	$o\bar{V}/RT$) through the relation (
	$ar{V}$ is the molar volume)		
	$f = p. \exp \left\{ \int_0^p \frac{Z-1}{p} dp \right\}$		
	For most gases at temperature T and up to moderate	pressure, this equation sho	ows that
	(a) $f < p$, if $T \rightarrow 0$	(b) $f < p$, if $T \rightarrow \infty$	[NET Dec. 2012]
	(c) $f > p$, if $T \to 0$	(d) $f = p$, if $T \rightarrow 0$	
Q14.	Which of the following statements is true for a cyclic	c process?	[NET June 2013]
	(a) $\oint dq = 0$	$(b) \oint dw = 0$	
	(c) Heat can be completely converted into work	(d) Work can be complet	ely converted into heat
Q15.	The correct thermodynamics relation among the following	owing is [NET]	Dec. 2013]
)	(a) $\left(\frac{\partial \mathbf{U}}{\partial \mathbf{V}}\right)_{\mathbf{S}} = -\mathbf{P}$ (b) $\left(\frac{\partial \mathbf{H}}{\partial \mathbf{V}}\right)_{\mathbf{S}} = -\mathbf{P}$	(c) $\left(\frac{\partial \mathbf{G}}{\partial \mathbf{V}}\right)_{\mathbf{S}} = -\mathbf{P}$	$\text{(d)} \left(\frac{\partial \mathbf{A}}{\partial \mathbf{V}} \right)_{\mathbf{S}} = -\mathbf{S}$
Q16.	The heat capacity of 10mol of an ideal gas at a certain	in temperature is 300JK ⁻¹ a	at constant pressure. The heat
	capacity of the same gas at the same temperature and		

- (a) $383JK^{-1}$
- (b) 217JK⁻¹
- (c) $134JK^{-1}$
- (d) 466JK⁻¹
- Q17. The Maxwell's relationship derived from the equation dG = VdP - SdT is

[NET Dec. 2013]

- (a) $\left(\frac{\partial \mathbf{V}}{\partial \mathbf{T}}\right)_{\mathbf{P}} = \left(\frac{\partial \mathbf{S}}{\partial \mathbf{P}}\right)_{\mathbf{P}}$ (b) $\left(\frac{\partial \mathbf{P}}{\partial \mathbf{V}}\right)_{\mathbf{T}} = \left(\frac{\partial \mathbf{T}}{\partial \mathbf{S}}\right)_{\mathbf{P}}$ (c) $\left(\frac{\partial \mathbf{V}}{\partial \mathbf{T}}\right)_{\mathbf{P}} = -\left(\frac{\partial \mathbf{S}}{\partial \mathbf{P}}\right)_{\mathbf{T}}$ (d) $\left(\frac{\partial \mathbf{P}}{\partial \mathbf{V}}\right)_{\mathbf{T}} = -\left(\frac{\partial \mathbf{T}}{\partial \mathbf{S}}\right)_{\mathbf{P}}$
- The chemical potential (μ_1) of the 1th component is defined as Q18.


[NET Dec. 2013]

- (a) $\mu_i = \left(\frac{\partial \mathbf{U}}{\partial \mathbf{n}_i}\right)_{i=1}$ (b) $\mu_i = \left(\frac{\partial \mathbf{H}}{\partial \mathbf{n}_i}\right)$ (c) $\mu_i = \left(\frac{\partial \mathbf{A}}{\partial \mathbf{n}_i}\right)_{i=1}$ (d) $\mu_i = \left(\frac{\partial \mathbf{G}}{\partial \mathbf{n}_i}\right)_{i=1}$

- Q19. Work (w) involved in isothermal reversible expansion from V_i to V_f of n moles of an ideal gas is

[NET Dec. 2013]

- (a) $w = -nRT \text{ In } V_f / V_i$ (b) $w = nRT \text{ In } V_f / V_i$
- (c) $w = -nRT V_f / V_i$ (d) $w = -nRT \log V_f / V_i$
- Q20. The figure below represents the path followed by the gas during expansion from $A \rightarrow B$. The work done is (L atm)

(a) 0

(b) 9

(c) 5

- (d)
- Two phases $(\alpha \text{ and } \beta)$ of a species are in equilibrium. The correct relations observed among the variables, Q21. T, p and μ are [NET June 2014]
 - (a) $T_{\alpha} = T_{\beta}$, $p_{\alpha} \neq p_{\beta}$, $\mu_{\alpha} = \mu_{\beta}$
 - (b) $T_{\alpha} \neq T_{\beta}$, $p_{\alpha} = p_{\beta}$, $\mu_{\alpha} = \mu_{\beta}$
- In a bomb calorimeter, the combustion of 0.5g of compound A (molar mass = 50 g mol⁻¹) increased the Q22. temperature by 4K. If the heat capacity of the calorimeter along with that of the material is 2.5 kJ K⁻¹, the [NET June 2014] molar internal energy of combustion, in kJ, is
 - (a) 1000
- (b) -1000
- (c) 20

- (d) -20
- Q23. For a process in closed system, temperature is equal to:

[NET Dec. 2014]

- (a) $\left(\frac{\partial \mathbf{H}}{\partial \mathbf{P}}\right)_{\mathbf{g}}$ (b) $-\left(\frac{\partial \mathbf{A}}{\partial \mathbf{V}}\right)_{\mathbf{g}}$ (c) $\left(\frac{\partial \mathbf{G}}{\partial \mathbf{P}}\right)_{\mathbf{g}}$
- (d) $\left(\frac{\partial \mathbf{H}}{\partial \mathbf{S}}\right)_{\mathbf{R}}$

Q24.	The exact differential df	of a state function $f(x, y)$,	among the following is	[NET Dec. 2014]		
	(a) xdy	(b) $dx - \frac{x}{y} dy$	(c) $ydx - xdy$	$(d) \frac{1}{y} dx - \frac{x}{y^2} dy$		
Q25.	Given the following two r	elations, $x_1 d \mu_1 + x_2 d \mu_2 =$	=0 (A)	[NET Dec. 2014]		
		and $x_1 d\overline{V}_1 =$	$+ x_2 d \overline{V}_2 = 0, (B)$			
	For a binary liquid mixtur	e at constant temperature a	and pressure, the true staten	nent is that,		
	(a)Both the relations are c	orrect				
	(b) Relation A is correct,	but B is not		(1)		
	(c) Relation B is correct, l	out A is not				
	(d) Both the relations are	incorrect, except for very o	lilute solution			
Q26.	At high pressure, the fuga	city coefficient of a real ga	as is greater than one, becau	se [NET Dec. 2014]		
	(a) Attractive term overweighs the repulsive term					
	(b) Repulsive term overweighs the attractive term					
	(c) Repulsive term is equ	al to the attractive term				
	(d) The system is independent	ndent of both the attractive	and repulsive term			
Q27.	A thermodynamic equation	on that relates the chemical	potential to the compositio	on of a mixture is known as		
			A 132	[NET June 2015]		
	(a) Gibb's – Helmholtz ed	uation	(b) Gibbs – Duhem equat	ion		
	(c) Joule – Thomas equati	on	(d) debye – Huckel equat	ion		
Q28.	Heat capacity of a species	is independent of tempera	ture if it is	[NET June 2015]		
	(a) tetraatomic	(b) triatomic	(c) diatomic	(d) monoatomic		
Q29.			$C(s) \rightarrow 2Fe(s) + 3CO(g)i$	s [NET Dec. 2015]		
	(a) $-3RT$ (b) $+3F$			Γ		
Q30.	(a) work is done on the s	is greater than the p (surr ystem by the surroundings surroundings by the system		[NET Dec. 2015]		
	(c) work done on the sy	stem by the surroundings	is equal to the work done	on the surroundings by the		
	system					
	(d) internal energy of the	system increases				
Q31.	ΔH of a reaction is equal to	to slope of the plot of		[NET Dec. 2015]		
	(a) ΔG versus (1/T)		(b) ΔG versus T			
	(c) $(\Delta G / T)$ versus T		(d) ($\Delta G / T$) versus (1/T)			
Q32.	A reversible expansion of condition at 300K. ΔG for (a) $300R \cdot \text{In}2$		s is carried out from 1.0 I (c) $-600R$ · In 2	L to 4.0 L under isothermal [NET Dec. 2015] (d) -300 <i>R</i> · In 2		
Q33.	The non-spontaneous produced	cess among the following i		[NET Dec. 2015]		
	(a) vapourisation of super(a) expansion of a gas in	head water at 105°C and 1 to vacuum freezing led water at - 10°C and 1 a	atm pressure	- · · · ·		

$\partial \mathbf{P}$	Q34.	$\left(\frac{\partial \mathbf{H}}{\partial \mathbf{P}}\right)_{\mathbf{T}}$	has the dimension of
-----------------------	------	---	----------------------

[NET June 2016]

- (a) pressure
- (b) volume
- (c) temperature
- (d) heat capacity

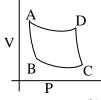
Q35. For an ideal gas at 300K [NET June 2016]

(a)
$$\left(\frac{\partial \mathbf{U}}{\partial \mathbf{V}}\right)_{\mathbf{T}} = \mathbf{0}$$

(a)
$$\left(\frac{\partial \mathbf{U}}{\partial \mathbf{V}}\right)_{\mathbf{T}} = \mathbf{0}$$
 (b) $\left(\frac{\partial \mathbf{U}}{\partial \mathbf{T}}\right)_{\mathbf{V}} = \mathbf{0}$ (c) $\left(\frac{\partial \mathbf{H}}{\partial \mathbf{T}}\right)_{\mathbf{P}} = \mathbf{0}$

(c)
$$\left(\frac{\partial \mathbf{H}}{\partial \mathbf{T}}\right)_{\mathbf{P}} = 0$$

(d)
$$\left(\frac{\partial G}{\partial T}\right)_{P} = 0$$


If U is a function of V and T, $\left(\frac{\partial U}{\partial T}\right)_{R}$ is equal to $(\pi \text{ and } \alpha \text{ are the internal pressure and the})$ Q36. coefficient of thermal expansion, respectively)

[NET June 2016]

(a) C_p

(b) C_v

- (c) $C_p \pi V \alpha$
- (d) $C_v + \pi V \alpha$
- The figure below describes how a Camot engine works. It starts from the adiabatic compression step Q37. denoted by

(a) AB

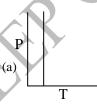
- (b) BC
- (c) DC

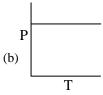
(d) AD

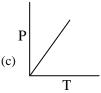
Q38. The parameter which always decreases during a spontaneous process at constant S and V, is

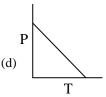
[NET Dec. 2016]

(a) U


(b) H


(c) C_p


- (d) q
- Q39. The equation of state for one mole of a gas is given by P(V-b) = RT, where b and R are constants. The value of $\left(\frac{\partial H}{\partial P}\right)_T$ is [NET Dec. 2016]
- (b) b


(c) 0

- (d) $\frac{RT}{R} + b$
- Q40. The volume change in a phase transition is zero. From this, we may infer that the phase boundary is represented by

The partial derivative $\left(\frac{\partial T}{\partial V}\right)_{R}$ is equal to

[NET Dec. 2016]

- (a) $-\left(\frac{\partial P}{\partial S}\right)_T$ (b) $-\left(\frac{\partial P}{\partial S}\right)_V$ (c) $-\left(\frac{\partial P}{\partial S}\right)_T$
- (d) $-\left(\frac{\partial \mathbf{P}}{\partial \mathbf{S}}\right)_{\mathbf{H}}$

Q42.	The minimum work re-	quired by an engine to transf	er 5J of heat from a reserv	voir at 100K to one at 300K is
				[NET June 2017]
	(a) 5J	(b) 10J	(c) 15J	(d) 20J
Q43.	The correct statement f	or any cyclic thermodynami	c process is	
	(a) $\oint dq = 0$	$(b) \oint dw = 0 \qquad (c)$	$ \oint dU = 0 \tag{d} $	$\oint V dq = 0$
Q44.	The fugacity of real ga	s is less than pressure (P) of	an ideal gas at the same to	emperature (T) only when (T_b
	is the Boyle temperatur	re of the real gas)		
	(a) high $P,T < T_b$	(b) low $P, T < T_b$	(c) high $P, T > T_b$	(d) low $P, T > T_b$
Q45.	In streching of a rubber	r band,		
	dG = Vdp - SdT +	fdL		
	Which of the following	g relations in true		
	(a) $\left(\frac{\partial \mathbf{S}}{\partial \mathbf{L}}\right)_{\mathbf{p},\mathbf{T}} = -\left(\frac{\partial f}{\partial \mathbf{T}}\right)$		$\left(\frac{\partial \mathbf{S}}{\partial \mathbf{L}}\right)_{\mathbf{p},\mathbf{T}} = -\left(\frac{\partial f}{\partial \mathbf{V}}\right)_{\mathbf{p},\mathbf{L}}$	Y
	(c) $\left(\frac{\partial \mathbf{S}}{\partial \mathbf{L}}\right)_{\mathbf{p},\mathbf{T}} = -\left(\frac{\partial \mathbf{V}}{\partial \mathbf{T}}\right)$	$\left(\mathbf{d} \right) \left(\frac{\partial}{\partial t} \right)$	$\left(\frac{\partial \mathbf{S}}{\partial \mathbf{L}}\right)_{\mathbf{p},\mathbf{T}} = -\left(\frac{\partial f}{\partial \mathbf{P}}\right)_{\mathbf{T},\mathbf{L}}$	
Q46.	Enthalpy is equal to		\mathcal{C}_{λ}	[NET Dec. 2017]
	(a) $TS + PV + \sum u_1$	n_i (b) To	$S + \sum u_i n_i$	
	(c) $\sum u_i n_i$	(d) P	$V + \sum u_i n_i$	
Q47.		as undergoes a cyclic proces gure. Total work done in the		n point A through 4 reversible [NET Dec. 2017]
	$egin{array}{c} V_2 - \ Volume \ V_1 - \end{array}$	B C D		
		T_1 Temperature T_2		
	(a) R $T_1 - T_2 = \frac{V_2}{V_1}$	(b) R $T_1 + T_2 \frac{V_2}{V_1}$	(c) R $T_1 + T_2 \ln \frac{V_2}{V_1}$	(d) R $T_2 + T_1 \ln \frac{V_2}{V_1}$
Q48.		for a reversible adiabatic	process is	[NET June 2018]
	(a) maximum	(b) minimum	(c) zero (d) p	oositive
Q49.	At 300 K, the thermal	expansion coefficient and the	e isothermal compressibil	ity of liquid water are
	$2\times10^4\mathrm{K}^{-1}$ and 5×1	$10^{-5} \mathrm{bar}^{-1}$, respectively $\left(\frac{\partial}{\partial x}\right)^{-1}$	$\left(\frac{V}{V}\right)_{T}$ (in k bar) for water	at 320 K and 1 bar will be
				[NET June 2018]

(c) 0.6

(d) 12.0

[NET Dec. 2018]

(a) 2.4

Q50.

(b) 1.2

For a closed system in the absence of non-PV work, the correct statement is

Q51.	(a) $dU = TdS - PdV$ Entropy of a perfec		VdP + SdT	(c) dU	= TdS + PdV	` '	VdP – SdT [NET Dec. 2018]
	(a) independent of			(c) proj	portional to ln V		ortional to V
			Answe	r Key			\rightarrow
1. (c)	2. (c)	3. (b)	4. (a)		5. (d)	6. (a)	7. (d)
8. (a)	9. (a)	10. (b)	11. (a	a)	12. (c)	13. (c)	14. (d)
15. (a)	16. (b)	17. (c)	18. (c		19. (a)	20. (d)	21. (c)
22. (b)	23. (d)	24. (d)	25. (a		26. (b)	27. (b)	28. (d)
29. (a)	30. (b)	31. (d)	32. (0		33. (c)	34. (b)	35. (a)
36. (d) 43. (c)	37. (b) 44. (b)	38. (a) 45. (a)	39. (t 46. (a		40. (a) 47. (d)	41. (a) 48. (c)	42. (b) 49. (b)
50. (a)	51. (c)	43. (a)	-1 0. (<i>t</i>	1)	47. (d)	40. (c)	47. (0)
001 (4)	01. (0)					7	
		GAT	E Previous	s year's l	Paper	Y	
Q1.	The criterion for the	e spontaneity of a	process is:	C) 4		[GATE 2000]
	(a) $\Delta S_{sys} > 0$	(b) ΔS_{surr}	> 0	(c) ΔS_s	$_{\rm ys} + \Delta S_{\rm surr} > 0$	(d) ΔS_{sys}	$-\Delta S_{surr} > 0$
Q2.	ΔH and ΔE for the	reaction Fe ₂ O ₃ (s)	$+3H_2(s) \rightarrow 2$	$Fe(s) + 3H_2$	$_2O(\ell)$ at constant	temperature	are related as
							[GATE 2000]
	(a) $\Delta H = \Delta E$	(b) $\Delta H =$	$\Delta E + RT$	(c) Δ <i>H</i>	$= \Delta E + 3RT$	$(d)\Delta H =$	$\Delta E - 3RT$
Q3.	For an ideal gas fo	llowing adiabatio	reversible ex	pansion, p	lot of log P vers	us log V is	linear with a slop
	equal to ($\gamma = C_p / C_v$):					[GATE 2000]
	(a) 1/γ	(b) $-1/\gamma$		(c) γ		(d) –γ	
Q4.	for an irreversible a	adiabatic expansi	on of a perfec	ct gas from	volume V _i to V	the change	in entropy of the
	gas is:						[GATE 2001]
	(a) nR In (V_f/V_i) (1	o) Zero	(c) less than ze	ero (d) grea	ater than zero		
Q5.	Choose the correct	V	aneity in term	of the pro	perties of the syst	em alone.	
			·				[GATE 2001]
	(a) $(dS)_{U,V} > 0$	(b) (dS) _T	> 0	(c) (dS	$)_{H,P} < 0$	(d) (dG) ₁	
Q6.	Consider the follow	•			,		[GATE 2001]
		$g) + 3H_2(g) \rightarrow 2$			= - 92.2 kJ		_
		ostance		$H_2(g)$	$NH_3(g)$		
	C_{p}	(J K ⁻¹ mol ⁻¹)	-	8.8	35.1		
	Assuming C _p to be					ed to that at	
	25°C will be	macpemaent of te	inperatore, and		ar roo e compare		
7	(a) Endothermic	(b) Less e	exothermic	(c) Mo	re exothermic	(d) Havi	$\log \Delta H^{\circ} = 0$
Q7.	Compared to C_2H_6						5
• •	1 20 62240	31 W / W					[GATE 2001]

	(a) both will be sr	maller			
	(b) 'a' will be larger but 'b' will be smaller				
	(c) 'b' will be larger but 'a' will be smaller				
	(d) both will be la	arger			
	Assuming that the	ere is no chemical reaction	n, the change in en	ntropy when 2 mole of	of N ₂ , 3 mols of H ₂ , and 2
	mole of NH ₃ are i	mixed at constant temperate	ture is		[GATE 2002]
	(a) -62.79 JK ⁻¹	(b) 62.79 JK ⁻¹	(c) 125	5.58 JK ⁻¹ (d) -125.58 JK ⁻¹
	Adiabatic reversib	ble expansion of a monoat	omic gas (M) and	d a diatomic gas (D) a	at an initial temperature T _i
	, has been carried	l out independently from i	nitial volume V ₁	to final volume V ₂ .	The final temperature (T _m
	for monoatomic a	and T _D for diatomic) attain	ed will be		[GATE 2003]
	(a) $T_M = T_D > T_i$	(b) $T_M < T_D < T_i$	(c) T _M	$>T_D>T_i$ ($d) T_D < T_M < T_i$
	The rate of evapo	oration of a liquid is always of vaporisation is always e	s faster at a higher		
	(b) The enthalpy of	of vaporisation is always e	exothermic		
	(c) The enthalpy of	of vaporisation is zero	C) \	
	(d) The internal p	ressure of the liquid is less	s than that of the g	gas	
		sure of a vander waals gas of the molar volume	is:		[GATE 2003]
	(b) Inversely prop	portional to the molar volu	me		
	(c) Inversely prop	portional to square of the n	nolar volume		
	(d) Directly propo	ortional to the molar volun	ne.		
	For the reaction N	$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	g). Compute the e	ntropy change (in J/k	⟨mol) for the process and
	comment on the s Data: Species	sign of the property NH ₃ (g)	$N_2(g)$	$H_2(g)$	[GATE 2003]
	S° (J/K/r		191.5	130.6	
	`				gaseous species during the
		J/Milot, negative sign in	dicates that there	is a decrease in the g	gaseous species during the
	reaction (b) $AS^{\circ} = 108.7$	J/K/mol; negative sign in	dientes that there	is a decrease in the s	respons species during the
		-3/K/mor, negative sign in	dicates that there	is a decrease in the g	gaseous species during the
/	reaction.	5 I/V/mole magative sign	indicates that the	omo io o doomoooo in tl	ha aasaays amaalaa dywina
\		5 J/K/mol; negative sign	marcates that the	ere is a decrease in ti	ne gaseous species during
	the reaction	OF 1/17/1. (1			
	^	25 J/K/mol; the positive sig		ne reaction is spontan	leous.
		eaction $C_2H_4O(g) \rightarrow CH_4(g)$			[GATE 2003]
		the given data, evaluate th			·0.
		$C_2H_4O(g)$	$CH_4(g)$	$\mathrm{CH_4}(\mathrm{g})$	
	C_p (J/K/mol)	50	36	30	
	(a) 1298K	(b) 1000K	(c) 1298°C	(d) 1100°C	С

Q8.

Q9.

Q10.

Q11.

Q12.

Q14. For the reaction,

$$2Cl(g) \rightarrow Cl_2(g)$$

The thermodynamics properties:

- (a) ΔG , ΔH and ΔS are positive
- (b) ΔG , ΔH and ΔS are negative
- (c) ΔG and ΔH are negative and ΔS is positive
- (d) ΔG is negative and ΔH and ΔS are positive.
- The coefficient of performance of a perfect refrigerator working reversibly between the temperature T_c and Q15. [GATE 2004] T_h is given by

(a) $\frac{T_c - T_h}{T}$

(b) $\frac{T_h - T_c}{T_c}$ (c) $\frac{T_c}{T_h - T_c}$

(d) $\frac{T_h}{T_h-T_h}$

For one mole of an ideal gas $\left(\frac{\partial P}{\partial T}\right)_{V} \left(\frac{\partial V}{\partial T}\right)_{R} \left(\frac{\partial V}{\partial P}\right)_{T} =$ Q16.

[GATE 2004]

(a) -1

(b) $-\frac{R^2}{P^2}$

(c) +1

(d) $\frac{R^2}{P^2}$

Q17. The change in entropy when one mole of an ideal gas is compressed to one -fourth of its initial volume and simultaneously heated to twice its initial temperature is [GATE 2004]

(a) $(C_v - R) \text{ In 4 (b) } (C_v - 2R) \text{ In 2 (c) } (C_v - 2R) \text{ In 4 (d) } (C_v + 2R) \text{ In 2}$

Q18. Match the following: [GATE 2004]

P. $\left(\frac{\partial \mathbf{U}}{\partial \mathbf{S}}\right)_{\mathbf{u}}$

I. -A

 $Q. \left(\frac{\partial U}{\partial V} \right)_{a}$

II. -S

III. -T

IV. P

V. H

VI. V

- P-III Q-IV R-VI S-II
- S-V P-III Q-I R-II
- P-I (c) Q-III R-V S-II
- (d) P-IV Q-III R-VI S-V
- Q19. The criterion for spontaneous change in terms of the state functions is:

[GATE 2004]

 $(a)dU_{S, V} \ge 0$

- (b) $dA_{T, V} \ge 0$
- (c) $dS_{U, V} \ge 0$
- (d) $dG_{T, V} \le 0$
- Q20. One mole of an ideal gas ($C_V = 1.5 \text{ R}$) at a temperature 500 K is compressed from 1.0 atm to 2.0 atm by a reversible isothermal path. Subsequently, it is expanded back to 1.0 atm by a reversible adiabatic path. The volume of the final state in litre is: [GATE 2004]

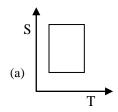
- (a) 15.6
- (b) 20.5
- (c) 31.1
- (d) 41.0
- Q21. The fugacity coefficient ϕ is given by $\ln \phi = \int_0^p \left(\frac{z-1}{p}\right) dp$ where z is the compressibility factor, and p the

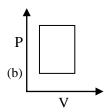
pressure. The fugacity of a gas governed by the gas law $p(V_m - b) = RT$ is

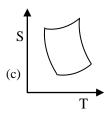
[GATE 2004]

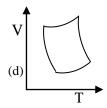
- (a) $p \ln V_m / RT$
- (b) $pe^{b/RT}$
- (c) $pe^{-bp/RT}$
- (d) $pe^{bp/RT}$
- Q22. The internal pressure, $\pi_T = T \left(\frac{\partial P}{\partial T} \right)_V$ P for one mole a Vander waals gas is:

[GATE 2005]


- (a) $\frac{a}{V^2}$
- (b) $\frac{a}{V^2} \left(\frac{RT}{V-b} \right)$
- (c) Zero
- $\text{(d) } \frac{RT}{V\!-\!b}$
- Q23. Standard entropy of crystalline carbon monoxide (in J/mol) at 0 K is around


[GATE 2005]


- (a) 0.03
- (b) 2.50
- (c) Zero
- (d) 5.76


Q24. The plot that describes a Carnot cycle is:

[GATE 2006]

Q25. ΔS_{univ}° for the following reaction, at 298 K is:

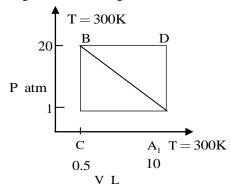
[GATE 2006]

$$N_2 + 3H_2 \rightarrow {}_2NH_3$$

$$\Delta S^{\circ}_{sys} = -197 \text{ JK}^{-1},$$

$$\Delta H^{\circ}_{sys} = -91.8kj$$

(b)
$$0 \text{ J K}^{-1}$$


(c)
$$-308 \text{ J K}^{-1}$$

(d) 111 J K⁻¹

Common Data for Q. 27 and Q. 28

[GATE 2006]

Consider the following P-V diagram for an ideal gas that follows the diagonal path from A to B.

- Q26. The work done (in atm L) on the gas in the process is
 - (a) 9.5
- (b) 99.75
- (c) 190
- (d) 10 1n (20)

- Q27. For the above process,
 - (a) $\Delta H = W$
- (b) $\Delta H = Q$
- (c) $\Delta H = \Delta G$
- (d) $\Delta H = \Delta E$

Q28.	The expression which re	presents the chemical pote	ntial of the i^{th} species (μ_i) i	n a mixture	$(i \neq j)$ is:
					[GATE 2007]
	(a) $(\partial E / \partial n_i)_{s,v,nj}$	(b) $(\partial H / \partial n_i)_{s,v,nj}$	(c) $(\partial A / \partial n_i)_{s,v,nj}$	(d) (∂G	$/\partial n_{i})_{s,v,nj}$
Q29.	The temperature of 54	g of water is raised from	15°C to 75°C at constant	t pressure.	The change in the
	enthalpy of the system (given that $C_{p.m}$ of water = 7	75 JK ⁻¹ mol ⁻¹) is:		[GATE 2007]
	(a) 4.5 kj	(b) 13.5 kj	(c) 9.0 kj	(d) 18.0	kj
Q30.	The specific volume of	liquid water is 1.001 mL	g ⁻¹ and that of ice is 1.090	07 mL g ⁻¹ a	t °C. if the heat of
	fusion office at this tem	perature is 333.88 J g ⁻¹ , th	e rate of change of meltin	g point of ic	ce with pressure in
	deg atm ⁻¹ will be				[GATE 2007]
	(a) - 0.0075	(b) 0.0075	(c) 0.075	(d) - 0.0	075
Q31.	assuming both to be idea	of 10 moles of helium and 1 al gas, is:		tant temper	ature and pressure, [GATE 2007]
	(a) 115.3 JK^{-1}	(b) 5.8 JK^{-1}	(c) 382.9 JK^{-1}	(d) 230.	6 JK ⁻¹
Q32.	The dimension of Planch	k constant is (M, L and T d	enote mass, length and tim	e respective	ely) [GATE 2007]
	(a) $ML^3 T^{-2}$	(b) ML^2T^{-1}	(c) $M^2L^{-1}T^{-1}$	(d) M ⁻¹ I	$L^{2}T^{-2}$
Q33.	If a gas obeys the equati	on of state $P(V - nb) = nI$	RT, the ratio $\frac{C_{\rm p} - C_{\rm V}}{C_{\rm p} - C_{\rm V}_{\rm id}}$	— is:	[GATE 2009]
	(a) >1	(b) <1	(c) 1	(d) (1 –	b)
Q34.	The free energy change is: (a) RT1n2	(ΔG) of 1 mole of an ideal (b) $-2RT$	gas that is compressed iso (c) - RT1n2	thermally fi	om 1 atm to 2 atm [GATE 2009]
Q35.	• •	molar enthalpies of formati	` '		valv. 00 2 kJ mol ⁻¹
Qss.		ithalpy change for the react (b) – 57.1 kJ		(d) 57.1	[GATE 2009]
Q36.		the system that would red	quire the least amount of	f thermal e	
	temperature to 80°C is: (a) 200 gm of water at 4	0°C	(b) 100 gm of water at 2	20°C	[GATE 2009]
	(c) 150 gm of water at 5		(d) 300 gm of water at 3		
Q37.		ystalline CO at absolute zer (b) – R1n2	. , ,		[GATE 2010]
Q38.	For an ideal gas				[GATE 2010]
	(a) $(\partial P / \partial T)_V (\partial T / \partial V)_F$	$\partial_{\mathbf{r}} (\partial \mathbf{V} / \partial \mathbf{P})_{\mathbf{T}} = 0$	(b) $(\partial P / \partial T)_V (\partial T / \partial V)$	$_{\rm P} (\partial { m V} / \partial { m P})_{\rm T}$	$_{1} = -1$
	(c) $(\partial P / \partial T)_V (\partial T / \partial V)_F$	$\partial (\partial V / \partial P)_T = +1$	(d) $(\partial P / \partial T)_V (\partial T / \partial V)$	$_{\rm P} (\partial { m V} / \partial { m P})_{\rm T}$	$_{\Gamma} = +2$
Q39.	(a) W and U are path fu(b) W and S are path fu(c) S and U are path fu	eat), U(internal energy) and unctions but Q and S are St unctions but Q and U are stanctions but Q and W are stanctions but U and S are stanctions but U and S are stanctions but U and S	ate functions ate functions. Ate functions.		[GATE 2010]
Q40.	The change in entropy w	when two moles of argon ga	as are heated at constant vo	lume from	300 K to 500 K is:

[GATE 2010]

- (a) $-12.74 \text{ JK}^{-1} \text{ mol}^{-1}$
- (b) $-6.37 \text{ JK}^{-1} \text{ mol}^{-1}$
- (c) 6.37 JK⁻¹ mol⁻¹
- (d) 12.74 JK⁻¹ mol⁻¹
- Q41. At any temperature T, the fugacity coefficient (γ) is given by

[GATE 2010]

In
$$\gamma = \int_{0}^{P} \frac{Z-1}{P'} dP'$$

Where Z is the compressibility factor. The fugacity coefficient of a real gas governed by equations of state, P(V - b) = RT with 'b' a constant is given by

- (d) e^{RT}

Q42. For the process [GATE 2011]

 $1 \text{ Ar } (300 \text{K}, 1 \text{ bar}) \rightarrow 1 \text{ Ar } (200 \text{K}, 10 \text{ bar})$

- Assuming ideal gas behaviour, the change in molar entropy is: (a) $-27.57 \text{ J K}^{-1} \text{ mol}^{-1}$
 - (b) $+ 27.57 \text{ J K}^{-1} \text{ mol}^{-1}$

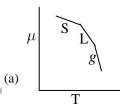
 $(c) - 24.20 \text{ J K}^{-1} \text{ mol}^{-1}$

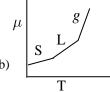
- $(d) + 24.20 \text{ J K}^{-1} \text{ mol}^{-1}$
- For the reaction $X_2O_4(\ell) \rightarrow 2XO_2(g)$ at 298, given the values, Q43.

[GATE 2013]

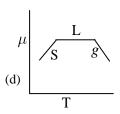
- Given the values, $\Delta U = 9ki$ and $\Delta S = 84 \text{ J K}^{-1}$, ΔG is
- (a) -11.08 kJ
- (b) +11.08 kJ
- (c) 13.55 kJ
- (d) +13.55 kJ
- Q44. The change in enthalpy when 3 mol of liquid benzene transforms to the vapour state at its boiling temperature (80°C) and at 1 bar pressure is _____ kj. (Given, $\Delta H_v = 30.8 \text{ kj} / \text{mole}$) [GATE 2013]
- At 273 K temperature, 1 atm pressure 1 mol of N2 and 4 mol of N2 are mixed together. What will be the Q45. entropy of mixing? [GATE 2013]
 - (a) $0.6908 \times 10^{-23} \text{ JK}^{-1}$

(b) 20.8028 JK⁻¹


(c) 0

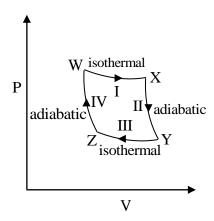

- (d) 4.16057 JK⁻¹
- O46. The maximum non – PV work that system can perform at constant P is

- (b) ΔG
- (c) ΔS
- [GATE 2014] (d) ΔA
- Q47. A Carnot engine operates at 55% efficiency. If the temperature of reject steam is 105°C, then the absolute temperature of input steam is _ [GATE 2014]
- Q48. Of the following plots, the correct representation of chemical potential (µ) against absolute temperature (T)


for a pure substance is (S, L and g denote solid, liquid and gas phases, respectively)

[GATE 2014]

(c)



- The enthalpy of fusion of ice at 273K is 6.01 kJ mol⁻¹ and the enthalpy of vaporization of water at 273K is 44.83 kJ mol⁻¹. The enthalpy of sublimation (in kJ mol⁻¹) of ice at 273K, is [GATE 2014]
- Which of the following properties are characteristics of an ideal solution?
- [GATE 2015]

- $(i)(\Delta_{max} G)_{T,P}$ is negative
- (ii) $(\Delta_{\text{max}} S)_{\text{T,P}}$ is positive
- (iii) $(\Delta_{\text{max}} V)_{\text{T,P}}$ is positive
- (iv) $(\Delta_{\text{max}} H)_{\text{T,P}}$ is negative

- (a) (i) and (iv)
- (b) (i) and (ii)
- (c) (i) and (iii)
- (d) (iii) and (iv)

Q51.

From the above Carnot cycle undergone by an ideal gas, identify the processes in which the change in internal energy is NON-ZERO.

(a) I and II

(b) II and IV

(c) II and III

(d) I and IV

Q52. Which one of the following defines the absolute temperature of a system? [GATE 2015]

(b) $\left(\frac{\partial \mathbf{A}}{\partial \mathbf{S}}\right)_{\mathbf{V}}$ (c) $\left(\frac{\partial \mathbf{H}}{\partial \mathbf{S}}\right)_{\mathbf{V}}$

(d) $\left(\frac{\partial \mathbf{G}}{\partial \mathbf{S}}\right)_{\mathbf{S}}$

A liquid has vapor pressure of $2.02 \times 10^3 \, N \, m^{-2}$ at 293 K and het of vaporization of 41 kJ mol⁻¹. The boiling Q53. point of the liquid (in Kelvin) is ____ [GATE 2015]

The internal energy of an ideal gas follows the equation U = 3.5 PV + k, where k is a constant. The gas Q54. expands from an initial volume of 0.25 m³ to final volume of 0.86 m³. If the initial pressure is 5 N m⁻², the $PV^{1,3}$ change in internal energy (in joules) (given constant) [GATE 2015]

One mole of a substance is heated from 300K to 400K at constant pressure. The C_P of the substance is Q55. given by. C_P (JK⁻¹ m⁻¹) = 5 + 0.1T. the change in entropy, in JK⁻¹ mol⁻¹, of the substance is -[GATE 2015]

The van der waals constant a and b of CO₂ are 3.69 L² bar mol⁻² and 0.04 L mol⁻¹, respectively. The value Q56. of R is 0.083 bar dm3 mol-1 K-1. If one mole of CO2 is confined to a volume of 0.15L at 300K, then the pressure (in bar) exerted by the gas, is [GATE 2014]

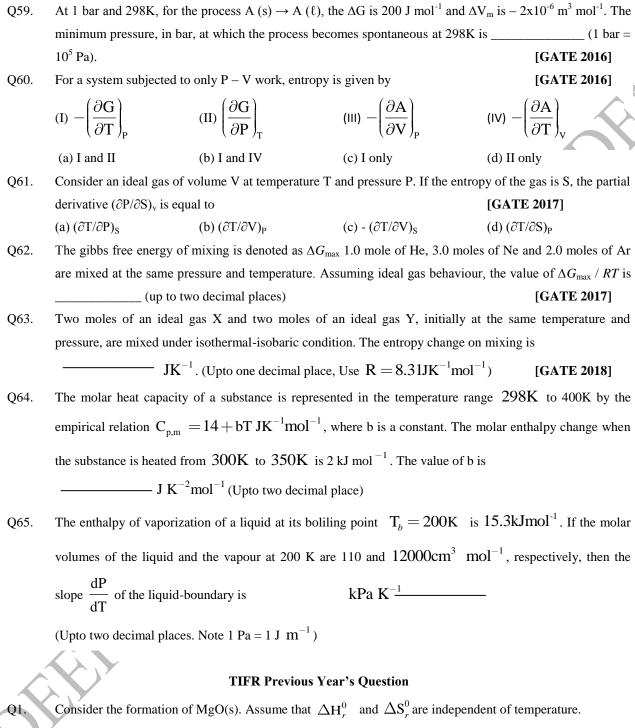
One mole of an ideal gas is compressed from 5L to 2L at constant temperature. The change in entropy, in J Q57. K^{-1} , of the gas is $(R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1})$ [GATE 2016]

Q58. Of the following inequalities, the criteria for spontaneity of a chemical reaction is/are

(i) $(\Delta G)_{T,P} < 0$

(ii) $(\Delta U)_{S,V} > 0$

(iii) $(\Delta S)_{U,V} > 0$


[GATE 2016]

(a) (i) only

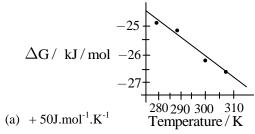
(b) (ii) only

(c) (i) and (ii)

(d) (i) and (iii)

$$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$$

$$\Delta H_r^0 = -602 \text{ kJ/mol}$$

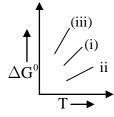

$$\Delta S_r^0 = -108 \text{ J/K mol}$$

0°C? [TIFR 2010]

- (a) -573 kJ/mol, non-spontaneous
- (b) -573 kJ/mol, spontaneous
- (C) 632 kJ/mol, non-spontaneous
- (d) -632 kJ/mol, spontaneous
- Q2. Assume that a carnot engine is working in reverse in a refrigerator, with perfect thermodynamic efficiency. Calculate the amount of work needed (i) to freeze 100 g of water at 0°C, the temperature of the surrounding being 25°C; (ii) to withdraw the same amount of heat from a body at 10⁻⁵ K, the surrounding being at 1 K. $(\Delta H_{melt} = 0.01 \text{ kJ/mol})$

[TIFR 2011]

- (a) (i) 601 kJ; (ii) 601 kJ
- (b) (i) 33.4 kJ; (ii) 33.4kJ
- (C) (i) 3.06 kJ; (ii) 33.4 kJ
- (d) (i) 3.06 kJ; (ii) 33.4 x 10⁻⁵ kJ
- Q3. A student has measured the standard free energy change of a certain chemical reaction as a function of temperature. The data and a linear fit to them are shown below. From this diagram, determine approximately the standard entropy of the reaction. (Assume that the standard entropy of the reaction is independent of temperature.) [TIFR 2011]

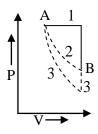


(b) + 75J.mol⁻¹.K⁻¹

(c) + 100J.mol⁻¹.K⁻¹

- (d) 100J.mol⁻¹.K⁻¹
- Q4. Consider a container of volume 5.0 L that is divided into two compartments of equal size. In the left compartment there is nitrogen at 1.0 atm and 25°C; in the right compartment there is hydrogen at the same temperature and pressure. What will happen when the partition is removed? [TIFR 2012]
 - (a) The entropy increases, and the free energy decreases.
 - (b) The entropy decreases, and the free energy decreases.
 - (c) The entropy increases, and the free energy increases.
 - (d) The entropy decreases, and the free energy increases.
- The standard Gibbs free energies of the following reaction, ΔG^0 , have been determined at various Q5. [TIFR 2013] temperatures.
 - (i) $C(s) + O_2(g) \rightarrow CO_2(g)$
- (ii) $C(s) + 1/2O_2(g) \rightarrow CO(g)$
- (iii) $CO(g) + 1/2O_2(g) \rightarrow CO_2(g)$

Which of the following plots would represent most likely the temperature dependence of ΔG^{0} ?



$$\Delta G^0 = \begin{pmatrix} (iii) \\ (i) \\ (i) \\ (i) \\ T \longrightarrow \begin{pmatrix} (iii) \\ (i) \\ (i$$

$$\Delta G^0 = \begin{pmatrix} ii \\ & (iii) \\ & (i) \end{pmatrix}$$

Q6. The state of 2 moles of an ideal gas is changed from the point A to the point B along three different paths, as shown in the following P-V diagram. If the change of entropy of the gas in changing its state from sate A to B along the path I is denoted ΔS_i , then which of the following statements is correct? [TIFR 2013]

(a)
$$\Delta S_1 > \Delta S_2 > \Delta S_3$$

(b)
$$\Delta S_1 < \Delta S_2 < \Delta S_3$$

(c)
$$\Delta S_1 \neq \Delta S_2 \neq \Delta S_3$$

(d)
$$\Delta S_1 = \Delta S_2 = \Delta S_3$$

- Q7. A reaction has a negative (and approximately temperature independent) enthalpy change. It does not proceed spontaneously at room temperature (25°C). at which of the following temperatures is the reaction more likely to become spontaneous? **[TIFR 2013]**
 - (a) -50° C
- (b) 50°C
- (c) 100°C
- (d) 1000°C

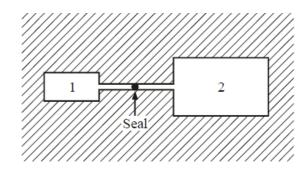
Q8. For the following reaction,

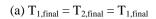
$$CO_2 + H_2O \rightarrow H_2CO_3$$

The entropy change (ΔS_{system}) was calculated to be - 96 JK⁻¹ mol⁻¹. The enthalpy change (ΔH) was measured to be - 45 kJ K⁻¹ mol⁻¹. This reaction is expected to be a spontaneous process. The total change in entropy $(\Delta S_{system+surroundings})$ is : [TIFR 2014]

(a) $+54 \text{ JK}^{-1} \text{ mol}^{-1}$

(b) -96 J K⁻¹ mol⁻¹

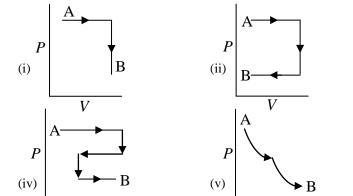

(c) -45096 J K⁻¹ mol⁻¹


- (d) -44004 J K⁻¹ mol⁻¹
- Q9. Calculate the change in entropy when 1 mol of solid iodine, I₂, at a temperature of 360 K is heated at constant pressure to produce liquid iodine at a temperature of 410 K. the constant pressure molar heat capacity of solid iodine is 54.44 K⁻¹ mol⁻¹ and of liquid iodine is 80.67 J K⁻¹ mol⁻¹. The melting temperature of iodine is 387 and the molar enthalpy of fusion of iodine is 7.87 kJ mol⁻¹ [TIFR 2014]
 - (a) 8.6 J K⁻¹ mol⁻¹

(b) 28.9 JK⁻¹ mol⁻¹

(c) 20.3 J K⁻¹ mol⁻¹

- (c) 11.7 J K⁻¹ mol⁻¹
- Q10. In the following setup, two chambers 1 and 2 are enclosed by thermally insulated material. Chamber 1 contains an ideal gas at 100 atm. Chamber 2 is completely evacuated. The two chambers are separated by a breakable seal. Before the seal is broken, the temperature of the chamber 1 is T_{1,initial}. Then the seal is broken, and the gas is allowed to rush to chamber 2. The volume of chamber 2 is 100 times the volume of chamber 1. When the pressure in the two chambers becomes equal, their respective temperature is T_{1,final} and T_{2,final}. Which of the following statements is true? [TIFR 2015]



(b)
$$T_{2,\text{final}} = T_{1,\text{final}} < T_{1,\text{final}}$$

(c)
$$T_{2,final} < T_{1,initial}$$
, $T_{1,final} = T_{1,initial}$

- (d) Only a Very small drop in temperature is expected. So T_{1,final}, T_{2,final} will be approximately equal to T_{1,initial.}
- Q11. The state of certain amount of a gas, not necessarily ideal, is changed from A to B in various hypothetical paths, as shown below. The total amount of the gas remains constant. Which of the following paths are physically realizable? [TIFR 2015

(a) All of them

(b) Only (i), (ii) and (iii)

(iii)

(c) Only (iii) and (v)

(d) Only (i) and (iii)

V

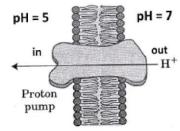
Q12.

[TIFR 2016]

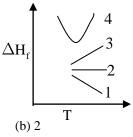
- Which of the following is/are implied by the second law of thermodynamics? (a) $\Delta S > \int_A^B dq$ (irreversible) / T for an irreversible process A \rightarrow B at temperature T.
- (b) $\Delta S > 0$ for an isolated system in the course of a spontaneous change
- (c) Entropy of the universe always tends to maximum
- (d) All of the above
- Q13. The specific heat of a certain material monotonically increases with temperature. Two identical blocks of this material are kept at 50°C and 100°C, respectively. The two blocks are now brought in contact with each other. Assume that no heat is lost to the surrounding. When thermal equilibrium is reached after the two blocks are kept in contact, what would be the final temperature of the two blocks?
 - (a) 75°C
- (b) $> 75^{\circ}C$

- $(c) < 75^{\circ}C$
- (d) T_f can be either more than or less than 75°C, depending upon the precise variation of the specific heat with temperature.
- For an ideal gas in a closed system at constant temperature T, what are the values of $\frac{\partial U}{\partial v}$ and $\frac{\partial H}{\partial P}$? Q14.

[TIFR 2016]


(a)
$$\frac{\partial U}{\partial V} = 0$$
 and $\frac{\partial H}{\partial P} = 0$

(b)
$$\frac{\partial U}{\partial V} > 0$$
 and $\frac{\partial H}{\partial P} < 0$


(c)
$$\frac{\partial U}{\partial V} < 0$$
 and $\frac{\partial H}{\partial P} > 0$

(d)
$$\frac{\partial \mathbf{U}}{\partial \mathbf{V}} > 0$$
 and $\frac{\partial \mathbf{H}}{\partial \mathbf{P}} > 0$

Q15. Proton pumps are ubiquitous in living organisms. They (shown in figure below) serve as an important regulator of pH gradient across momebrances, which lead to ATP synthesis. Calculate the amount of CHEMICAL worked one at temperature T by such a pump to maintain pH = 5 inside the cellular compartment against a neutral pH outside the membrane?

- (a) 2RT
- (b) 2.303RT
- (c) 4.606RT
- (d) 23.3RT
- Q16. The heat of formation (ΔH_f) for the reaction 2 Cu (s) + O₂ (g) \rightarrow 2CuO (s) is measured and plotted as a function of temperature (T). of the 4 possible graphs shown below, which one would most likely represent the observed trend? [TIFR 2017]

(a) 1

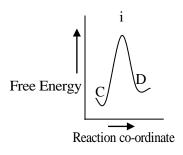
(c) 3

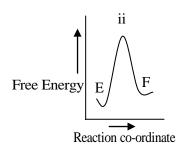
- (d) 4
- Q17. During isothermal expansion of an ideal gas which of the following happen:
 - (i) Temperature does not change
 - (ii) Process is spontaneous
 - (iii) The energy of the system does not change

[TIFR 2017]

- (iv) Entropy increases
- (a) (i) and (iii) only

(b) (i), (ii), and (iv) only


- (c) (i), (iii), and (iv) only
- (d) (i), (ii), (iii) and (iv)
- Q18. Assume that the temperature (T) dependence of ΔG for a chemical reaction can be represented by an equation of the form? [TIFR 2017]


$$\Delta G = x + yT + zT^2$$

What is the expression for the heat capacity change at constant pressure, ΔG_P ?

- (a) x/T
- (b) y
- (c) -2zT
- (d) Insufficient information
- Q19. Suppose a reaction $A \to B$ is slowly progressing in a closed vessel (no energy or material in supplied from the outside). To speed it up, you have the option of simultaneously carrying out a separate reaction inn the same vessel, which can be either be i) $C \to D$ ii) $E \to F$. The free energy diagram of the reaction

i) and ii) are given below in the figure below respectively. C and E as well as product D and F do not [TIFR 2018] interact in any way with A or B.

(a) $E \rightarrow F$

- (b) $C \rightarrow D$
- (c) Neither will affect the rate
- (d) Both can help equally
- Q20. For a gas that obeys following equation of state P V - b = RT, where b is a constant and R is an universal gas constant, which of the following is right: [TIFR 2018]

(a)
$$\left(\frac{\partial U}{\partial V}\right)_T = b$$

(b)
$$\left(\frac{\partial U}{\partial V}\right)_T = R$$

(c)
$$\left(\frac{\partial \mathbf{U}}{\partial \mathbf{V}}\right)_{\mathbf{T}} = \mathbf{P}$$

- Q21. According to the laws of thermodynamics for which of the following processes is entropy of a system equal to zero
 - (a) Irreversible process
 - (b) Endothermic process (heat is absorbed during the process)
 - (c) Reversible process
 - (d) Exothermic process (heat is released during the process)
- Q22. The Gibbs free energy of a chemical reaction is given by $\Delta G = \Delta H - T \Delta S$, where ΔH is enthalpy change, ΔS is the entropy change and T is the temperature. The chemical reaction is said to occur spontaneously [TIFR 2019] and unidirectionally if

- (b) $\Delta H = 0$
- (c) $\Delta S = 0$
- (d) $\Delta G < 0$
- Q23. Water boils at a temperature of 373 K and atmospheric of I atm. Assuming a constant enthalpy of vaporization of 40.66 kJ/mol, what is the boiling temperature at a high altitude, where the pressure is 0.05 atm? [TIFR 2019]

(a) 270 K

- (b) 354 K
- (c) 403 K
- (d) 373 K

Answer Key

15.(c) 22.(d

Other Examination Previous Year's Question

 Match the List – I with List – II and select the correct ans 	O1.	O1.	Match the List –	I with List – II	and select the co	orrect answe
--	-----	-----	------------------	------------------	-------------------	--------------

- A. dU
- 1. VdP SdT
- B. dH
- 2. Tds PdV
- C. dA
- 3. PdV SdT
- D. dG
- 4. TdS + VdP

Code:

- (a)
- B-4

- B 3

- (c)
- B-3
- D 1
- (d) A 1
- B-4
- D-2

D-2

Q2. One mole of an ideal gas at 300 K is expanded isothermally from an initial volume of 1 L to 10L. The
$$\Delta U$$
 for the process is (R = 2 cal /k - mole).

- (a) 163.7 cal
- (b) zero
- (c) 138.1 cal
- (d) 9 liter-atm.
- Q3. Two moles of an ideal gas is expanded isothermally and reverrisibly from 1 L to 10 L at 300K. The enthalpy change (in KJ) for the process is:
 - (a) 11.4 kJ
- (b) -11.4 kJ
- (c) 0 kJ
- (d) 4.8 kJ

Q4. The ratio
$$\frac{C_p}{C_W}$$
 is lowest for which of the following gas

- (a) SO₂
- (b) O_2

(c) N_2

- (d) He
- Q5. A carnot engine working between 127°C and 527°C absorbs 750 J heat from high temperature source. The efficiency of the engine will be
 - (a) 0.53
- (b) 0.50
- (c) 0.87
- (d) 0.75

Q6. For gases
$$C_p$$
- C_v = ?

(a)
$$-T \left(\frac{\partial \mathbf{P}}{\partial T} \right) \left(\frac{\partial \mathbf{V}}{\partial T} \right)$$

$$\text{(a)} \ -T \bigg(\frac{\partial P}{\partial T} \bigg)_v \bigg(\frac{\partial V}{\partial T} \bigg)_P \qquad \text{(b)} \ +T \bigg(\frac{\partial P}{\partial T} \bigg)_v \bigg(\frac{\partial V}{\partial T} \bigg)_P \qquad \qquad \text{(c)} \ T^2 \bigg(\frac{\partial P}{\partial T} \bigg)_V \qquad \qquad \text{(d)} \ T^2 \bigg(\frac{\partial V}{\partial T} \bigg)_P \bigg)_P$$

(c)
$$T^2 \left(\frac{\partial P}{\partial T} \right)$$

(d)
$$T^2 \left(\frac{\partial V}{\partial T} \right)$$

Q7. Work done W on the system in reverrisible adiabatic compression for 1 mole of ideal gas.

(a)
$$W = -C_V T_2 + T_1$$

(b)
$$W = C_P \left(\frac{T_2}{T_1} \right)$$

(c)
$$W = C_v \left(\frac{T_2}{T_1}\right)$$

(d)
$$W = C_V T_2 - T_1$$

- Q8. Which statement is wrong:
 - (a) Reverrisible process are ideal which can be carried out theoretically.
 - (b) Irreverrisible process are real, all spontaneous process occur in nature are irreverrisible process.
 - (c) Reverrisible process and irreverrisible process can be completed in finite time
 - (d) Criteria for reversible is $\oint W$ cyclic = 0, irreversibility $\oint W$ cyclic $\neq 0$
- Q9. The realationship between volume change in isothermal and an adiabatic for a procedure change from P₁ to P_2

(a)
$$\Delta V_i > \Delta V_a$$

(b)
$$\Delta V_i < \Delta V_a$$

(c)
$$\Delta V_i = \Delta V_a$$

(d)
$$\Delta V_i = \Delta V_a = 0$$

Q10. The Euler theorem for dA = -PdV - SdT shows

(a)
$$-\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T}$$
 (b) $\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T}$ (c) $\left(\frac{\partial T}{\partial P}\right)$

(b)
$$\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)$$

(c)
$$\left(\frac{\partial \mathbf{T}}{\partial \mathbf{P}}\right)_{\mathbf{V}} = -\left(\frac{\partial \mathbf{V}}{\partial \mathbf{S}}\right)_{\mathbf{T}}$$

(d)
$$\left(\frac{\partial \mathbf{V}}{\partial \mathbf{P}}\right)_{S} = -\left(\frac{\partial \mathbf{P}}{\partial \mathbf{V}}\right)_{S}$$

 $\left(\frac{\partial P}{\partial T}\right)_{V} \left(\frac{\partial V}{\partial T}\right)_{D} \left(\frac{\partial P}{\partial V}\right)_{T}$ for an ideal gas is: Q11.

(a)
$$\frac{-R^2}{P^2}$$

$$(b) - 1$$

(C)
$$\frac{V}{T}$$

(d)
$$\frac{-R^2}{V^2}$$

If gas obey equation of state $\left(P + \frac{a}{v^2}\right)$ V-b . The ratio of $\frac{C_P - C_{V_{ideal}}}{(C_P - C_{V_{Real}})_{Real}}$ is: Q12.

$$(a)\left(1+\frac{2a}{RTV}\right)$$

(b)
$$\left(1 + \frac{2a}{RTV}\right)^{-1}$$

(c)
$$1 - \frac{2a}{RTV}$$

- Q13. For a cyclic process
 - (a) $\Delta U = 0$
 - (b) $\Delta H = 0$
 - (c) Both $\Delta U = 0$ and $\Delta H = 0$
 - (d) None of these
- The vanderwaal equation is given by, $\left| P + \frac{n^2 a}{v^2} \right|$ v-nb = nRT. The ratio $\frac{a}{b}$ has a dimension of
 - (a) Atm/litre
- (b) litre atm/mole
- (c) litre/mole
- (d) litre atm mole⁻²
- The heat capacity of the following gas at room temperature are such that
 - (a) $NH_3 > CO_2 = O_2 = N_2 > Ar$
 - (b) $NH_3 = CO_2 > O_2 > N_2 > Ar$
 - (c) $NH_3 > CO_2 > O_2 = N_2 > Ar$
 - (d) $NH_3 > CO_2 > O_2 > N_2 > Ar$

Q16.	If the inversion temp	perature of a gas is - 80°C	then it will produce coolin	g under Joule – Thomson effect at
	(a) 298 K	(b) 273 K	(c) 193 K	(d) 173 K
017	Consider the following	na statament:		

Consider the following statement:

(a) 1, 2, 3,

Q18.

- Temperature remains constant in an adiabatic as well as in isothermal process.
- In a cyclic process $\Delta U = 0$
- If C_P of reaction is zero then the enthalpy of the reaction does not vary with temperature. The correct statements are

(c) 2

(d) 1 and 3

For heating in Joule Thomson coefficient which of the following option is true

(b) 2, 3

- (b) $\left(\frac{\partial \mathbf{H}}{\partial \mathbf{P}}\right)_{T} > 0$ means $T\left(\frac{\partial \mathbf{V}}{\partial T}\right)$ (a) $\left(\frac{\partial H}{\partial P}\right)_T < 0$ means $T\left(\frac{\partial V}{\partial T}\right)_P < V$
- Q19. Match the List I (Maxewell realation) with List II (Thermodynamic relation) and select the answer using the codes given below:

A.
$$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{D}$$
 1. $dG = VdP - SdT$

B.
$$\left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{P}$$
 2. $dA = -SdT - PdV$

$$C. \left(\frac{\partial T}{\partial V} \right) = -\left(\frac{\partial P}{\partial S} \right) \qquad 3. dH = TdS + VdP$$

D.
$$\left(\frac{\partial S}{\partial V}\right)_T = -\left(\frac{\partial P}{\partial T}\right)_V$$
 4. $dU = TdS - PdV$

$$(\partial V)_T$$
 $(\partial T)_V$
A B C D

Change in temperature and change in pressure may be expressed as

(a)
$$\Delta T = \frac{-\partial H/\partial P}{C_p} \Delta P$$
 (b) $\Delta P = \frac{-\partial H/\partial P}{C_p} \Delta T$

(b)
$$\Delta T = \frac{-\partial H/\partial T}{C_P} \Delta P$$
 (d) $\Delta P = \frac{-\partial H/\partial T}{C_P} \Delta P$

	(a) Zero)	(b) minimum	(c) maximum		(d) positive	
Q23.			process the ratio (T	1 /T2) is equ	ıal to			$\langle \rangle_{\lambda}$
	(a) $\left(\frac{P_1}{P_2}\right)$	$- \int_{-\gamma}^{\gamma-1}$	(b) $\left(\frac{V_1}{V_2}\right)^{\frac{\gamma-1}{\gamma}}$	(c) $V_1 V_2 \frac{\gamma - 1}{2\gamma}$	1	(d) $\left(\frac{\mathbf{V}_2}{\mathbf{V}_1}\right)^{\gamma}$	
Q24.	The mor	al heat capacity of	of water vapour at a $C_P = 30.54 \text{ J/K} -$					
		om 100°C to 500°C	rature. Find the an C (b) 12915 J		eat required to		emperature of (d) 31465 J	2.0 mole of
Q25.		ect form of Trout $= \Delta H_{vap} / T$			$= \Delta S_{\text{vap}} / P$ $/ \Delta H_{\text{vap}} = R$			
	(c) ΔS_{va}	$_{ m p}={ m T}\Delta{ m H}_{ m vap}$		(d) ΔS_{vap}	$/\Delta H_{vap} = R$			
Q26.	Which o	f the following th	nermo dynamical re	elations are	correct for or	ne mole of ar	n ideal gas?	
(a)	$\left(\frac{\partial U}{\partial V}\right)_{\!\!T}$	$=0 \qquad \text{(b) } \left(\frac{\partial I}{\partial Y}\right)$	$\left(\frac{H}{V}\right)_{T} = 0$	(c) $\left(\frac{\partial C_{V}}{\partial V}\right)$	$\int_{\mathrm{T}} > 0$	(d) $\left(\frac{\partial \mathbf{P}}{\partial \mathbf{T}} \right)$	$\bigg _{\mathbf{V}} = 0$	
Q27.	correct? (a) ΔH (b) ΔH (c) ΔH gase (d) ΔH gase	is always less that is always greater $< \Delta E$ only if the cous reactants. $< \Delta E$ only if the cous reactants.	than ΔE e number of moles	s of gaseou	us products is	s greater tha	n the number	of moles of
Q28.	(a) Extends (b) Pote (c) Inte	ensive properties ential energy is ar	ng statements is co are independent of a extensive propert depend on the mass we property	the mass o	-			
Q29.			what is the relation	between t	emperature ar	nd pressure?		
3	(a) $\frac{T_2}{T_1} =$	$= \left(\frac{P_2}{P_1}\right)^{\gamma - 1}$	(b) $\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\gamma}$	-1	$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)$	$\left(\frac{1}{\gamma-1}\right)$	(d) $\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)$	$ \frac{\gamma}{\gamma-1}$
Q30.	Match th	ne List – I with L	ist – II and select	the correct	answer using	the code giv	en below the l	ists:
	List – I				List - II			
		ersible adiabatic	•	$1. \Delta H = 0$				
	B. Joul	e – Thomson exp	oansion	2	$\Delta U = 0$			

3. $\Delta G = 0$

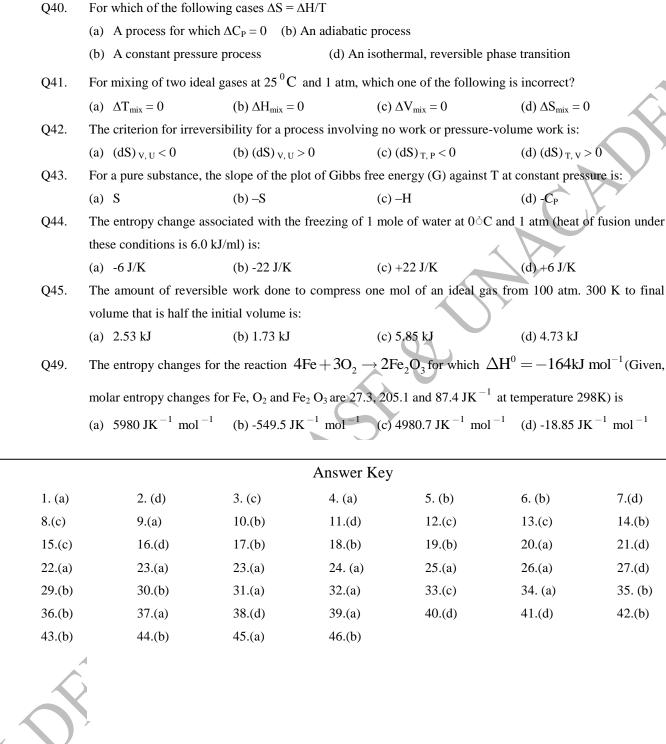
(b) reversible and isothermal

(d) reversible and adiabatic

Q21.

Q22.

An isoentropic process is always
(a) Irreversible and adiabatic


(c)frictionless and irreversible

Work done in a free expansion process is

C. Reversible evaporation of a liquid

(e) none of the above.

		At its normal boiling point
		D. Adiabatic free expansion $4. \Delta S = 0$
		Code:
		(a) A-2 B-1 C-3 D-4 (b)A-4 B-3 C-1 D-2 (c) A-2 B-3 C-1 D-4 (d) A-4 B-1 C-3 D-2
	Q31.	The definition of the thermodynamic temperatures comes from the
		(a) Zeroth law of thermodynamics
		(b) First law of thermodynamics
		(c) Second law of tthermodynamics
		(d) Third law of thermodynamics
	Q32.	Enthalpy change in spontaneous freezing of a liquid at constant pressure and freezing point
		(a) Is always negative (b) Is always positive
		(b) Is always zero (d) Can be zero, positive or negative.
	Q33.	The process at constant pressure and temperature which is always spontaneous is:
		(a) Endothermic accompanied by increase in entropy
		(b) Exothermic accompanied by decrease in entropy
		(c) Exothermic accompanied by increase in entropy
		(d) Endothermic accompanied by decrease in entropy
	Q34.	The value of C_p/C_v for an ideal monoatomic gas is expected to be
		(a) 5/3 (b) 1 (c) 7/5 (d) 5/4
	Q35.	Work done in increasing the temperature of 1 mol of a gas by 1 °C at constant pressure is,
		(a) 2R (b) R (c) 3R (d) R/2
	Q36.	The heat evolved in combustion of acetylene at 25°C is 310.5 kcal/mol. If the enthalpy of formation of
		carbon dioxide is - 94.0 kcal/mol and that of water is - 68.3 kcal/mol, the enthalpy of formation of
		acetylene will be
		(a) 65.3 kcal/mol (b) 54.2 kcal/mol (c) 85.2 kcal/mol (d) 108.3 kcal/mol
	Q37.	If the carnot cycle in entropy – temperature diagram looks as below.
		$T = \begin{bmatrix} D & C \\ A & B \end{bmatrix}$
		S
		Then the system rejects heat to the surroundings is going from
		(a) $B \rightarrow A$ (b) $A \rightarrow B$ (c) $D \rightarrow C$ (d) $C \rightarrow D$
	Q38.	Which of the following are the correct criteria for naturally occurring (spontaneous) processes?
()'		(E = internal energy, S = Entropy, G = Gibb's free energy, A = Helmholtz free energy)
		(a) $(\Delta G)_{T,V} \le 0$ (b) $(\Delta A)_{T,P} \le 0$ (c) $(\Delta S)_{E,P} \ge 0$ (d) $(\Delta E)_{S,V} \le 0$
	Q39.	The compressibility factor for an ideal gas is:
•		(a) 1 (b) 1.5 (c) 2 (d) ∞

7.(d)

14.(b)

21.(d)

27.(d)

35. (b)

42.(b)