Nuclear Chemistry

For a given nuclear fission reaction of $\,^{235}\,U$

Q1.

NET/JRF Previous Year's Question

[NET June 2011]

	The amount of energy (in kJ/mol) released during this process is (given $^{235}U=235.0439$ amu, $^{142}Ba=141.9164$ amu, $^{91}Kr=90.9234$ amu, neutron $=1.00866$ (amu)					
	(a) 3.12×10^{12}	(b) $2.8{ imes}10^{11}$	(c) 1.0×10^9	(d) $1.68{ imes}10^{10}$		
Q2.	For the nuclear reactions	i.		[NET Dec. 2011]		
	(A) ${}^{8}_{4}{\rm Be} \rightarrow 2^{4}_{2}{\rm He}$ (B) ${}^{80}_{36}{\rm K}$	$\mathrm{Kr} ightarrow 2_{18}^{40} \mathrm{Ar}$				
	(Given masses: 8 Be = 8.	$005300,^4 \text{ He} = 4.002603$	3 and $^{80}_{36}\mathrm{Kr} = 79.81638,^{40}_{18}$	Ar = 39.96238		
	(b) (A) is spontaneous fis (c) (B) is spontaneous fiss	pontaneous fission procession but (B) is not	97			
Q3.	The carbon -14 activity o	f an old wood sample is fo	und to be 14,2 disintegration	ons $\min^{-1} \operatorname{g}^{-1}$. Calculate age		
	of old sample, if for fresh 14 is 5730 years), is:	wood sample carbon – 14	activity 15.3 disintegration	nsmin $^{-1}$ g $^{-1}$ ($t_{1/2}$ carbon - [NET June 2012]		
	(a) 5,000 years	(b) 4,000 years	(c) 877 years	(d) 617 years		
Q4.	In 'carbon-dating' applica	ation of radioisotopes, 14 C	emits	[NET June2012]		
	(a) β — particle	(b) $lpha$ — particle (c) γ -	– radiation (d) Pos	itron.		
Q5.		ially decays at the rate of \hat{s} minute 75 minutes. The $\hat{t}_{1/2}$	34,500 disintegrations/minu $_{2}$ for $^{41}\mathrm{Ar}$ is:	ite, but decay rate falls to [NET June 2013]		
	(a) 90 minutes	(b) 110 minutes	(c) 180 minutes	(d) 220 minutes		
Q6.	For neutron activation analysis of an element, the favourable characteristics of both the target and the product are from the following [NET June 2013					
	(A) high neutron cross-section area of target					
	(B) long half-life of the product					
	(C) low neutron cross-section area of target					
		(D) low half-life time of the product				
	(D) low half-life time of t	he product				
	(D) low half-life time of to The correct characteristic	·				
		·	(c) B and C	(d) A and D		

Q7.	The particles postulated to always accompany the positron emission among						
	(A) neutrino,	(B) anti-ne	eutrino ,	(C) electron		[NET June 2014]
	(a) A,B and C	(b) A and	В	(c) A and C	(d) B and C	
Q8.	The nuclides am	ong the following, ca	pable of und	ergoing fission by t	hermal neutro	ons, are	
	(A) 233 U	(B) $^{235}\mathrm{U}$	(C) 23	⁹ Pu	(D) 232 Th	[NET June 2014	
	(a) A, B and D	(b) A, C ar	d D	(c) B, C and D	(d) A, B and C	•
Q9.	For a low energy	y nuclear reaction, 24	Mg d, α 22	Na, the correct stat	ements from	the following are	
	(A) Kinetic energ	gy of d particle Is not	fully available	e for exciting $^{24}{ m Mg}$	7	[NET June 2014]
	(B) Total numbe	r of protons and neu	trons is conse	erved.			
	(C) Q value of nu	uclear reaction is mu	ch higher in m	nagnitude relative t	to heat of che	mical reaction	
	(D) Threshold er	nergy is $\leq\!0$ value.					
	(a) A, B and C	(b) A, B ar	d D	(c) B, C and D	(d) A, C and D	
Q10.	Q value for the r	reaction 13 N 13	C is 3.236 Me	eV. The threshold e	energy (in Me	eV) for the reaction ¹³ (7
	$(n, p)^{13} N$ is June 2015]			4		[NET	
	(a) - 3.236	(b) - 3.48		(c) 3.485	(d) 3.845		
Q11.	Identify radioact	tive capture from the	e following nu	clear reactions		[NET Dec. 2015]	
	(a) ${}^{9}\text{Be } \gamma.n {}^{8}\text{ B}$	de C	(b) ²³	Na n.γ ²⁴ Na			
	(c) ⁶³ Cu p.p 3n	$1.9\alpha^{-24}$ Na	(d) 107	Ag n. n 107 Ag			
Q12.	On two sequent	ial electrons capture	, $_{56}Ba^{131}$ will	give		[NET June 2016]
	(a) $_{54}$ Xe^{131}	(b) ₅₄ Xe ¹³	0	(c) $_{56}\text{Ce}^{131}$	(d) ₅₆ Ce ¹³⁰	
Q13.	On continuous exposure of ^{10}B sample to a slow neutron flux of $10^{16}\mathrm{m^2s^{-1}}$ its 3% weight fraction disappears in 3×10^7 s. Cross section for neutron capture (in barns) by ^{10}B is [NET June 2016]]	
	(a) 1000	(b) 3000 (c)	c) 10,000	(d) 30,	000		
Q14.	4. Saturation factor in neutron activation analysis is $(A = induced\ radioactivity\ ;\ \phi\ = neutron\ flux;\ \sigma = effective\ nuclear\ cross\ section;\ N = no.\ of\ target\ atomorphisms$						
						_	
	$\lambda = \text{decay const}$,		_		[NET Dec. 2016]	
	(a) $\frac{A}{\phi \sigma N}$	(b) $\frac{\varphi \sigma N a}{\lambda}$	<u>1</u>	(c) $\frac{\lambda}{A\varphi\sigma N}$	(d	$\frac{\varphi\sigma N}{A}$	

Q15.	Consider following statements for fission of ^{235}U w	[NET June 2017]				
	A. The % of nuclei undergoing unsymmetrical fission is maximum					
	B. In each fission, one thermal neutron is produced					
	C. Magnitude of energy released per fission is of the	e order 200 MeV				
	Correct statements(s) is/are					
	(a) A and B (b) A and C	(c) B and C	(d) C only			
Q16.	Choose the correct statement for magnitude of thre between stationary nucleus and a moving projectile	- :	rgic nuclear reaction [NET June 2017]			
	(a) It is greater than $'ig Qig '$ of nuclear reaction.					
	(b) It has to be more than kinetic energy of a project	tile.				
	(c) It is less than $\ ' Q '$ of nuclear reaction					
	(d) It has to be equal to kinetic energy of a projectil	e.				
Q17.	Among the following nuclear reactions of thermal n	eutrons, the cross section	is highest for			
	(a) $_{92}$ U ²³⁵ $+_{0}$ n ¹ \rightarrow_{92} U ²³⁵ $+_{0}$ n ¹		[NET Dec. 2017]			
	(b) $_{92}$ U 235 + $_0$ n 1 \rightarrow_{92} U 236					
	(c) $_{92}$ U ²³⁵ $+_{0}$ n ¹ \rightarrow_{92} Th ²³² $+_{2}$ He ⁴					
	(d) $_{92}$ U 235 $+_{0}$ n^{1} \rightarrow_{36} Kr 94 $+_{56}$ Ba 140 $+$ 2_{0} n^{1}					
Q18.	Match the items given in Column I with those given	in Column II	[NET Dec. 2018]			
	Column I	Column II				
	a. Magic number	i. Nuclear fission				
	b. Liquid drop model of nucleus	Ii. Q-value				
	c. Actinides	iii. Radioactivity				
	d. Threshold energy	iv. Shell model of				
nucleus						
The correct match						
	(a) a – iv: b – i; c – iii; d – ii (b) a –ii; b – I; c	– iii; d -iv				
1	(c) $a - iii$; $b - iv$; $c - i$; $d - ii$ (d) $a - iv$; $b - iii$;	c – i; d – ii				

In fission of ^{235}U atom the energy relased 200MeV. In one day fission of 1 kg ^{235}U will give power (in

(c) 950

MW) approximately

(b) 650

(a) 550

[NET June 2018]

(d) 1250

Answer Key	/
-------------------	---

1. (d)	
--------	--

GATE Previous Year's Question

Q1.

Among the following, the most stable isotope or radioactive decay is

(a)
$$^{206}_{82}$$
 Pb

(b)
$$^{210}_{82}$$
 Pb

(c)
$$^{212}_{82}$$
 Pb

(d)
$$^{214}_{82}$$
 Pt

 $^{210}{
m Bi}$ undergoes eta^- decay to 1/8 of its initial amount in 15 days. The time required for its decay to ¼ of Q2. days (up two decimal places) its initial amount is [GATE 2017]

21. For the radioactive isotope 131 I, , the time required for 50% disintegration is 8 days. The time required Q3. for the 99.9% disintegration of 5.5g of $^{131}\mathrm{I}$ is — days. (Upto one decimal place) [GATE 2018]

Answer Key

3. (80.33)

Other Examinations Year's Question

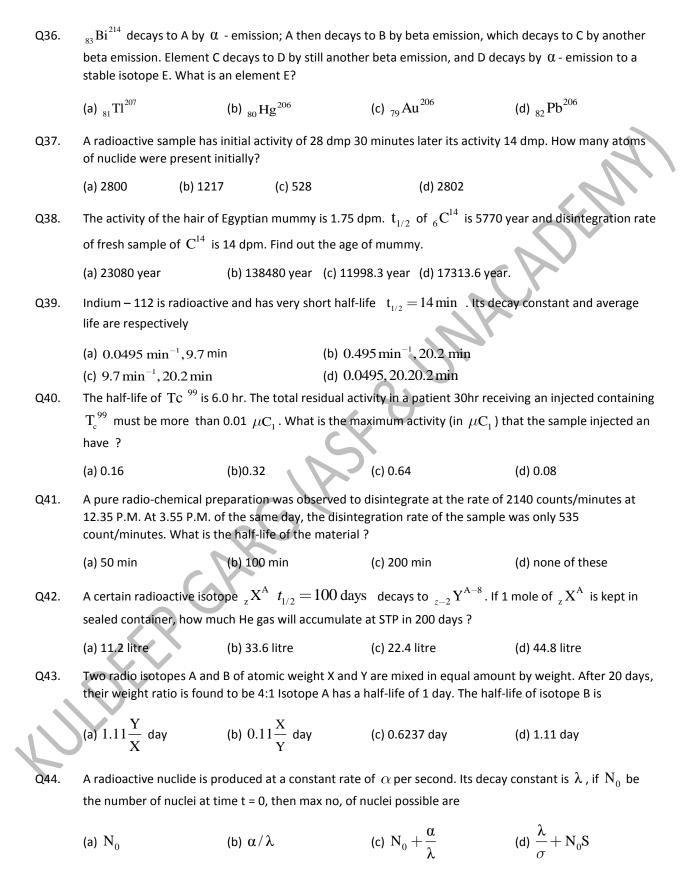
The $\,t_{1/2}^{}$ of a radioactive element is 231 min. The time taken for $9/10^{th}$ fraction of this element to decay is Q1. approximately.

Alpha decay of $_{10}^{22}$ Mg results in Q2.

(a)
$$_{10}^{22}$$
 Mg

(d)
$$_{13}^{27}$$
 Al

The ratio of the amount of two element X and Y at radioactive equilibrium is $1:2{ imes}10^{-6}$ Half-life Period Q3. of element Y is 4.9×10^{-4} days. Then the half-life period of element X will be


(a)
$$4.8 \times 10^{-3}$$
 days

An element 'X' emits successively two $\,\beta$ particles, on e α particle, one position and one neutron. The Q4. mass and atomic numbers of the element are decreased by, respectively,

Q5.	One gram of ^{90}Sr gets converted to 0.953 g after 2 years. The half-life of ^{90}Sr , and the amount of ^{90}Sr remaining after 5 years are				
	(a) 1.44 years and 0.916 g	(b) 57.6 years and 0.75 g			
	(c) 28.8 years and 0.887 g	(d) 100 years and 0.982 g			
Q6.	The radioactivity decay of $^{239}_{~92}U \rightarrow ^{239}_{~94}Pu$ is	an example of			
	(a)Zero order reaction	(b)Photochemical reaction			
	(c)Chain reaction	(d)Consecutive reaction			
Q7.	Radioactivity effect by				
	(a) Temperature (b) Pressure (c) elec	tric and magnetic field (d) none of these			
Q8.	The radiation from naturally occurring radione direction are :	oactive substances as seen deflection by a magnetic field in			
	(a) α -rays (b) β -rays	(c) both α and β rays $\ \ $ (d) either α and β rays			
Q9.	In the radioactive decay, $_{_{z}}\mathbf{X}^{^{\mathrm{A}}} ightarrow_{_{z+1}}\mathbf{Y}^{^{\mathrm{A}}}$ $-$	$ ightarrow_{z-1} X^{A-4} ightarrow_{z-1} Z^{A-4}$ the sequence of the radiation emitted is:			
	(a) α, β, γ (b) γ, α, β	igh energy Low energy (c) β,γ,α (d) β,α,γ			
Q10.	A radioactive nuclide emitts γ - rays due to	o the			
	(a) emission of an electron from its orbital.				
	(b) nuclear energy transition from a higher	state to a lower state.			
	(c) presence of less neutrons than protons				
	(d) presence of more neutrons than proton	15.			
Q11.	Consider the following decay ${}_{z}X^{A} \rightarrow_{z+1} Y$	$ au^{ m A} +_{-1} { m e}^0, { m X} $ is unstable because			
	(a) its nucleus has excess energy	(b) n/p ratio is high			
	(c) n/p ratio is low	(d) none of these			
Q12.	Consider the following decay $_{z}X^{A} ightarrow_{z+1} Y$	$x^{\mathrm{A}} +_{+1} \mathrm{e}^{0} \;\; eta^{+} \;\; \mathrm{X} \;$ is unstable because			
	(a) its nucleus has excess energy	(b) $\frac{n}{P}$ ratio is high			
	(c) $\frac{n}{p}$ ratio is low	(d) none of these			
Q13.	During $lpha-$ decay				
	(a) $\frac{n}{p}$ ratio decreases	(d) $\frac{n}{p}$ ratio increase			
	(c) $\frac{n}{p}$ remains constant	(d) may increase or decrease			

Q14.	Which of the following processes causes the emission of X-ray?					
	(a) $lpha-$ emission		(b) β — emission			
	(c) β^+ (Positron emission)	n emission) (d) ele		ctron capture		
Q15.	Which of the following pro	ocesses results in a	ın increa	se in atomic number of nu	clide ?	
	(a) $\alpha-$ emission	(b) electron captu	ire	(c) γ — emission (d) β - (Beta)emission	
Q16.	Is produced when a p	ositron and an elec	ctron co	llide:		
	(a) X-ray	(b) Neutron		(c) γ — radiation (d)Neur	trino	
Q17.	$_{67}\mathrm{Ho}^{165}$ is stable isotope	₆₇ Ho ¹⁵⁰ is expecte	ed distint	egrated by:		
	(a) $\alpha-$ emission	(b) $\beta-$ emission		(c) positron emission	(d) $\gamma-$ emission	
Q18.	$_{1}\mathrm{H}^{1}$ is a stable isotope, $_{1}\mathrm{D}$	H^3 is expected to d	disintegra	ated by		
	(a) $\alpha-$ emission	(b) $\beta-$ emission		(c) positron emission	(d) Proton emission	
Q19.	Loss in $\beta-$ particle is equ	uivalent to:		91		
	(a) increase of one proton only (b) decrease of one neutron only					
	(c) Both (a) and (b)			of these		
Q20.	Atoms $_7X^A,_8Y^B$ and $_9Z^{17}$ are such that $_8Y$ is an isobar of $_7X$ and atom $_9Z^{17}$ is isotone of $_gY$. Mass					
	no. of X and no. of neutro	ns in Y are respecti	ively			
	(a) 8,8	(b) 17,7		(c) 9,8	(d) 16,8	
Q21.			s the fina	al product. Total number o	f α and β particles	
	emitted out during this pr	ocess are:				
	(a) 6	(b) 7		(c) 8	(d) 13	
Q22.	An isotone of $_{32}$ Ge 76 is:					
	(a) $_{32}$ Ge 77 is:	(b) $_{33}$ As 77		(c) ₃₄ Se ⁷⁷	(d) $_{36}{\rm Se}^{^{77}}$	
Q23.	23. Isobaric pair is:					
	(a) ${}_{6}C^{13}, {}_{7}N^{13}$	(b) ${}_{6}C^{13}, {}_{7}N^{14}$		(c) $_{6}C^{14}$, $_{8}N^{15}$	(d) none of these	
Q24.	Isodiaphers are atoms have	ving				
	(a) n/p constant (b) p/n o	constant (c) (n-p) o	constant	(d) (n-p) differen	t	
Q25.	The 'Group disphlacemen	t law' was given by	,			
	(a) Bacqueral	(b) Rutherford		(c) Madam Curie (d) Sodo	ly and Fajan	

Q26.	$_3{\rm Li}^7+_1{\rm p}^1 o {\rm X}$; identify X if reaction is $\ p, lpha \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					
	(a) $_4\mathrm{Be}^8$	(b) ₂ He ⁴	(c) $_{0}\gamma^{0}$	(d) none of these		
Q27.	Identify reaction type					
	$_{13}Al^{27} +_{1}H^{2} \rightarrow_{13}Al^{28} +_{1}H^{1}$					
	(a) d, p	(b) p, p	(c) p, d	(d)none of these		
Q28.	$_{13}Al^{27} +_1 P^1 \to X +_0 \gamma^0$; identify X if reaction is I	$ ho, \gamma$ type artificial radioact	ive reaction.		
	(a) $_{13}Al^{28}$	(b) $_{14}Si^{27}$	(c) $_{14}{ m Si}^{28}$	(d) none of these		
Q29.	The number of neutrons a	accompanying the formation	on of ${}_{54}\mathrm{X}^{139}$ and ${}_{38}\mathrm{Sr}^{194}$ from	om the absorption of slow		
	neutron by $_{92}U^{235}$ follow	ved by nuclear fission is:				
	(a) 0	(b) 1	(c) 2	(d) 3		
Q30.	What will be the product	of reaction $_{101}$ Md 225 $\alpha, 2r$	1 ?			
	(a) $_{103}\mathrm{Lr}^{256}$	(b) ₁₀₂ No ²⁵⁷	(c) $_{103}$ Lr ²⁵⁷	(d) $_{82}{\rm Pb}^{205}$		
		, 5				
Q31.	Complete the following nuclear equation by supplying the symbol for the other product of the fission					
	$_{92}$ U ²³⁵ $+_{0}$ n ¹ \rightarrow_{38} Sr ⁹⁴ $++2_{0}$ n ¹					
	(a) $_{54}$ Xe 139	(b) ₅₄ Xe ¹⁴⁰	(c) $_{64}\text{Gd}^{104}$	(d) none of these		
Q32.	Proton bombardment of Th^{230} followed by emission of two alphas Particles produce:					
	(a) Rn ²³²	(b) Ra ²³³	(c) Fr ²²³	(d) Fr ²²²		
Q33.	$_{84}\text{Po}^{210} \rightarrow_{82} \text{Pb}^{206} +_{2} \text{He}$	4 . In this reaction predict t	he position of group of Po	when Pb is the IV B group		
	(a) II B	(b) IV B	(c) VI A	(d) VI B		
Q34.	I. $_{90}\mathrm{Th}$ is a member of III group on losing a-particle forms a new element belonging to:					
	(a) I group	(b) II group	(c) III group	(d)IV group		
Q35.	Alpha decay of $_{92}U^{238}$ fo	orms $_{90}\mathrm{Th}^{234.}$. What kind α	of decay from $_{90}\mathrm{Th}^{234}$ pro	duce $_{89}{ m Ac}^{234}$?		
	(a) α	(b) β	(c) β (positron)	(d) γ - emission		

- Q45. A radioactive substance (parent) decays to its daughter element, the age of radioactive substance(t) is related to the daughter (d)/parent(p) ratio by the equation

 - (a) $t = \frac{1}{\lambda} \ln \left(1 + \frac{p}{d} \right)$ (b) $t = \frac{1}{\lambda} \ln \left(1 + \frac{d}{p} \right)$ (c) $t = \frac{1}{\lambda} \ln \left(\frac{d}{p} \right)$
- (d) $t = \frac{1}{\lambda} \ln \left(\frac{p}{d} \right)$
- The species 19 Ne and 14 C emit a positron and β particle respectively. The resulting species formed Q46. are respectively
 - (a) 19 Na and 14 B
- (b) $^{19}\mathrm{F}$ and $^{14}\mathrm{N}$
- (c) 19 Na and 14 N
- (d) 19 F and 14 B

Answer Key

- 1. (a)
- 2. (b)
- 3. (b)
- 4. (b)
- 5. (c)
- 6. (d)
- 7. (d)

- 8. (d)
- 9. (d)
- 10. (d)
- 11. (b)
- 12. (c)
- 13. (b)
- 14. (d)

- 15. (d)
- 16. (c)
- 17. (c)
- 18. (b)
- 19. (c)
- 20. (d)
- 21. (d)

- 22. (b)
- 23. (a)
- 24. (c)
- 25. (d)
- 26. (b)
- 27. (a) 28. (c)

- 29. (d)
- 30. (d)
- 31. (c) 38. (d)
- 32. (b)
- 39. (d)
- 33. (c) 40. (b)
- 34. (c)
- 35. (c)

- 36. (d) 43. (d)
- 37. (b) 44. (d)
- 45. (b)

- 41. (b)
- 42. (b)