Atomic Structure

NET/JRF Previous Years' Question

Q1.	The term symbol of mo	[NET JUNE 2011]			
	$1\sigma_{ m g}^{-2} 1\sigma_{ m u}^{-2}$				
	(a) $^1\Sigma_{g}^+$	(b) $^3\Sigma_g^-$		(c) $^{i}\Sigma_{g}^{-}$	(d) $^3\Sigma_g^+$
Q2.	The possible \boldsymbol{J} values \boldsymbol{f}	or ³ D term symbol are			[NET JUNE 2011]
	(a) 2	(b) 3	(c) 4		(d) 5
Q3.	The term symbol for th	e ground state of nitrog	en atoms is		[NET DEC. 2011]
	(a) $^3\mathrm{P}_0$	(b) ${}^4P_{3/2}$ (c)	$^{1}P_{1}$	(d) ${}^4S_{3/2}$	
Q4.	Observe the following	electronic transition of a	diatomic mole	cule.	[NET DEC. 2011]
	(a) $^1\Sigma_g^+ ightarrow ^3\Sigma_g^+$	(b) $^1\Sigma^+_u \rightarrow ^1\Sigma^+_g$		(c) $^{1}\Delta_{u} \rightarrow ^{1}\Sigma_{g}^{+}$	(d)
	$^{1}\Pi_{g} \rightarrow ^{1}\Sigma_{u}^{+}$, 9	-	
	The allowed transitions	s are			
	(a) $_{A}$ and $_{C}$ only	(b)	$_{B}$ and $_{D}$		
	(c) A , B and C on	y (d)	A , C and	D only	
Q5.	Which of the following	is true for the radial par	t of the hydrog	en atom wavefur	nctions $ { m R}_{{ m n}\ell}(r)$ (n principle
	quantum number) and	the nodes associated w	ith them?		[NET Dec. 2011]
	(a) The radial part of o	nly \S function is non-zer	o at the origin a	and has $$ n -1 $$ n	odes.
	(b) The radial part of $^{ m S}$	function is zero at the c	origin and have	n number of noo	des.
	(c) All radial function h	ave values of zero at the	origin and have	e $n-1$ nodes.	
	(d) The radial parts of a	all $ \S $ function are zero at	the origin and	have no nodes.	
Q6.	For hydrogen-like atom follows the relation.	n with a nuclear charge	Z, the energy of		ncipal quantum number 'n'' NE 2012]
Q7.	(a) $E_{\rm n} \propto n^2 Z^2$	(b) ${ m E_n} \propto -{{Z^2}\over n}$	(c) ${ m E_n} \propto$	$z-\frac{Z}{n}$	(d) $E_{\mathrm{n}} \propto - \frac{Z^2}{n^2}$
Q7.	The set of allowed elec	tronic transitions among	g the following i	is	[NET JUNE 2012]
	(A) $^4\Sigma \rightarrow ^2\Pi$ (B) 3	$\Sigma \rightarrow^3 \Pi$ (c) $^1\Delta \rightarrow^1$	Δ (D) $^2\Pi$ -	$\rightarrow^2 \Pi$ (E) $^3\Sigma$ -	\rightarrow 3 Δ
	(a) A, B, E	(b) A, C, E	(c) B, C,	,D	(d) C, D, E
Q8.	For an odd nucleon in '	g' nuclear orbital and pa	rallel to I, spin	and parity are	[NET DEC. 2012]

	(a) $9/2$ And $(+)$	(b) $7/2$ and ((+) (c) $9/2$ and ((d) 7/2	2 and $(-)$
Q9.	The electric dipole allo	owed transition in a	d^{2} atomic system is		[NET DEC. 2012]
	(a) ${}^3F \rightarrow {}^1D$	(b) ${}^3\mathrm{F} \! \rightarrow \! {}^1\mathrm{P}$	(c) ${}^3F \rightarrow {}^3D$	(d) 3 F	\rightarrow ³ P
Q10.	In a many-electron ato	om, the total orbital	angular momentum $\ L$	and spin S are go	ood quantum
	numbers instead of th	the presence of			
	(a) Inter-electron repu	llsion	(b) spin-orbit interaction	1	[NET DEC. 2012]
	(c) Hyperfine coupling		(d) external magnetic fie	elds	
Q11.	What is the atomic ter	rms symbol for heliu	ım atom wit electronic con	figuration $1 s^2$?	[NET JUNE 2013]
	(a) ${}^2S_{1/2}$ (b) 1	P_0	(c) $^{1}\mathbf{S}_{0}$	(d) $^{1}S_{1}$	
Q12.	The ground state term	n symbol for ${ m Nb}$ (a	stomic number 41) is $^6\mathrm{D}$. T	he electronic config	guration
	corresponding to this	term symbol is			[NET JUNE 2013]
	(a) Kr $4d^35s^2$	(b) Kr $4d^45s^1$	(c) Kr 4d ⁵ 5s	s ⁰ (d) Kr	$4d^35s^{-1}5p^1$
Q13.	If a homonuclear diate	omic molecule is orio	ented along the Z-axis, the	molecular orbital fo	ormed by linear
	combination of \boldsymbol{p} , or	bitals of the two ato	oms is		[NET DEC. 2013]
	(a) σ	(b) σ^*	(c) π	(d) δ	
Q14.	For an electronic conf	iguration of two nor	n-equivalent $_{\pi}$ electronic $\left[x_{n}^{2}\right]$	$\left[\pi^{1},\pi^{1} ight]$, which of th	ne following terms
	is not possible?				[NET DEC. 2013]
	(a) $^1\Sigma$	(b) $^3\Sigma$	(c) $^3\Delta$	(d) $^3\Phi$)
Q15.	The ground state form	ns of ${ m Sm}^{3+}$ and ${ m Eu}$	${f u}^{3+}$ respectively, are		[NET DEC. 2013]
	(a) 7F_0 And $^6H_{5/2}$	(b) $^6\mathrm{H}_{5/2}$ and 7	$^{5}F_{0}$ (c) $^{2}F_{5/2}$ and $^{5}I_{4}$	(d) 7F_6 and $^2F_{7/2}$	
Q16.	The term symbol that	is NOT allowed for t	the np^2 configuration is		[NET JUNE 2014]
	(a) ¹ D	(b) 3 P	(c) ¹ S	(d) 3 D	
Q17.	If the ionization energ	y of $ H $ atoms is x, $ f $	the ionization energy of Li	²⁺ , is	[NET JUNE 2014]
	(a) 2x	(b) $3x$	(c) $9x$	(d) 273	x
Q18.	The S and $oldsymbol{L}$ values f	for 15 ${f N}$ atom respe	ectively, are		[NET DEC. 2014]
	(a) $\frac{1}{2}$ And 1	(b) $\frac{1}{2}$ and 0	(c) 1 and 0	(d) $\frac{3}{2}$	and 0
Q19.	If $D_0(A)$ and I A re	fer respectively to th	ne dissociation energy and	ionization potentia	l of A (where
	A is either H,H_2 or	${ m H}_{2}^{+}$ species), the ${ m c}$	correct relation among the	following is	[NET DEC. 2014]

	(c) $D_0 \ H_2^+ = D_0 \ H_2$	$D_0\ H_2\ -I\ H$	$-I H_2$		
Q20.	The configuration Ne 2	[NET DEC. 2014]			
	(a) ${}^3D_{3/2}, {}^3D_{1/2}$ (b) ${}^3D_{5/2}, {}^3D_{3/2}, {}^3D_{1/2}$				
	(c) 3D_3 , 3D_2 , 3D_1	(d) ${}^3D_3, {}^3D_2, {}^3$	$D_1,^3 D_0$		CB.
Q21.	The geometric cross-secti	on (in barn) of nucleus $ A $	$=125, r_0 = 1,4 \times 1$	10^{-15} m approxima	itely is
					[NET DEC. 2014]
	(a) 1.05	(b) 1.54	(c) 2.05	(d) 2.54	
Q22.	Wavelength $(\lambda \text{ in nm})$	of the Lyman series for a o	ne-electron is in th	ne range $24 \le \lambda \le$	30 . The
	ionization energy of the id	on will be closest to $\left(1\int$ =	$\frac{10^{19}}{1.6}eV$		[NET DEC. 2014]
	(a) 32eV	(b) 42eV	(c) 52eV	(d) 62e	V
Q23.	The electric-dipole allowe	ed transition among the fol	lowing is		[NET June 2015]
	(a) $^3\mathrm{S}\!\to^3\!\mathrm{D}$	(b) ${}^3S \rightarrow {}^3P$	(c) ${}^3S \rightarrow {}^1D$	(d) ${}^{3}S$ –	$ ightarrow^1 \mathrm{F}$
Q24.	The lowest energy-state of	of an atom with electronic	$configuration ns^1$	${ m lp}^{^1}$ has the term sy	ymbol
	(a) 3P_1	(b) $^{1}P_{1}$	(c) 3P_2	(d) 3P_0	
Q25.	The geometric cross secti	on of ^{125}Sn (in barn) in no	early		[NET JUNE 2015]
	(a) 1.33	(b) 1.53	(c) 1.73	}	(d) 1.93
Q26.	The term symbol for the f	irst excited state of Be wit	h the electronic co	onfiguration $1s^22$	$s^1 3 s^1$ is
	(a) 3S_1	(b) $^3\mathbf{S}_0$	(c) $^{1}\mathbf{S}_{0}$	(d) $^2\mathrm{S}_{1/2}$	[NET JUNE 2015]
Q27.	The symmetry-allowed at	omic transition among the	following is		[NET DEC. 2015]
	(a) ${}^3F \rightarrow {}^1D$	(b) 3 F \rightarrow 3 D	(c) ${}^3F \rightarrow {}^1P$	(d) 3 \mathbf{F}	\rightarrow ³ P
Q28.	Possible term symbol(s) o	of the excited states of Na	atom with the elec	ctronic configuration	on
O	$\left[1s^22s^22p^63p^1\right] \text{ is/are}$				[NET DEC. 2015]
	(a) $^2\mathrm{S}_{\mathrm{1/2}}$ (b) $^2\mathrm{P}_{\mathrm{3/2}}$ and $^2\mathrm{P}_{\mathrm{1}}$	$^{1}S_{0}$ and $^{1}P_{1}$	(d) 3P_0 a	and 3P_1	
Q29.	The ionization energy of h	nydrogen atom in its groun	d states is approxi	mately 13.6eV . T	he potential
	energy of He^+ , in its grou	und state is approximately			[NET JUNE 2016]

Q30.	The first excited	state of hydrogen molec	[NET JUNE 2016]		
	(a) $^1\Sigma_g^+$	(b) $^1\Sigma_u^-$	(c) $^3\Sigma_g^-$	(d) $^3\Sigma_u^+$	
					. 4
Q31.	The lowest ener	gy term for the d^{6} confi	guration is	I	[NET June 2016]
	(a) $^2\mathrm{D}$	(b) ⁵ D	(c) $^{1}\mathrm{P}$	(d) $^{1}\mathrm{D}$	
Q32.	A constant of m	otion of hydrogen atom i	n the presence of sp	in-orbit coupling is	NET Dec. 2016]
	(a) ℓ	(b) S	(c) $\ell+s$	(d) $\ell - s$	
Q33.		ecular orbitals for an exc			
	$\left[1\pi_{\rm g}\right]^{\rm r} 3\sigma_{\rm u}^{\rm r} \cdot h$	A possible molecular tern	n symbol for oxygen		
		3			[NET Dec. 2016]
	(a) $^{1}\pi$	(b) $^3\sum$	(c) $^{1}\Delta$	(d) $^{1}\sum$	
Q34.	The transition th	nat belongs to the Lyman	series in the hydrog		
	(a) 1s ← 4s	(b) $1s \leftarrow 4p$	(c) 2s <		[NET Dec. 2016]
	. ,				(d) $2s \leftarrow 4p$
Q35.	For the electron	ic configuration $1s^2 2s^2 2$	p^4 , two of the possib	ole term symbols ar	${\sf e}^{-1}{f S}$ and ${}^3{f P}$. The
	remaining term	is			[NET June 2017]
	(a) $^{1}\mathrm{D}$	(b) ¹ F	(c) ³ D		(d) 3 F
Q36.	The total degen	eracy of the ground term	of CO ^{II} (high spin)		etry is [NET June 2018]
	(a) 18	(b) 12	(c) 28	((d) 9
Q37.	The term symbo	ol for the ground state of	\boldsymbol{B}_2 is		[NET June 2018]
	(a) $^1\Sigma_g^+$	(b) $^1\Sigma_g^-$		(c) $^3\Sigma_g^-$	(d) $^3\Sigma_g^+$
Q38.	The lowest ener	gy state of a $1s^12s^1$ ele	ectronic configuration	n, according to Hun	d's rule is
	(a) 3S_0	(b) $^{1}S_{0}$	(c) ${}^{3}S_{1}$	(d) $^1\mathrm{S}_1$	[NET June 2018]
Q39.	The allowed ele	ctronic transition in fluor	ine molecule is		
<i>O''</i>	(a) $\Sigma_g^+ o \Sigma_g^+$	(b) $\Sigma_g^+ \to \Sigma_g^-$	(c) Σ_g^+	$\rightarrow \Pi_u$	(d) $\Sigma_g^+ o \Delta_u$
Q40.	The spectrum of	f sodium atom has a close	ely separated double	et at 16956.2 and 16	$5973.4~{ m cm}^{-1}$. The higher
	energy transitio	n is due to			[NET Dec. 2018]
	(a) $^2\mathrm{P}_{_{3/2}} \rightarrow ^2\mathrm{S}_{_{1/2}}$	$_{2}$ (b) $^{2}P_{1/2} \rightarrow ^{2}S_{1/2}$	(c) ${}^{2}P_{3/2} \rightarrow {}^{2}P_{1/2}$	(d) ${}^{2}S_{1/2}$	\rightarrow 2 $P_{3/2}$

(b) -27.2 eV (c) -13.6 eV

(a) $-54.4\mathrm{eV}$

(d) -108.8 eV

Answer Key

1. (b)	2. (b)	3. (d)	4. (b)	5. (a)	6. (d)	7. (c)
8. (a)	9. (c)	10. (a)	11. (c)	12. (b)	13. (c)	14. (d)
15. (b)	16. (d)	17. (c)	18. (d)	19. (b)	20. (c)	21. (b)
22. (c)	23. (b)	24. (d)	25. (b)	26. (a)	27. (b)	28. (b)
29. (d)	30. (d)	31. (b)	32. (c)	33. (a)	34. (b)	35. (a)
36. (c)	37. (c)	39. (c)	40.(a)		- D	
		GATE Pr	evious Years' (Question		
Q1.	$^{3}P_{3/2}$ Is the ground	l state of			[GA	ATE 2000]
	(a) H	(b) Li	(c) .	B (d)	F	
Q2.		of aluminium atoms is				ATE 2002]
	(a) ${}^2P_{1/2}$	(b) ${}^{2}P_{3/2}$ (c)	⁴ D _{5/2}	(d) ${}^4S_{3/2}$		
Q3.	The ground state t	term symbol for $\operatorname{\mathfrak{p}}^3$ a	nd d^3 electronic	configuration re	spectively, are	
					[G <i>A</i>	ATE 2002]
	(a) $^4\mathrm{S}$ and $^4\mathrm{F}$	(b) $^4\mathrm{D}$ and 4	F (c) 1	\boldsymbol{D} and $^4\boldsymbol{F}$	(d) $^4\mathrm{S}$ and	^{2}G
Q4.	The ground state t	term of V^{3+} ion is			[GA	TE 2007]
	(a) 3 F	(b) 2 F	(c) ³	³ P	(d) $^2\mathrm{D}$	
Q5.	For a homonuclea	r diatomic molecule,	the bonding mole	cular orbital is	[G <i>A</i>	ATE 2007]
	(a) σ_u Of lowest	energy	(b) $\sigma_{\scriptscriptstyle u}$ of sec	cond lowest ene	gy	
	(c) π_g Of lowest ϵ	energy	(d) π_u of lov	vest energy		
Q6.	If Δy and ΔP_y	are the uncertainties	in the y-coordinat	e and the y com	ponent of the mon	nentum of a
	Particle respective	ely, then, according to	uncertainty princ	iple $\Delta \mathbf{y}$ $\Delta P_{\!_{\mathbf{y}}}$ is	S	
7,	$harpoonup \left(\hbar = \frac{h}{2\pi} \text{ and h i}\right)$	s Planck's constant			[GA	ATE 2012]
	(a) $\geq \hbar$	(b) $> \hbar/2$	(c) ²	$>\hbar$ (d)	$\geq \hbar/2$	

[GATE 2012]

Choose the allowed transition

Q7.

(a)
$$^{1}\Sigma_{g}^{+}$$
 \rightarrow 3 Σ_{u}^{+} (b) $^{1}\Sigma_{g}^{+}$ \rightarrow 3 Σ_{u}^{-}

(b)
$$^{1}\Sigma_{g}^{+} \rightarrow ^{3}\Sigma_{u}^{-}$$

(c)
$$^{1}\Sigma_{g}^{+} \rightarrow ^{1}\Sigma_{u}^{+}$$

$$^{1}\Sigma_{g}^{+} \rightarrow ^{1}\Sigma_{u}^{-}$$

Let $\phi_x^{\rm C}$ and $\phi_z^{\rm C}$ denote the wavefunctions of the $2{
m p}_x$ and $2{
m p}_z$ orbitals of carbon, respectively, and ϕ_x^0 and ϕ_z^0 represent the wavefunction of the $2\mathbf{p}_x$ and $2\mathbf{p}_z$ orbitals of oxygen, respectively. If \mathbf{C}_1 and C_2 are constants used in linear combination and the CO molecule is oriented along the z axis than, according to molecular orbital theory, the π – bonding molecular orbital has a wavefunction given by [GATE 2012]

(a)
$$c_1 \phi_{-}^{c} + c_2 \phi_{-}^{c}$$

(b)
$$c_1 \phi_z^C + c_2 \phi_z^0$$

(c)
$$c_1 \phi_x^C + C_2 \phi_z^C$$

(a)
$$c_1\phi_z^C + c_2\phi_x^0$$
 (b) $c_1\phi_z^C + c_2\phi_z^0$ (c) $c_1\phi_x^C + C_2\phi_z^0$ (d) $c_1\phi_x^C + c_2\phi_x^0$

(d)

The value of the magnetic quantum number of a p_x orbitals Q9.

(a)
$$-1$$

$$(c) + 1$$

Answer Key

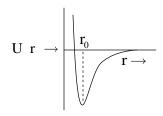
- 2. (d) 1. (d)
- 3. (a)
- 5. (d)
- 6. (d)
- 7. (c)

- 8. (d)
- 9. (d)

TIFR Previous Years' Question

What terms can arise from the configuration $2p^13p^1$? Q1.

[TIFR 2013]


(b)
3
 D. 3 P. 3 S

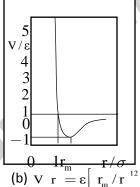
(d)
$${}^{1}D, {}^{3}P, {}^{3}S$$

The potential energy of a diatomic molecule, as a function of the internclear separation ${\bf r}$, is Q2. approximated as $U r = \frac{A}{r^a} - \frac{B}{r^b}$ [TIFR

2014]

Where A and B are positive constants and a > b

As shown in the above figure, I_0 is the equilibrium bond length, what is the energy necessary to break the bond from its equilibrium position?


(a)
$$\frac{A}{r_0^a} - \frac{B}{r_0^b}$$

(b)
$$\frac{B}{r_0^b} - \frac{C}{r_0^a}$$

(b)
$$\frac{\mathrm{B}}{\mathrm{r_0^b}} - \frac{\mathrm{C}}{\mathrm{r_0^a}}$$
 (c) $\frac{\mathrm{A}}{\mathrm{r_0^a}} \left(\frac{\mathrm{a}}{\mathrm{b}} - 1 \right)$ (d) both (b) and (c)

The short-ranged intermolecular interactions are often described by the Lennard-Jones potential Q3. $V \; r \; = 4\epsilon \left[\; \sigma / r \;^{12} - \; \sigma / r \;^{6}
ight]$, which gives the internal energy of interaction between two molecules as a function of intermolecular separation. Here is the depth of the potential well, $\,\sigma$ is the finite distance at which the potential reaches its minimum. At \mathbf{I}_m , the potential function has the value - $\boldsymbol{\xi}$. [TIFR 2019]

If you would like to express the same potential energy function in terms of $\, f_m \,$ and $\epsilon \,$, the function should be

(a) V r =
$$\varepsilon \left[r_{m}/r^{12} - 2 r_{m}/r^{6} \right]$$

(c) V r =
$$4\epsilon \left[r_{m}/r^{12} - r_{m}/r^{6} \right]$$

(d) V r =
$$\epsilon \left[2 r_m / r^{12} - r_m / r^6 \right]$$

Answer Key

2. (d)

3. (*)

Other Examinations Previous Years' Question

- A 3p atomic orbital has Q1.
 - (a) One radial node and one angular node
- (b) two angular nodes

(c) One angular node

- (d) one radial node.
- Q2. The ground term symbol of the metal ion present in hemoglobin is
 - (a) ${}^{1}S_{0}$
- (b) 5D_4
- (c) $^{5}D_{3/2}$
- (d) 5D_0

Q3.	The energies of the $1s$ orbital in $_{H,He^+}$ and Li^{2+} are in the ratio,					
	(a) $H: He^+: Li^{2+} = 1:1:1$ (c) $H: He^+: Li^{2+} = 1:4:9$		(b) $H: He^+: Li^{2+} = 1:2:3$ (d) $H: He^+: Li^{2+} = 1:1/4:1/9$			
Q4.	The number of radial noo	les in the $4\mathrm{s}$ orbita	al of the $\mathrm{H}-$ atom in a fir	nite distance from the nucleus is:		
Q5.	(a) 6 The possible J values for	(b) 4 · ³ D terms symbol	(c) 2 are	(d) 3		
	(a) 2	(b) 3	(c) 4	(d) 5		
Q6.	The number of nodes tha	it π^* orbital in CF	$H_2 = CH_2$ is			
	(a) 1	(b) 2	(c) 3	(d) 0		
Q7.	The effective nuclear cha	$\operatorname{rge}\ Z^*$ for the 1	s electron of ${}_8{\rm O}$ according	ng Slater's rules is nearly.		
	(a) 4.55	(b) 3.45	(c) 7.65	(d) 5.45		
Q8.	For a one-electron atom	with nuclear charge	e Z, the speed $^{\mathcal{V}}_{n}$ of the ϵ	electron in some n-th stationary orbit		
	satisfies					
	(a) $V_n \propto { m Z}$	(b) $v_n \propto Z^2$	(c) $v_n \propto \mathbf{Z}^{-1}$	(d) $v_n \propto Z^{-2}$		
Q9.		of hydrogen atom i	${ m s}13.6{ m eV}$, the expected t	hird ionization energy of the lithium		
	atom is: (a) $13.6 \times 3eV$	(b) 13.6×2eV	(c) 13.6×6eV	(d) $13.6 \times 9eV$		
Q10.	The orbital angular mom	entum (in units of	$h/2\pi$ where h is the Pla	inck's constant) of an electron in the		
	3d orbital is					
	(a) ₂	(b) 3	(c) $2^{1/2}$	(d) $6^{1/2}$		
Q11.	A 1s orbital refers to					
	(a) A circular track in an a	itom in which an el	ectron travels.			
	(b) A one electron wave f	unction				
	(c) An observable proper	ty of the system.				
	(d) A Hermitian operator.					
Q12.	As per the uncertainty pr	inciple, $\Delta x.\Delta p_y =$				
	(a) h	(b) $h/2\pi$	(c) λ	(d) zero		
Q13.	The ionisation potential	of hydrogen atom	is $13.6 eV$. The first ioni	sation potential of a sodium atoms.		
	Assuming that the ener	gy of its outer ele	ectron can represented b	by a $\mathrm{H}-$ atom like model with an		
	effective nuclear charge of	of 1.84 , is				
	(a) 46.0eV	(b) 11.5eV	(c) 5.1eV	(d) 2.9eV		
	. ,		. ,	• •		

	Q14.	The lowest energy state of the $\ _{1s}^{\ 2}\ _{2s}^{\ 1}\ _{3s}^{\ 1}$ configuration of $\ Be$ is						
		(a) $^1\mathbf{S}_0$		(d) $^1\mathrm{D}_2$	(c) 3S_1		(d) 3P_1	
	Q15.	The atomic te	rm symbol f	or the helium ator	m in its ground sta	ite is		
		(a) 3S_1		(d) 3P_2	(c) $^3\mathbf{S}_0$		(d) $^{1}\mathbf{S}_{0}$	1/20
	Q16.	The energy of	a 355nm ph	noton can be conv	erted to the wave	number equal to		
		(a) 21171 <i>cm</i>	n^{-1}	(b) $21269cm^{-1}$		(c) 21160 <i>cm</i> ⁻¹	(d)	
		$28169cm^{-1}$						
	Q17.	When a hydro	ogen atoms i	s placed in an ele	ctric field along th	he y — axis, the c	orbital that mixes	most with
		the ground sta	ate $1\mathrm{s}$ orbit	al is				
		(a) 2s		(b) $2p_x$	(c) $2p_y$	2/2	(d) $2p_x$	
	Q18.	The term sym	bol that is N	OT allowed for the	${\sf e}^2 \; {\sf np}^2$ configurat	ion is		
		(a) $^{1}\mathrm{D}$		(b) ³ P	(c) 1S		(d) ³ D	
	Q19.	, ,	bol for the g	round state of nit		-	. ,	
		(a) 3P_0		(b) $^4P_{3/2}$	(c) ¹ P ₁	(d) $^4\mathrm{S}_{3/}$	2	
	Q20. The orbital with two radial and two angular nodes is?							
		(a) 3p		(b) 5d	(c) 5f		(d) 8d	
	Q21.	Which of the	following mo	olecular orbitals h	as two nodal plan	es?		
		(a) $\sigma_{\mathrm{2s\ g}}$		(b) π_{2p_x} u	(c) π_{2p_x}	g	(d) $\sigma_{2p_x g}$	
	Q22.	In the present	ce of externa	al magnetic field th	ne transitions 3 D	$_{1}$ $ ightarrow$ $^{3} extstyle{P}_{\!1}$ splits int	0	
		(a) 3		(b) 5	(c) 7		(d) 9	
				Answ	er Key			
	1. (a)	2. (b)		3. (c)	4. (d)	5. (b)	6. (b)	7. (c)
	8. (a)	9. (d))	10. (d)	11. (b)	12. (d)	13. (a)	14. (c)
	15. (d)	16. (0	d)	17. (c)	18. (a)	19. (d)	20. (b)	21. (c)
	22. (d)							