

TARGET

JEE (ADVANCED): 2015

CHEMISTRY

Course Name : UDAY (UB)	DATE: 05.08.2013 to 10.08.2013	DPP No. 19 & 20
-------------------------	--------------------------------	-----------------

* Marked	Questions	are	having	more	than	one	correc	t opti	on.
							NI.	4 4 0	

	DPP No. # 19											
1.	The ionic radii of F, F ⁻ , (A) $O^{2-} > F^- > F > O$	O, O^{2-} are in the order of (B) $F^{-} > O^{2-} > F > O$	f: (C) $O^{2-} > O > F^- > F$	(D) $O^{2-} > F^- > O > F$								
2.*	The correct order of rac (A) N < Be < B		(C) Na > Li < K	(D) $Fe^{2+} > Fe^{3+} > Fe^{4+}$								
3.	Which one of the follow (i) K or K ⁺ (iv) Li ⁺ or Na ⁺	ving pair would have a lar (ii) Br or Br [–] (v) P or As	ge size : (iii) O ^{2–} or F [–] (vi) Na ⁺ or Mg ⁺²									
4.	The ionic radii of N ³⁻ , C (A) 1.36, 1.40, 1.71	0 ^{2–} and F [–] are respective (B) 1.36, 1.71, 1.40	ly given by: (C) 1.71, 1.40, 1.36	(D) 1.71, 1.36, 1.40								
5.	Arrange the following ic	ons in order of their ionic	radii Li ⁺ , Mg ²⁺ , K ⁺ , Al ³⁺									
6.	A monoatomic anion of unit charge contain 45 neutrons and 36 electrons. What is atomic mass number of element and in which group of periodic table does it lie.											
7.	Which transition involve (A) $M^{-}(g) \longrightarrow M(g)$ (C) $M^{+}(g) \longrightarrow M^{+2}(g)$		energy (M is a metal) (B) M (g) \longrightarrow M ⁺ (g) + e (D) M ⁺² (g) \longrightarrow M ⁺³ (g) + e									
8.	Which one of the following electronic configuration of an atom has the highest ionisation energy (A) 1s ² 2s ² 2p ³ (B) 1s ² 2s ² 2p ⁶ 3s ¹ (C) 1s ² 2s ² 2p ⁶ (D) 1s ² 2s ² 2p ⁵											
		DPP N	o. # 20									
1.	The first five ionization number of valence elec	_	are 9.1, 16.2, 24.5, 35	and 205.7 eV respectively. Then								
	(A) 2	(B) 3	(C) 4	(D) 5								
2.	Give the correct order of initials T (true) or F (false) for following statements. (I) Top positions of Lother-Mayer's atomic volume curve are occupied by Alkali metals. (II) Number of elements presents in the fifth period of the periodic table are 32. (III) 2 nd I.P. of Mg is less than the 2 nd I.P. of Na. (IV) A p-orbital can take maximum of six electrons.											
	(A) TFTF	(B) TFFT	(C) FFTF	(D) TTFF								
3.	as 100 nm using same that recorded values by	e apparatus. Their teache y three students were	er explained that measu	upta as 113 nm and Mr. Agarwal irements were correct by saying and vander Waal radii								
	(A) Crystal, vander Waal and covalent radii(B) Covalent, crystal and vander Waal radii(C) Vander Waal, ionic and covalent(D) None is correct											

- **4.*** Choose the **correct** statement.
 - (A) Be and Al are not in same group.
 - (B) All the transition metal correspond to d-block.
 - (C) Be and Al are having lot of similarities in their properties.
 - (D) The atomic radius gradually decreases from Sc to Zn.
- **5. Statement-1**: The ionisation potential of Sn is greater than Pb.

Statement-2: Usually ionisation energy decreases down the group.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.
- **6.** Statement-1: $(I.E.)_n$ of an atom is always greater than $(I.E.)_{n-1}$ (n is integer number)

Statement-2: ne/Z ratio decreases on successive elimination of electrons.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.
- 7. Arrange the following periodic properties with justification.
 - (a) Increasing order of first ionization energy N, O, F
 - (b) Increasing order of ionization energy Cl⁻, K⁺, S⁻², Ca²⁺
 - (c) Increasing order of ionization energy Li+, Be+, B+, C+, N+, O+, F+
 - (d) Increasing order of ionization energy Fe, Fe⁺², Fe⁺³
 - (e) Increasing order of first ionization potential Mg, Al, Si, Na

ANSWER KEY

DPP No. # 19

- **1.** (D) **2.*** (BCD) **3.** (i) K (ii) Br⁻ (iii) O²⁻ (iv) Na⁺ (v) As (vi) Na⁺
- **4.** (C) **5.** $Al^{3+} < Li^+ < Mg^{2+} < K^+$ **6.** Atomic mass No. 80, Group No. 17
- **7.** (D) **8.** (C)

DPP No. # 20

- 1. (C) 2. (A) 3. (A) 4.* (ABC) 5. (D) 6. (A)
- 7. (a) F > N > O (b) $S^{-2} < CI^- < K^+ < Ca^{+2}$
 - (c) $Be^+ < C^+ < B^+ < N^+ < F^+ < O^+ < Li^+$ (d) $Fe < Fe^{+2} < Fe^{+3}$ (e) Na < Al < Mg < Si

TARGET

JEE (ADVANCED): 2015

CHEMISTRY

DATE: 12.08.2013 to 17.08.2013 DPP No. 21 & 22 Course Name: UDAY (UB)

DPP No. # 21

- 1. Which of the following relation is correct:
 - (A) 2 I.P. E.A. E.N. = 0

(B) 2 I.P. - E.N. + E.A. = 0

(C) 2 E.N. - I.P. - E.A. = 0

- (D) E.N. I.P. E.A. = 0
- 2. The correct order of electron affinity for the different families is
 - (A) Halogen > carbon > nitrogen > oxygen
- (B) Halogen > oxygen > nitrogen > carbon
- (C) Halogen > nitrogen > carbon > oxygen
- (D) Halogen > oxygen > carbon > nitrogen
- $A_{n}/2$ atoms of X (g) are converted into X⁺ (g) by energy E_{1} . $A_{n}/2$ atoms of X (g) are converted into 3. $X^{-}(g)$ by energy E_2 . Hence ionisation potential and electron affinity of X (g) are :

$$\text{(A)} \ \frac{2E_1}{A_0} \cdot \frac{2(E_1 - E_2)}{A_0} \quad \text{(B)} \ \frac{2E_1}{A_0}, \frac{2E_2}{A_0} \qquad \qquad \text{(C)} \ \frac{(E_1 - E_2)}{A_0} \cdot \frac{2E_2}{A_0}$$

(B)
$$\frac{2E_1}{A_0}, \frac{2E_2}{A_0}$$

(c)
$$\frac{(E_1 - E_2)}{A_0} \cdot \frac{2E_2}{A_0}$$

- First, second and third I.P. values are 100 eV, 150 eV and 1500 eV. Element can be: 4.
 - (A) Be
- (B) B

(C) F

- (D) Na
- 5. State True or False with explanation for the following questions
 - (a) E.A. of M⁺(g) ion and I.E. of M(g) atom are equal.
 - (b) EA₁ of sulphur is more than EA₁ of oxygen.
 - (c) I.E. of Pb is more than Sn even though Pb is larger atom than Sn.
- (a) Which has greater IE₁ ? Na⁺ or Ne. Explain 6.
 - (b) Which has greater IE₂? O or N. Explain
 - (c) Which has greater IE₂? Li or Be. Explain
- Three atoms have the following E.C. 7.
 - (i) $A = 1s^2 2s^2 2p^6 3s^2 3p^1$
 - (ii) $B = 1s^2 2s^2 2p^6 3s^2 3p^5$
 - (iii) $C = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$
 - (a) which of the three has largest IE,
 - (b) Which has smallest IE₄
 - (c) Stability of A⁺³, B⁺², C⁺³.
- 8. Solutions of equal strength of XOH & QOH are prepared. If the E.N. of X & Q are respectively 0.9 & 3.2 then comment on their acidic / basic nature of then solution. Why?

^{*} Marked Questions are having more than one correct option.

9.	Which is not correct or	orrect order of EN:												
	(A) $CI > S > P > Si$	(B) Si > Al > Mg > Na	(C) F > Cl > Br > l	(D) None of these										
10.	Which of the following statements is not correct: (A) The elements like F, Cl, Br, O etc having high values of electron affinity act as strong oxidising agent (B) The elements having low values of ionisation energies act as strong reducing agent (C) The formation of S ²⁻ (g) is an exothermic process (D) All of these													
11.	The five successive ionisation energies of an element 'X' are 800, 1427, 2658, 25024 and 32824 $\rm{mole^{-1}}$ respectively. The valency of 'X' is :													
	(A) 3	(B) 4	(C) 1	(D) 2										
	DPP No. # 22													
1.	Which of the following process is associated with best possibility of the energy release.													
	(A) $Li \longrightarrow Li^+ + e^-$	(B) $O^- + e^- \longrightarrow O^{2-}$	(C) Cl ⁺ + e ⁻ \longrightarrow Cl	(D) Be + $e^- \longrightarrow Be^-$										
2.	Statement-2: Nitroget (A) Statement-1 is true,	en atom has extra stable statement-2 is true and statement-2 is true and statement-2 is false.	tatement-2 is correct exp	due to half filled p-subshell.										
3.	Which of the following statement is not correct: (A) Ionic mobility of Na ⁺ (aq) is greater than Mg ²⁺ (aq) (B) The E.A. of 'F' atom is more than 'Cl' atom (C) Second I.P. of 'B' atom is greater than that of 'C' atom (D) I.E. of O is less than that of 'O' atom.													
4.	Which of the following (A) Mn(II)	species of Mn has lowes (B) Mn(IV)	t electronegativity? (C) Mn(VI)	(D) Mn(VII)										
5.	The E.N. of H, X, O H–O–X, that is:	are 2.1, 0.8 and 3.5 re	espectively comment or	n the nature of the compound										
	(A) Basic	(B) Acidic	(C) Amphoteric	(D) Can't be predicted										
6.		vhich will break first in ga	comparable size & electronegativity of $X=3.0$, $Y=3.5$ gas phase. (B) $Y-Z$ (D) Can't be predicted.											
7.	Which one is the correct (A) $I > I^+ > I^-$	ct order of the size of the (B) $I > I^- > I^+$	iodine species : (C) $I^+ > I^- > I$	(D) I ⁻ > I > I ⁺										
8.	The order of magnitude (A) $Na^+ < Mg^{2+} < Al^{3+} <$ (C) $Al^{3+} > Na^+ > Si^{4+} <$		$^{+}$, Mg^{2+} , Al^{3+} and Si^{4+} is : (B) $Mg^{2+} > Na^{+} > Al^{3+} >$ (D) $Na^{+} > Mg^{2+} > Al^{3+} >$											

9.			•		_	Al and Si								
	(A) Na	< Mg > A	Al Si	(B) Na :	> Mg >	Al > si	(C) Na	< Mg < /	Al > Si	(D) Na >	Mg > Al <	Si		
10.	The cor	rect ord	er of sec	ond ioni	zation	potential (of carbon	ı. nitroge	en. oxva	en and flu	orine is :			
						•		_		(D) F > 0				
Comp	Comprehension:													
	Read the following comprehension carefully and answer the questions (1 to 3). The amount of energy released when an electron is added to an isolated gaseous atom to produce a monovalent anion is called electron affinity or first electron affinity or electron gain enthalpy. The first electron affinity is given a negative sign as the addition of an electron to a neutral atom atom. Atom is an exoergic process. The addition of electron to A ⁻ requires energy to overcome the force of repulsion. Thus, the second electron affinity is an endoergic process. The magnitude of electron affinity depends on a number of factors such as (i) atomic size (ii) effective nuclear charge (iii) screening effects (iv) half filled and fully filled orbitals and (v) shape of orbital. In general, electron affinity increases as the atomic radii decreases in a period. However, there are exceptions, when the atoms have stable configuration. In a group, electron affinity decreases as the size increases. However, the members of 3rd period have some what higher values than the members in the 2nd period of the same subgroups.													
11.	Which o	one of th	o followi	na arrana	nomon	te roproed	ont the co	rrect or	dor of old	etron gair	onthalov	(magnitude)		
			mic spe	-	gennen	is represe	oni un e co	iieci oii	dei Oi eie	ction gair	rentinalpy	(magnitude)		
	(A) F <	Cl < 0 <	< S	(B) S <	O < CI	< F	(C) O <	S < F <	: CI	(D) CI < F < S < O				
12.	Which (A) F	of the fo	llowing g	aseous : (B) O ⁻	specie	s release	maximur (C) Na+	_	y upon g	ain of an	electron :			
	()			()			()			()				
13.			• .			doergic in → Cl ⁻		e	S-	(D) F + 6	e⁻> F⁻			
					Δ	NSWE								
1.	(C)	2.	(D)	3.	(B)	4.	(A)							
5.	(a) True	` '	ue, (c) T	rue Beco	oz. 6 <i>f</i> e	electron ir	n Pb shie	ld nucle	ar charg	je less eff	ectively th	nan 5d in Sn		
6.	(a) Na+,	, (b) O, ((c) Li	7.	(a) ii,	(b) ii, (c)	A ⁺³ > B ⁺²	² > C ⁺³	8.	XOH is b	asic & Q0	OH is acidic		
9.	(D)	10.	(C)	11.	(A)	DPP N	o. # 22	2						

(C)

(D)

2.

9.

(D)

(A)

3.

10.

(B)

(C)

1.

8.

11.

(A)

(C)

5.

12.

(A)

(C)

6.

13.

(A)

(A)

7.

(D)

TARGET

JEE (ADVANCED): 2015

CHEMISTRY

DPP

Course Name: UDAY (UB) DATE: 19.08.2013 to 24.08.2013 DPP No. 23 & 24

					DPP I	No. # 2	23						
1.	(A) of it	s smalle	er size			that of so (B) of	that of sulphur because – (B) of more penetrating power of p-orbitals (D) half-filled orbitals are more stable						
2.	(A) will	have lea	lements ast ioniz stronges	ation po	tential ic bonding		(B) will form most highly charged cation (D) will have zero electronegativity						
3.			•		on affinity of C, S			< F	(D) C	> N > C) > F		
4.	The compound X – O – H is likely to act as a base, if compared to hydrogen, X has – (A) higher ionization potential (B) lower ionization potential (C) higher electronegativity (D) lower radius												
5.	Which (A) C	of the fo	llowing	has the l (B) N	highest electron	affinity? (C) Si			(D) P				
6.	The electron affinity of nitrogen is lower than that of carbon because – (A) atomic radius of nitrogen is lower than that of carbon (B) effective nuclear charge in carbon in greater (C) addition of an electron in N gives 2p ⁴ configuration (D) nitrogen is gaseous element												
7.	becaus (A) Soc (B) Mag (C) It is	e – dium ato gnesium very dif	m acqui atom d	res a sta oes not remove	of sodium is mu able electronic c acquire a stable electron from a	configurate electron	tion by lo	sing one	e electro by losing	on .		agnesium	
8.	A. B. C. D. Codes (A) (C)	List I Metallo Radioa Transit Chalco	oid active ion	C c c	D d a	(B) (D)	a. b. c. d. A c b	e codes List II Seleni Silver Arseni Uraniu B d c	ium	elow the D a a	e lists		

^{*} Marked Questions are having more than one correct option.

9.	Match list I with list II and then select the correct answer from the codes given below the lists List I List II												
	A.	Isoelect					a. A++			+ energy → A ⁺⁺			
	B. C.	Half fille		ıl on energ	41.V		b. c.						
	D.	Lanther		on energ	39		d.	Cerium Arsenio					
	Codes		п	0	Б		۸	Б	0 5				
	(A)	A C	B b	C d	D a	(B)	A b	B c	C a	D d			
	(C)	d	С	a	b	(D)	b	d	a	С			
10.	The mo	st polar - H	bond is	– (B) Cl –	- H	(C) O -	- H		(D) N -	- Н			
11.	Covaler (A) CaC	nt oxide)	is –	(B) SrC)	(C) Mg	0		(D) Be	0			
12.	In which process energy will be released –												
	. ,,	$\rightarrow A^{+}(g)$	•				$A_2(g) \rightarrow$						
	(C) A(s)	$\rightarrow A(g)$				(D) A+(g) + B⁻(g	$) \rightarrow A^{\dagger}B$	^{5−} (s)				
13.	The ele (A) C, N	-	ativity of	the follo (B) N, S	wing elements ir Si, C, P	creases (C) Si,		rder –	(D) P, Si, N, C				
14.	Van-dei (A) iner	r waals f t gases	orces ex	kist in – (B) rare	e gases	(C) gaseous mixture			(D) elementary gase				
	DPP No. # 24												
1.		rmic pro → Na⁻ +			$e \rightarrow O^{-}(C) O^{-}$	+ e → C)-2	(D) CI-	→ Cl +	е			
2.	Which	of the fol	loiwng h		east acidic –								
	(A) HF			(B) HCI		(C) HB	r		(D) HI				
3.	position	ns in a pe al I _x and I	riod. Us	•		. ,	following	_		np⁴) occupy neighbouring espect to their ionization			
	$(C)' I_z' =$					(D) relation between I_x and I_z is uncertains							
4.	(A) the (B) thes (C) thes	ion Na+, se ions a se ions h	Mg ²⁺ an re isoeld ave out	id Al³⁺ ha ectronic	of Mg and fourth ve high ionic pot configuration		l are ver	y high be	ecause				
5.	Which ouninega	of the fo	llowing arged c	stateme	nts is correct for D ⁻) ion ?	the add	dition of	an electi	ron to a	n isolated and gaseous			
	(B) the (C) the	addition	of elect of elect	ron occu	ot occur rs with evolution rs with absorptic								
6.	(A) Be a (B) 2s a (C) Be a	and Mg I and 3s o	nave (He bitals a are unal	e) 2s² an re filled to ole to acc	lectron affinities, d (Ne) 3s² config o their capacity cept electron			vely					

7.	(a) F >	O	order is	wrong – (b) O			(c) S	> P		(d) Be > B					
	Code is – (A) a, b, c				, c, d		(C) a	(C) a, d			(D) a, b, d				
8.	Alkali (A) Th (B) Th (B) Alk (D) Ox														
9.	A. B. C. D. Codes (A)	List I Highe Highe Artific High		ition pote onegativent	ential	correct a	a. b. c. d.	List l	II nitium ım ım	ren belo ^r C b					
	(C)	С	b	d	а		(D)	а	d	b	С				
10.	The correct order of relative basic character of NaOH, $Mg(OH)_2$ and $Al(OH)_3$ is – (A) $Al(OH)_3 > Mg(OH)_2 > NaOH$ (B) $Mg(OH)_2 > NaOH > Al(OH)_3$ (C) $NaOH > Mg(OH)_2 > Al(OH)_3$ (D) $Al(OH)_3 > NaOH < Mg(OH)_2$														
11.	Match List I with List II and select the correct ar List I A. Increasing atomic size B. Decreasing atomic radius C. Increasing electronegativity D. Decreasing effective nuclear charge Codes:						a. a. b. c. d.	from the codes given below the lists List II CI < O < F Li < Be < B Si < AI < Mg N > O > F							
	(4)	Α	В	С	D		(D)	A	В	С	D				
	(A) (C)	c a	d b	a c	b d		(B) (D)	d b	b a	c d	a c				
12.		of the > O > N			ents inco < O > N			tion of O : (C) O > C < N			(D) O > N > C				
13.		lectron < Cl < E	affinity of Br < I		ogens fo > Cl < B			order : (C) F < Cl > Br > I			(D) F > Cl > Br > l				
14.	The pi		of requiri	_	rption of $I \rightarrow CI^-$	energy		$(C) O^{-} \rightarrow O^{-2}$			(D) $H \rightarrow H^-$				
					A	NSW	/ER K	EY							
						DPP	No. # :	23							
1.	(D)	2.	(A)	3.	(A)	4.	(B)	5.	(D)	6.	(B)	7.	(D)		
8.	(B)	9.	(D)	10.	(D)	11.	(D)	12.	(D)	13.	(C)	14.	(A)		
						DPP	No. # :	24							
1.	(B)	2.	(A)	3.	(A)	4.	(C)	5.	(C)	6.	(D)	7.	(B)		
8.	(A)	9.	(A)	10.	(C)	11.	(D)	12.	(D)	13.	(C)	14.	(C)		
J.	(/3)	J.	(17)	10.	(0)		(0)	14.	(5)	13.	(0)	٠~.	(5)		