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‘th and Curve

We have defined the length of a plane curve with
parametric equations x = f(t), y = g(t), a = t < b, as the limit
of lengths of inscribed polygons and, for the case where f’
and g'are continuous, we arrived at the formula

1 L= VIFOP T g0 dr = F \/ (%) + (%) di

The length of a space

curve is defined in W
exactly the same .
way (see Figure 1). Y

The length of a space curve is the limit
of lengths of inscribed polygons.

Figure 1



‘th and

Curve

Suppose that the curve has the vector equation,

r(t) = {f(t), g(t), h(t)), a = t = b, or, equivalently, the
parametric equations x = f(t), y = g(t), z = h(t), where f', g,

and h' are continuous.

If the curve is traversed exactly once as t increases from

a to b, then it can be shown that its length is

|| VIFOT + Tg@OF + T dr
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‘th and Curve

Notice that both of the arc length formulas (1) and (2) can
be put into the more compact form

3 L=fb|r'(t)|dt

because, for plane curves r(t) = f(t)i + g(t)j,

') = |f'0i+g®)j| =L OF +[g'(n)]

and for space curves r(t) = f(t)i + g(t)j + h(t)k,

Ix'(0)| = | f'(0i+g'(0)j+ nk| =L OF +[g O + [A'(0)]
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-nple 1

Find the length of the arc of the circular helix with vector
equationr(t) =cos ti + sintj+ t k from the point (1, 0, 0) to
the point (1, 0, 2n).

Solution:
Since r'(t) = —sinti+ cos tj + k, we have

r'(t)| = /(—sin)? + cos?t + 1 = /2

The arc from (1, 0, 0) to (1, 0, 2n) is described by the
parameter interval 0 = t = 2t and so, from Formula 3, we

have . ,
L=j0 | r'(7) | dt =L“\/§d[ =227



‘th and Curve

A single curve C can be represented by more than one
vector function. For instance, the twisted cubic

4 rt)=( 2t 1sts2

could also be represented by the function

5 r,(u) =(ev, e, e3) Os=uslin?2

where the connection between the parameters t and u is
given by t = eV,

We say that Equations 4 and 5 are parametrizations of
the curve C.



‘th and Curve

If we were to use Equation 3 to compute the length of C
using Equations 4 and 5, we would get the same answer.

In general, it can be shown that when Equation 3 is used to
compute arc length, the answer is independent of the
parametrization that is used.



-Arc Length Function

Now we suppose that C is a curve given by a vector
function

r)=ft)i+gt)j+h()k asts<bh

where r'is continuous and C is traversed exactly once as
t increases from a to b.

We define its arc length function s by

6 s(t) = Lf v’ (u)| du = Lf \/<j—z> — (Z—i:) -+ <Zj—i> du




-Arc Length Function

Thus s(f) is the length of the part of C between r(a) and
r(t). (See Figure 3.)

Figure 3



-Arc Length Function

If we differentiate both sides of Equation 6 using Part 1 of
the Fundamental Theorem of Calculus, we obtain

It is often useful to parametrize a curve with respect to
arc length because arc length arises naturally from the
shape of the curve and does not depend on a particular

coordinate system.
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-Arc Length Function

If a curve r(t) is already given in terms of a parameter

t and s(t) is the arc length function given by Equation 6,
then we may be able to solve for t as a function of

S: t=(S).

Then the curve can be reparametrized in terms of s by
substituting for t. r = r({(s)).

Thus, if s = 3 for instance, r(t(3)) is the position vector of
the point 3 units of length along the curve from its starting
point.
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-nple 2

Reparametrize the helix r(f) = cos ti + sintj + t k with
respect to arc length measured from (1, 0, 0) in the
direction of increasing t.

Solution:

The initial point (1, 0, 0) corresponds to the parameter
value t = 0. From Example 1 we have

ds ol
—=Ir0[=v2

and also s=s(t)=f;|r’(u)|du=fo’\/5du =21
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-nple 2 — Solution o

Therefore + = 5/,/2 and the required reparametrization is
obtained by substituting for t:

r(r(s)) = cos(s/v/2) i + sin(s/v/2) j + (s/v/2) k

13
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-/atu res

A parametrization r(t) is called smooth on an interval /if r’
is continuous and r'(f) = 0 on /.

A curve is called smooth if it has a smooth
parametrization. A smooth curve has no sharp corners or

cusps; when the tangent vector turns, it does so
continuously.

If C is a smooth curve defined by the vector function r,
recall that the unit tangent vector T(f) is given by

r'()
()|
and indicates the direction of the curve.

T() =
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-/atu res

From Figure 4 you can see that T(t) changes direction very
slowly when C is fairly straight, but it changes direction
more quickly when C bends or twists more sharply.

Z A

0
/ ¢
X Y

Unit tangent vectors at equally
spaced points on C

Figure 4
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-/atu res

The curvature of C at a given point is a measure of how
quickly the curve changes direction at that point.

Specifically, we define it to be the magnitude of the rate of
change of the unit tangent vector with respect to arc length.
(We use arc length so that the curvature will be
independent of the parametrization.) Because the unit
tangent vector has constant length, only changes in
direction contribute to the rate of change of T.

Definition The curvature of a curve is

ar
ds

K:

where T is the unit tangent vector.

17



-/atu res

The curvature is easier to compute if it is expressed in
terms of the parameter t instead of s, so we use the Chain
Rule to write

AT _ dT ds

= and K =
dt ds dt

ar
ds

dT/dt
ds/dt

But ds/dt = |r'(t)| from Equation 7, so

T

[x'(7) |

9 k(1) =
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-nple 3

Show that the curvature of a circle of radius a is 1/a.

Solution:
We can take the circle to have center the origin, and then a
parametrization is

r(f)=acosti+asintj

Therefore ri(t)=-asinti+acostj and |r(t)]|=a
SO T(t) =——— = —sinti+ costj

and T(t)=—-costi—sintj

19



-nple 3 — Solution e

This gives |T(t)| = 1, so using Equation 9, we have

T _ 1
(1) | a

k(t) =

20



-/atu re

The result of Example 3 shows that small circles have large
curvature and large circles have small curvature, In
accordance with our intuition.

We can see directly from the definition of curvature that the
curvature of a straight line is always 0 because the tangent
vector is constant.

Although Formula 9 can be used in all cases to compute
the curvature, the formula given by the following theorem is
often more convenient to apply.

10| Theorem The curvature of the curve given by the vector function r is

21




-/atu re

For the special case of a plane curve with equation y = f(x),
we choose x as the parameter and write r(x) = x i + f(x) j.

Thenr'(x) =1+ f'(x)jand r"(x) = f"(x) j.

Sinceixj=kandjxj=0,itfollows that

r'(x) x r'(x) = f"(x) k.

r'(x)| =1 + [f'(x)]* and so, by Theorem

We also have
10,

f"(0)|
[+ (FC)yT"

1 k(x) =




- Normal and Binormal Vectors

At a given point on a smooth space curve r(f), there are
many vectors that are orthogonal to the unit tangent
vector T(1).

We single out one by observing that, because |T(t)| = 1 for
all t, we have T(t) - T'(f) = 0, so T'(f) is orthogonal to T(?).

Note that T'(f) is itself not a unit vector.

But at any point where k = 0 we can define the principal
unit normal vector N(f) (or simply unit normal) as

T'(¢)
| T'(7) |

N(?) =
23



- Normal and Binormal Vectors

The vector B(f) = T(t) x N(f) is called the binormal vector.

It is perpendicular to both T and N and is also a unit vector.
(See Figure 6.)

Figure 6
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-nple 6

Find the unit normal and binormal vectors for the circular
helix
r(f)=costi+sintj+tk

Solution:
We first compute the ingredients needed for the unit normal
vector:

r'it)=—sinti+costj+k |[r()|=+2

T@) = |:8‘ = \/15 (—sinti + costj + k)
| |

T'(t) = ﬁ (—costi — sintj) T'(1)| = f
25



-nple 6 — Solution

T'(1)

N(7) = = —costi—sinrj= (—cost, —sint, 0)

|T'(r) |

cont’d

This shows that the normal vector at any point on the helix
IS horizontal and points toward the z-axis.

The binormal vector is

i
L

\/5 —sin ¢

| —cos t

B(t) = T(f) x N(t)

J
CcoOS 1
—sin ¢

|
==:7§=(shla-—cost,l)

k
1
0
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- Normal and Binormal Vectors

The plane determined by the normal and binormal vectors
N and B at a point P on a curve C is called the normal
plane of C at P.

It consists of all lines that are orthogonal to the tangent
vector T.

The plane determined by the vectors T and N is called the
osculating plane of C at P.

The name comes from the Latin osculum, meaning “kiss.” It
Is the plane that comes closest to containing the part of the
curve near P. (For a plane curve, the osculating plane is
simply the plane that contains the curve.)
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- Normal and Binormal Vectors

The circle that lies in the osculating plane of C at P, has the

same tangent as C at P, lies on the concave side of C
(toward which N points), and has radius p = 1/ (the

reciprocal of the curvature) is called the osculating circle
(or the circle of curvature) of C at P.

It is the circle that best describes how C behaves near P; it
shares the same tangent, normal, and curvature at P.
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- Normal and Binormal Vectors

We summarize here the formulas for unit tangent, unit
normal and binormal vectors, and curvature.

r'(7) T'(z)

B(r) = T(r) X N(¢)

ar
ds

_AT®| _ [r'@) xXr'(@)]
v (@] @

K=
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