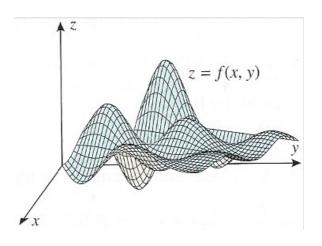
1 Maxima and minima of functions of two variables

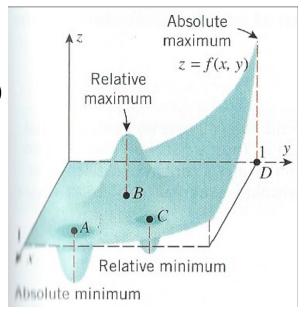
Definition. A function f of two variables is said to have a **relative maximum (minimum)** at a point (a,b) if there is a disc centred at (a,b) such that $f(a,b) \ge f(x,y)$ ($f(a,b) \le f(x,y)$) for all points (x,y) that lie inside the disc.

A function f is said to have an **absolute maximum (minimum)** at (a,b) if $f(a,b) \ge f(x,y)$ ($f(a,b) \le f(x,y)$) for all points (x,y) that lie inside in the domain of f.

If f has a relative (absolute) maximum or minimum at (a, b) then we say that f has a **relative** (absolute) extremum at (a, b).

relative \leftrightarrow local







The extreme-value theorem. If f(x, y) is continuous on a closed and bounded set R, then f has both absolute maximum and an absolute minimum on R.

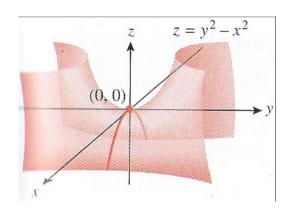
Finding relative extrema

Theorem. If f has a relative extremum at (a, b), and if the first-order derivatives of f exist at this point, then

$$f_x(a, b) = 0$$
 and $f_y(a, b) = 0$

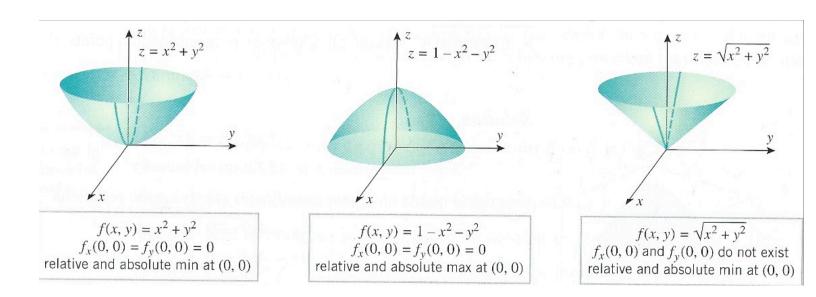
Definition. A point (a, b) in the domain of f(x, y) is called a **critical point** of f if $f_x(a, b) = 0$ and $f_y(a, b) = 0$, or if one or both partial derivatives do not exist at (a, b).

Example. $f(x,y) = y^2 - x^2$ is a hyperbolic paraboloid. $f_x = -2x$, $f_y = 2y \Rightarrow (0,0)$ is critical but it is not a relative extremum. It is a **saddle point**.



We say that a surface z = f(x, y) has a **saddle point** at (a, b) if there are two distinct vertical planes through this point such that the trace of the surface in one of the planes has a relative maximum at (a, b), and the trace in the other has a relative minimum at (a, b).

Example.



How to determine whether a critical point is a max or min?

The second partials test

Theorem. Let f(x, y) have continuous second-order partial derivatives in some disc centred at a critical point (a, b), and let

$$D = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^{2}$$

- 1. If D > 0 and $f_{xx}(a, b) > 0$, then f has a relative minimum at (a, b).
- 2. If D > 0 and $f_{xx}(a, b) < 0$, then f has a relative maximum at (a, b).
- 3. If D < 0, then f has a saddle point at(a, b).
- 4. If D = 0, then no conclusion can be drawn.

Example.

$$f(x,y) = x^4 - x^2y + y^2 - 3y + 4$$

How to find the absolute extrema of a continuous function of two variables on a closed and bounded set R?

- 1. Find the critical points of f that lie in the interior of R.
- 2. Find all the boundary points at which the absolute extrema can occur.
- 3. Evaluate f(x, y) at the found points. The largest of these values is the absolute maximum, and the smallest the absolute minimum.

Example.

$$f(x,y) = 3x + 6y - 3xy - 7$$
, R is the triangle $(0,0), (0,3), (5,0)$

Lagrange multipliers

Extremum problems with constraints:

Find max or min of the function $f(x_1, \ldots, x_n)$ subject to constraints $g_{\alpha}(x_1, \ldots, x_n)$, $\alpha = 1, \ldots, m$

Consider f(x, y) and g(x, y) = 0.

The graph of g(x, y) = 0 is a curve.

Consider level curves of f: f(x,y) = k.

At (a, b) the curves just touch, and thus have a common tangent line at (a, b). Since $\nabla f(a, b)$ is normal to the level curve at (a, b), and $\nabla g(a, b)$ is normal to the constraint curve at (a, b), we get $\nabla f(a, b) || \nabla g(a, b)$

$$\vec{\nabla}f(a,b) = \lambda \, \vec{\nabla}g(a,b)$$

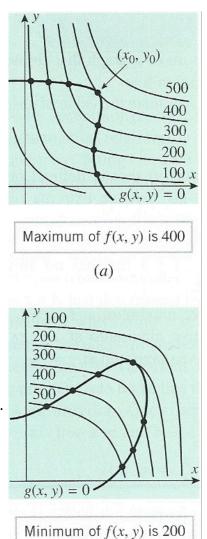
for some scalar λ called the Lagrange multiplier.

Proof. Parametrise g(x, y) = 0.

Then, f(x,y) = f(x(t),y(t)) is a function of t and its local extrema are at

$$\frac{d}{dt}f(x(t), y(t)) = \frac{\partial f}{\partial x}x' + \frac{\partial f}{\partial y}y'$$
$$= \vec{\nabla}f \cdot (x'\vec{i} + y'\vec{j}) = \vec{\nabla}f \cdot \vec{T}$$

Thus, both $\vec{\nabla} f$ and $\vec{\nabla} g$ are \bot to \vec{T} .



In general, we introduce a Lagrange multiplier λ_{α} for each of the constraint g_{α} , and the equations are

$$\vec{\nabla} f = \sum_{\alpha=1}^{m} \lambda_{\alpha} \, \vec{\nabla} g_{\alpha} \,.$$

Example. Find the points on the sphere $x^2 + y^2 + z^2 = 36$ that are closest to and farthest from the point (1, 2, 2).