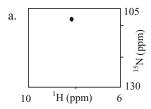
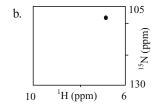
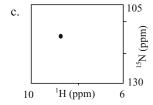
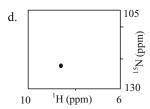
Multiple Choice Questions


- 1. Assuming that no ¹H signal can be observed for an aqueous sample, which of the following is most likely not a cause of the problem?
 - a. The cable is not connected to the probe after probe tuning
 - b. There is a loose cable connection around the probe
 - c. The sample is not shimmed well
 - d. The probe has a problem
- 2. Which of the following is most likely not a cause of a VT problem?
 - a. Heater is not on
 - b. VT air is disconnected
 - c. Sample is not in the magnet
 - d. The set temperature exceeds the maximum set temperature
- 3. In which of the following situations does it use a $\frac{1}{4}$ wavelength cable?
 - a. 15N decoupler channel
 - b. ²H observation
 - c. Lock channel
 - d. ¹³C decoupler channel
- 4. Which of the following delays should be used in a jump-return experiment on a 500 MHz instrument to have maximum intensity at 9 ppm? Assume that the water resonance is at 4.8 ppm.
 - a. 467 µs
 - b. 119 μs
 - c. 1.9 ms
 - d. 238 µs
- 5. What coil configuration is most likely used for a triple-resonance probe?
 - a. The inner coil is double-tuned to ¹H and ¹³C
 - b. The ¹H and lock channel use the inner coil, ¹³C and ¹⁵N use the outer coil
 - c. The probe can be used to observe the correlation of ¹H, ¹³C, ¹⁵N, and ³¹P simultaneously
 - d. One of the two probe coils is used for ¹H, ¹³C, and ¹⁵N, the other for ²H


- 6. Which of the following is not a property of an RF amplifier?
 - a. It has a linear dependence of output power on attenuation
 - b. Its output is gated by a transmitter controller
 - c. It amplifies the signal from the probe
 - d. The output of the amplifier for a heteronuclear channel is higher than that of the ¹H channel in a high resolution NMR instrument
- 7. A mixer is used to
 - a. subtract the frequencies of two input signals
 - b. add the frequencies of two input signals
 - c. multiply the frequencies of two input signals
 - d. produce IF frequency
- 8. Which of the following frequencies cannot be an intermediate frequency (IF)?
 - a. 20 MHz
 - b. 10 MHz
 - c. 30 MHz
 - d. 200 MHz
- 9. Which of the following has the lowest frequency value?
 - a. Carrier
 - b. LO
 - c. IF
 - d. Lock frequency
- 10. What is the purpose of using LO?
 - a. To combine with carrier frequency at transmitter
 - b. To make a frequency higher than the spectrometer base frequency
 - c. To use a fixed-frequency receiver for all nuclei
 - d. To use a fixed-frequency preamplifier for all nuclei
- 11. Which of the following does not describe IF?
 - a. It is the fixed frequency of a receiver
 - b. Its frequency value is much lower than that of carrier or LO
 - c. Its frequency changes for different carrier frequencies
 - d. Either the carrier or LO frequency is made from IF
- 12. Which of the following statements about the effect of salt concentration on a probe is correct?
 - a. High salt concentration affects a conventional probe more severely than a cryogenic probe because it is less sensitive than a cryogenic probe
 - b. High salt concentration affects a conventional probe less severely than a cryogenic probe because it is operated at room temperature
 - c. High salt concentration affects a cryogenic probe more severely than conventional probe because the salt of sample may precipitate in the cryogenic probe
 - d. High salt concentration affects a cryogenic probe more severely than a conventional probe because the high Q value of a cryogenic probe is dramatically decreased due to the dielectric influence of the salt concentration


- 13. The sensitivity of a cryogenic probe on a 500 MHz spectrometer is close to that of a conventional probe on a spectrometer of
 - a. 600 MHz
 - b. 750 MHz
 - c. 900 MHz
 - d. 1.050 MHz
- 14. Which of the following pulses should be tried first for water suppression by presaturation for a 90%H₂O/10%²H₂O sample? Assume a 50 watt ¹H amplifier and a carrier on the water resonance.
 - a. 3 s pulse with power attenuation of -55 dB from the maximum power
 - b. 3 s pulse with power attenuation of -35 dB from the maximum power
 - c. 3 s pulse with power attenuation of -45 dB from the maximum power
 - d. 5 s pulse with power attenuation of -60 dB from the maximum power
- 15. Assuming that data are acquired on a 600 MHz with an acquisition time of 64 ms and the data are Fourier transformed without zero-filling and linear prediction, what is the digital resolution of the spectrum?
 - a. 7.8 Hz/pt
 - b. 0.013 ppm/pt
 - c. 3.9 Hz/pt
 - d. 0.026 ppm/pt
- 16. If the size of the above data set is doubled by zero-filling, what is the digital resolution of the spectrum?
 - a. 15.6 Hz/pt
 - b. 7.8 Hz/pt
 - c. 3.9 Hz/pt
 - d. 0.026 ppm/pt
- 17. Which parameter can saturate the lock signal if it is set too high?
 - a. Lock gain
 - b. Lock phase
 - c. Lock power
 - d. Lock field (or z_0)
- 18. Which of the following is not true?
 - a. Magnets (200–900 MHz) are made of superconducting wires
 - b. The magnet solenoid is in a liquid helium vessel
 - c. Liquid helium and liquid nitrogen are needed to maintain the magnetic field
 - d. Room temperature shims are in a liquid nitrogen vessel
- 19. By using cryogenic shims, field homogeneity can be as good as
 - a. 1 ppm
 - b. 10 ppm
 - c. 1 ppb
 - d. 0.01 ppm


- 20. The water-flip-back sequence provides superior water suppression. How is the result achieved?
 - a. The selective pulse on water saturates some portion of the water magnetization
 - b. The selective pulse on water keeps the water magnetization on the xy plane so that the water magnetization is suppressed by the watergate sequence
 - c. The selective pulse on water brings the water magnetization to the z axis
 - d. The selective pulse on water keeps the water magnetization in the *xy* plane so that the water magnetization is destroyed by the gradient pulse
- 21. Which of the following gives a wider decoupling bandwidth for the same amount of RF power?
 - a. CW
 - b. Waltz16
 - c. GARP
 - d. BB
- 22. Which of the following is the better way to set up a water-flip-back experiment after probe tuning, shimming, and locking?
 - a. Calibrate VT, ¹H 90° pulse, transmitter offset and set the offset at the center of the spectrum
 - b. Calibrate ¹H 90° pulse, transmitter offset, ¹H 90° selective pulse and set the offset at the center of the spectrum
 - c. Calibrate ¹H 90° pulse, transmitter, and decoupler offsets, ¹H 90° selective pulse and set the offset on water
 - d. Calibrate ¹H 90° pulse, transmitter, offsets, ¹H 90° selective pulse and set the offset on water
- 23. Which of the following data are most likely processed with doubling the size by forward linear prediction, 90°-shifted squared sine-bell function, zero-filling once, and Fourier transformation?
 - a. One-dimensional watergate data
 - b. ¹H dimension of 3D data
 - c. ¹⁵N dimension of 3D data
 - d. Two-dimensional COSY
- 24. What is the correct way to tune a probe for a triple-resonance experiment?
 - a. Tune ¹H channel first, then ¹³C, and ¹⁵N last without filters
 - b. Tune ¹H channel first, then ¹³C, and ¹⁵N last with filters
 - c. Tune ¹⁵N channel first, then ¹³C, and ¹H last without filters
 - d. Tune ¹⁵N channel first, then ¹³C, and ¹H last with filters
- 25. An NMR transmitter consists of
 - a. Frequency synthesizer, RF signal generator, transmitter controller and receiver
 - b. CPU, RF signal generator, transmitter controller, and RF amplifier
 - c. Frequency synthesizer, RF signal generator, and transmitter controller
 - d. Frequency synthesizer, RF signal generator, transmitter controller, and RF amplifier

- 26. Which of the following product operators describes the coherence of a two weakly coupled two-spin (I and S) system from an initial coherence of $-I_y$ after INEPT where $\tau \to \pi(I_x + S_x) \to \tau$ when $\tau = 1/4J_{\rm IS}$?
 - a. $-I_z S_x$
 - b. $I_X S_X$
 - c. $-I_x S_z$
 - d. I_x
- 27. Assuming that on a 600 MHz NMR spectrometer the 13 C 90° pulse length is 15 μs at 60 dB and a higher decibel value means more power for a pulse, what is most likely the power setting for 13 C GARP decoupling over a 50 ppm bandwidth?
 - a. 45 dB
 - b. 47 dB
 - c. 49 dB
 - d. 51 dB
- 28. Which of the following is most likely a Gly NH cross-peak?

- 29. Assuming that on a 500 MHz NMR spectrometer the ¹⁵N 90° pulse length is 35 μs at 60 dB and a higher decibel value means more power for a pulse, what is most likely the power setting for ¹⁵N WALTZ-16 decoupling over a 30 ppm bandwidth?
 - a. 40 dB
 - b. 42 dB
 - c. 45 dB
 - d. 49 dB
- 30. Assuming that on a 500 MHz NMR spectrometer the 15 N 90° pulse length is 35 μ s at 60 dB and a higher dB value means more power for a pulse, what is most likely the power setting for 15 N GARP decoupling over a 30 ppm bandwidth?

- a. 35 dB
- b. 40 dB
- c. 45 dB
- d. 49 dB
- 31. If all four buffers work fine for a protein sample, which one should be used to make the NMR sample?
 - a. 100 mM Tris-HCl, pH 7, 100 mM KCl
 - b. 50 mM phosphate, pH 7, 200 mM KCl
 - c. 100 mM Tris-HCl, pH 7, 20 mM KCl
 - d. 50 mM phosphate, pH 7, 50 mM KCl
- 32. On a 600 MHz instrument, if the resonance frequency of DSS is 599.89836472, what is the reference frequency for ¹⁵N using liquid NH₃ as reference?
 - a. 60.8284299
 - b. 60.8206020
 - c. 59.1804433
 - d. 60.8102995
- 33. On the same spectrometer as in question 32, what is the frequency at 177 ppm of ¹³C using DSS as ¹³C reference?
 - a. 150.8445638
 - b. 150.8564532
 - c. 150.8658329
 - d. 150.8712633
- 34. On the same spectrometer as in question 32, what is the frequency at 118 ppm of ¹⁵N?
 - a. 60.8356055
 - b. 60.8174751
 - c. 59.1871755
 - d. 60.8206020
- 35. 13 C chemical shift has a much wider range (\sim 300 ppm) than 1 H (\sim 10 ppm) because
 - a. the contribution of the diamagnetic shielding of ¹³C is much larger than ¹H due to the small ¹³C energy gap
 - b. the contribution of the paramagnetic shielding of ¹³C is much larger than ¹H due to the small ¹³C energy gap
 - c. the electron density of ¹H is almost always spherically symmetrical
 - d. The reason is unknown
- 36. If a ${}^3J_{\rm H^NH^{\alpha}}$ coupling constant of a residue has a value of approximately 10 Hz, what could the torsion angle ϕ be?
 - a. Approximately 0°
 - b. Approximately -120°
 - c. Approximately -180°
 - d. Approximately 120°

- 37. What is a better criterion to measure the accuracy of the calculated structure?
 - a. RMSD of backbone atoms
 - b. Total number of distance violations
 - c. Quality factor of residual dipolar couplings
 - d. Quality factor of NOE intensity
- 38. Why is DSS used instead of TMS as the ¹H chemical shift reference for a biological sample?
 - a. TMS can denature proteins
 - b. The chemical shift of TMS is dependent on temperature
 - c. DSS has a higher solubility in aqueous solution
 - d. DSS is widely used in protein sample preparation
- 39. At equilibrium state,
 - a. there is no -z component of nuclear magnetization
 - b. there is a slightly larger +z component than -z component of nuclear magnetization
 - c. there are equal +z and -z components of nuclear magnetization
 - d. there is a slightly larger -z component than +z component of nuclear magnetization
- 40. In a magnetic field, nuclear dipoles (nuclear spins with a spin quantum number of $\frac{1}{2}$)
 - a. precess around the magnetic field direction randomly
 - b. are motionless along the direction of the magnetic field
 - c. do not exist
 - d. precess around the magnetic field direction at the Larmor frequency
- 41. A B_1 field used to interact with nuclear dipoles in order to generate an NMR signal has the following property:
 - a. The orientation of the B_1 field is fixed in the rotating frame
 - b. Components of the B_1 field rotate in the laboratory frame with Larmor frequency
 - c. The B_1 field is a linear alternating magnetic field in the laboratory frame
 - d. All of the above
- 42. If your NMR spectrum has a distorted baseline, the problem is most likely because
 - a. spectral window (SW) is too low
 - b. receiver gain is too high
 - c. receiver gain is too low
 - d. y-axis scale of display is too high
- 43. Which of the following quantities is *not* changed at a different magnetic field strength:
 - a. Chemical shift (in hertz)
 - b. Nuclear spin population in an energy state
 - c. *J* coupling constant
 - d. Energy difference between two energy states of nuclei with non-zero spin quantum number
- 44. Chemical shifts originate from
 - a. magnetic momentum
 - b. electron shielding

- c. free induction decay
- d. scalar coupling (J-coupling)
- 45. Chemical shifts of protons have a frequency range of about
 - a. megahertz
 - b. 250 MHz
 - c. kilohertz
 - d. 10 Hz
- 46. DSS has a chemical shift value of 0.0 ppm or 0.0 Hz because
 - a. its absolute chemical shift value is 0.0
 - b. the chemical shift value of DSS is chosen as the chemical shift reference
 - c. H_2O has a 1H chemical shift of 4.76 ppm and the DSS chemical shift is 4.76 ppm lower than H_2O
 - d. none of the above
- 47. What is the ¹³C resonance frequency on a 600 MHz NMR spectrometer?
 - a. 600 MHz
 - b. 92 MHz
 - c. 60 MHz
 - d. 150 MHz
- 48. The pulse angle is dependent on
 - a. transmitter power (pulse power)
 - b. pulse length
 - c. receiver gain
 - d. both (a) and (b)
- 49. If number of time domain points equals 4k and dwell time equals $100 \mu sec$, then acquisition time equals
 - a. $100 \,\mu sec \times 4000$
 - b. $100 \, \mu sec \times 4096$
 - c. $100 \,\mu sec \times 4000 \times 2$
 - d. $100 \,\mu sec \times 4096 \times 2$
- 50. The signal-to-noise ratio (S/N) of an NMR spectrum can be increased by the accumulation of acquisitions. Compared to one recorded with 2 scans, a spectrum with 32 scans has an S/N ratio
 - a. 16 times higher
 - b. 4 times higher
 - c. 8 times higher
 - d. 32 times higher
- 51. The wider frequency range covered by an RF pulse (pulse bandwidth) is achieved by the pulse with
 - a. lower power and longer pulse length
 - b. higher power and longer pulse length

- c. higher power and shorter pulse length
- d. none of the above
- 52. Integration of ¹H signal intensities (or peak area) gives information about
 - a. the absolute number of protons corresponding to the resonance frequencies
 - b. the ratio of the number of protons corresponding to the resonance frequencies
 - c. the types of protons corresponding to the resonance frequencies
 - d. intensities of protons relative to the solvent peak
- 53. ¹³C spectra without decoupling show multiplicity of ¹³C peaks due to the coupling of ¹H to ¹³C. In a 1D ¹H spectrum of an unlabeled sample (natural abundance ¹³C), the coupling of ¹³C to ¹H is neglected because
 - a. the NMR spectrometer decouples ¹³C from ¹H automatically
 - b. a large portion of protons are bound to ¹²C, which is NMR inactive
 - c. the $J_{\rm CH}$ coupling constant is small compared to the line widths of $^{1}{\rm H}$ peaks
 - d. both (b) and (c)
- 54. Improper shimming
 - a. can be eliminated by spinning the sample
 - b. can broaden the line shape of the NMR signal
 - c. can shorten T_1 relaxation
 - d. does not have any effect on NMR spectra
- 55. The dwell time is defined as
 - a. the total time needed to acquire an FID
 - b. the time difference between two adjacent time domain data points
 - c. the time delay between the last pulse and acquisition
 - d. the time delay before the first pulse
- 56. The reason that an exponential function (EM) with line broadening (LB) of 3–5 Hz is used for a ¹³C FID before Fourier transformation is
 - a. to increase the resolution of the ¹³C spectrum
 - b. to increase sensitivity of the spectrum
 - c. to improve the baseline of the spectrum
 - d. to make the FID look nicer
- 57. The relative sensitivity of ¹⁵N to ¹H for a 100% ¹⁵N enriched sample is
 - a. 0.1
 - b. 1.0×10^{-3}
 - c. 3.7×10^{-5}
 - d. 1.0×10^{-2}
- 58. Choose the correct statement(s) about the steady state transients (ss or dummy scans):
 - a. ss are executed before parameter nt (number of transients or scans)
 - b. During ss, the experiment is performed except without data acquisition
 - c. ss are used to ensure a steady state before data acquisition
 - d. All of the above

- 59. The natural abundance of ¹³C is about
 - a. four times less than ¹H
 - b. 0.11% of total carbon
 - c. 1.1% of total carbon
 - d. 99% of total carbon
- 60. Deuterated solvent in an NMR sample is used to
 - a. stabilize the magnetic field
 - b. set the chemical shift reference
 - c. obtain good field homogeneity across the sample
 - d. both (a) and (c)
- 61. Digital resolution (Hz/point) can be improved by
 - a. decreasing the number of time domain points
 - b. zero-filling the FID
 - c. decreasing the spectral width
 - d. both (a) and (c)
- 62. Quadrature detection uses
 - a. a single detector on the x axis
 - b. two detectors that are opposite to each other
 - c. two detectors that are perpendicular to each other
 - d. four detectors that are on the x, y, -x, and -y axes
- 63. Tuning the probe is to
 - a. match the probe impedance to the 50 Ω cable impedance
 - b. tune the probe frequency to the carrier frequency
 - c. make shimming easier
 - d. (a) and (b)
- 64. ${}^{3}J_{\rm HH}$ coupling constants may have a value of
 - a. 140 Hz
 - b. 35 Hz
 - c. 8 Hz
 - d. 70 Hz
- 65. ${}^{1}J_{\text{CH}}$ coupling constants may have a value of
 - a. 140 Hz
 - b. 35 Hz
 - c. 8 Hz
 - d. 70 Hz
- 66. $^{3}J_{\rm HH}$ coupling constants are dependent on
 - a. magnetic field strength
 - b. relative orientation of the coupled protons
 - c. sample concentration
 - d. 90° pulse width

- 67. Assume that a proton is scalar coupled to proton(s) with different chemical environments. If this proton shows a triplet signal, how many proton(s) is it scalar coupled to?
 - a. One
 - b. Two
 - c. Three
 - d. Four
- 68. Which of the following molecules has the largest ${}^3J_{\rm HH}$ coupling constant between ${\rm H_a}$ and ${\rm H_b}$?

a.
$$C = C$$

$$C = C$$

$$H_{a}$$

$$C = C$$

$$H_{b}$$

$$C = C$$

$$H_{b}$$

$$C = C$$

$$H_{b}$$

$$C = C$$

69. In which of the following cases is the $J_{\rm HH}$ coupling constant between H_a and H_b most likely less than 1 Hz:

- 70. If the last ¹³C and ¹H 90° pulses are omitted in the INEPT experiment (Figure 1.24), can the ¹³C NMR signal be observed?
 - a. Yes, because there exists transverse magnetization
 - No, because the two components of the transverse magnetization will cancel each other out
 - c. No, because there is no ¹³C transverse magnetization
 - d. None of the above
- 71. How is quadrature detection in the indirect dimension achieved by the States-TPPI method?
 - a. For each t_1 increment, one FID is acquired. The phase of the pulse prior to the evolution time is shifted by 90° for each FID. The interferogram is transformed with real Fourier transformation
 - b. For each t_1 increment, two FIDs are acquired. The phase of the pulse prior to the evolution time is shifted by 90° for each t_1 increment. The interferogram is transformed with complex Fourier transformation

- c. For each t_1 increment, two FIDs are acquired. The phase of the pulse prior to the evolution time is shifted by 90° for each FID. The interferogram is transformed with complex Fourier transformation
- d. For each t_1 increment, two FIDs are acquired. The phase of the pulse prior to the evolution time is shifted by 90° for the second FID of each t_1 increment. The interferogram is transformed with complex Fourier transformation
- 72. How is quadrature detection in the indirect dimension achieved by the TPPI method?
 - a. For each t_1 increment, one FID is acquired. The phase of the pulse prior to the evolution time is shifted by 90° for each FID. The interferogram is transformed with real Fourier transformation
 - b. For each t_1 increment, two FIDs are acquired. The phase of the pulse prior to the evolution time is shifted by 90° for each t_1 increment. The interferogram is transformed with complex Fourier transformation
 - c. For each t_1 increment, two FIDs are acquired. The phase of the pulse prior to the evolution time is shifted by 90° for each FID. The interferogram is transformed with complex Fourier transformation
 - d. For each t_1 increment, two FIDs are acquired. The phase of the pulse prior to the evolution time is shifted by 90° for the second FID of each t_1 increment. The interferogram is transformed with complex Fourier transformation
- 73. How is quadrature detection in the indirect dimension achieved by the States method?
 - a. For each t_1 increment, one FID is acquired. The phase of the pulse prior to the evolution time is shifted by 90° for each FID. The interferogram is transformed with real Fourier transformation
 - b. For each t_1 increment, two FIDs are acquired. The phase of the pulse prior to the evolution time is shifted by 90° for each t_1 increment. The interferogram is transformed with complex Fourier transformation
 - c. For each t_1 increment, two FIDs are acquired. The phase of the pulse prior to the evolution time is shifted by 90° for each FID. The interferogram is transformed with complex Fourier transformation
 - d. For each t_1 increment, two FIDs are acquired. The phase of the pulse prior to the evolution time is shifted by 90° for the second FID of each t_1 increment. The interferogram is transformed with complex Fourier transformation
- 74. Assuming that an HMQC experiment is collected on a 600 MHz spectrometer with a spectral window of 60 ppm, $pw_{90(^{1}H)} = 7 \mu s$, $pw_{90(^{31}C)} = 15 \mu s$, and the evolution element $90^{\circ}(^{13}C) \frac{1}{2}t_1 180^{\circ}(^{1}H) \frac{1}{2}t_1 90^{\circ}(^{13}C)$ using the States-TPPI method, what is the value of $t_1(0)$ chosen for the phase correction of 0° (zero order) and -180° (first order)?
 - a. 55.5 μs
 - b. 111.1 μs
 - c. 78 µs
 - d. $22.5 \,\mu s$
- 75. Assuming that a constant time HMQC experiment is collected on a 600 MHz spectrometer with a spectral window of 60 ppm, $pw_{90(^{1}H)} = 7 \mu s$, $pw_{90(^{3}1C)} = 15 \mu s$, and the

evolution element $90^{\circ}(^{13}\text{C}) - \frac{1}{2}t_1 - T - 180^{\circ}(^{1}\text{H}) - \left(T - \frac{1}{2}t_1\right) - 90^{\circ}(^{13}\text{C})$ using the States-TPPI method, what is the value of $t_1(0)$ chosen for the phase correction of 0° (zero order) and -180° (first order)?

- a. $55.5 \,\mu s$
- b. 111.1 μs
- c. 78 µs
- d. 22.5 μs
- 76. A larger value of the squared generalized order parameter S^2 describes an internal motion where
 - a. the bond vector is more flexible in the molecular frame
 - b. the motion is faster
 - c. the bond vector is more rigid in the molecular frame
 - d. the motion is slower
- 77. The squared generalized order parameter S^2 is highly sensitive to the angle θ between the equilibrium orientation of the bond vector and the diffusion tensor of the bond vector.
 - a. The value of S^2 becomes smaller as the angle θ decreases
 - b. The value of S^2 becomes smaller as the angle θ increases
 - c. The value of S^2 is constant in the region of $\theta=0$ –20° and then rapidly decreases as θ increases
 - d. The value of S^2 is large in the region of $\theta = 70-90^\circ$
- 78. Smaller S^2 with a smaller τ_e characterizes molecular internal dynamics that is
 - a. rigid and slow
 - b. flexible and fast
 - c. rigid and slow
 - d. flexible and fast
- 79. Certain NMR parameters are measured for the study of protein dynamics. Which of the following parameters is *not* measured for the protein dynamics?
 - a. $^{15}NT_1$ relaxation rate
 - b. ¹H–¹H NOE
 - e. ${}^{1}H-{}^{15}N$ NOE
 - d. $^{15}NT_2$ relaxation rate
- 80. NOE connectivities are assigned for structure calculation. How are they usually assigned?
 - a. A majority of the NOESY cross-peaks are assigned based on the sequence-specific assignment of chemical shift resonances
 - b. A small fraction of the NOESY cross-peaks are assigned for initial structure calculation and more connectivities are added by the iterative NOE analysis
 - c. A majority of the NOESY cross-peaks are assigned and the iterative NOE analysis is used to refine the calculated structures
 - d. Almost all of the NOE connectivities can be assigned by setting up chemical shift tolerance within values less than 0.2 ppm

- 81. The nuclear relaxation characterized by T_1 relaxation is *not*
 - a. spin-lattice relaxation
 - b. longitudinal relaxation
 - c. spin-spin relaxation
 - d. relaxation along the z axis
- 82. The purpose of shimming is to
 - a. stabilize the static magnetic field
 - b. obtain homogeneity of the B_1 field
 - c. find the lock frequency
 - d. obtain homogeneity of the static magnetic field
- 83. The TROSY experiment is based on the property of
 - a. cross-relaxation caused by dipolar coupling (DD)
 - b. cross-correlated relaxation caused by the interference between DD and CSA cross-relaxation (chemical shift anisotropy)
 - c. cross-relaxation caused by DD and CSA
 - d. auto-correlated relaxation caused by the interference between DD and CSA
- 84. After a B_1 field is applied along the x axis, the transverse magnetization when relaxing back to the equilibrium state during acquisition
 - a. rotates about the x axis of the rotating frame
 - b. rotates about the direction of the B_0 field in the laboratory frame
 - c. is stationary along the -y axis in the laboratory frame
 - d. relaxes only along the z axis
- 85. During an INEPT subsequence, the magnetization transfers for all three types of CH groups (methine, methylene, and methyl) are optimized by setting the delay τ (half of the INEPT period) to
 - a. 11 ms
 - b. 2.75 ms
 - c. 2.2 ms
 - d. 3.6 ms
- 86. The C^{α} cross-peaks of CBCANH have opposite sign relative to C^{β} cross-peaks because
 - a. C^{β} cross-peaks are folded in the spectrum
 - b. the magnetization transfer from the C^{α} has opposite sign to that from the C^{β} by setting the delay for the $C^{\alpha,\beta} \to N$ transfer to 11 ms
 - c. the INEPT delay for $H \to C^{\alpha,\beta}$ transfer is setting to 2.2 ms
 - d. none of the above
- 87. Which of the following sequences can be used for a ROESY spin lock?
 - a. 5 kHz off-resonance DIPSI-3
 - b. 5 kHz on-resonance MLEV17
 - c. 2 kHz off-resonance CW
 - d. 6 kHz off-resonance CW

- 88. Compared to the random coil values, 13 C $^{\alpha}$ chemical shifts of a α -helix secondary structure are usually
 - a. smaller
 - b. larger
 - c. no significant change
 - d. unpredictable
- 89. Relative to a 2D, a 3D experiment has a better
 - a. S/N ratio
 - b. resolution
 - c. baseline
 - d. line shape
- 90. Which of the following mixing times is most likely used in a homonuclear TOCSY to mainly observe the correlations of H^N to H^{α} and to all aliphatic H^{aliph} ?
 - a. 30 ms
 - b. 5 ms
 - c. 60 ms
 - d. 100 ms
- 91. Which of the following mixing times is most likely used in a homonuclear TOCSY to mainly observe the correlation between H^N and H^{α} ?
 - a. 30 ms
 - b. 5 ms
 - c. 60 ms
 - d. 100 ms
- 92. Which of the following mixing times is most likely used in a NOESY experiment for a 20 kDa protein sample?
 - a. 30 ms
 - b. 100 ms
 - c. 300 ms
 - d. 500 ms
- 93. Which of the following experiments has been used for measuring ¹H–¹⁵N residual dipolar coupling?
 - a. ¹H-¹⁵N HSQC
 - b. IPAP ¹H-¹⁵N HSQC
 - c. ¹H–¹⁵N NOE HSQC
 - d. PEP ¹H-¹⁵N HSQC
- 94. What is a constant time evolution period used for?
 - a. Increase the sensitivity of the experiment
 - b. Increase the resolution of the experiment
 - c. Decouple heteronuclear J coupling
 - d. Suppress artifacts

- 95. Which of the following experiments should be used for studying a complex formed by ¹³C-¹⁵N labeled protein and unlabeled peptide?
 - a. Isotope edited experiment
 - b. Isotope filtered experiment
 - c. 3D HCCH-TOCSY
 - d. Saturation transfer experiment
- 96. It is necessary to perform shimming before an experiment can be run. The shimming is done by:
 - a. adjusting the lock power to obtain highest lock level
 - b. optimizing lock gain to obtain highest lock level
 - c. adjusting the current to room temperature shim coils when monitoring the lock level
 - d. adjusting the current to cryogenic shim coils when monitoring the lock level
- 97. Assuming that a cryogenic probe has a sensitivity 4 times higher than a conventional room temperature probe and both probes give same line widths, the signal intensity of the spectrum obtained using the cryogenic probe compared to that using the room temperature probe with same amount of experimental time is
 - a. 16 times higher
 - b. 8 times higher
 - c. 4 times higher
 - d. 2 times higher
- 98. For a 200 μ1 ¹⁵N labeled protein sample, which of the following probe is the best for a ¹H–¹⁵N HSOC experiment?
 - a. triple-resonance HCX probe (X: ¹⁵N-³¹P)
 - b. dual broadband ¹H-¹⁹F/¹⁵N-³¹P probe
 - c. high resolution MAS (magic angle spinning) probe
 - d. triple-resonance HCN probe
- 99. For a sample of 150 μ l 15 N/ 13 C labeled protein containing 100 mM salt, which of the following probes is best for triple resonance experiments?
 - a. 5 mm room temperature HCN probe
 - b. 3 mm room temperature HCN probe
 - c. 5 mm cryogenic HCN probe using a 5 mm micro tube
 - d. 5 mm cryogenic HCN probe using a 3 micro mm tube
- 100. Which of the following statements about preamplifier, IF amplifier and RF amplifier is wrong?
 - a. The outputs of IF and RF amplifiers are adjustable
 - b. A preamplifier is located near or inside a probe
 - c. They are all frequency tunable amplifiers
 - d. RF amplifier has a linear dependence of attenuation

Answers to Multiple Choice Questions

```
2. c.
                            4. b.
                                     5. b.
                                              6. c.
                                                       7. c.
                                                               8. d.
                                                                         9. c.
                                                                                  10. c.
 1. c.
                   3. b.
11. c.
        12. d.
                 13. d.
                          14. a.
                                   15. d.
                                            16. b.
                                                     17. c.
                                                              18. d.
                                                                       19. a.
                                                                                  20. c.
21. c.
        22. d.
                 23. c.
                          24. c.
                                   25. d.
                                            26. c.
                                                     27. b.
                                                              28. a.
                                                                       29. c.
                                                                                  30. b.
31. d.
        32. d.
                 33. d.
                          34. b.
                                   35. b.
                                            36. b.
                                                     37. c.
                                                              38. c.
                                                                       39. b.
                                                                                  40. d.
41. d.
        42. b.
                 43. c.
                          44. b.
                                   45. c.
                                            46. b.
                                                     47. d.
                                                              48. d.
                                                                       49. b.
                                                                                  50. b.
51. c.
        52. b.
                 53. b.
                          54. b.
                                   55. b.
                                            56. b.
                                                     57. b.
                                                              58. d.
                                                                       59. c.
                                                                                  60. d.
61. b.
        62. c.
                 63. d.
                          64. c.
                                   65. a.
                                            66. b.
                                                     67. b.
                                                              68. c.
                                                                       69. c.
                                                                                  70. c.
                                                     77. b.
71. c.
        72. a.
                 73. d.
                          74. d.
                                   75. a.
                                            76. c.
                                                              78. b.
                                                                       79. b.
                                                                                  80. b.
81. c. 82. d.
                 83. b.
                          84. b.
                                   85. c.
                                            86. b.
                                                     87. c.
                                                              88. b.
                                                                       89. b.
                                                                                  90. d.
       92. b.
                 93. b.
                          94. b.
                                   95. b.
                                            96. c.
                                                     97. c.
                                                              98. d.
                                                                       99. d.
                                                                                 100. c.
```

Nomenclature and Symbols

ADC analog-to-digital converter (conversion)

 B_0 magnetic field strength

 B_1 oscillating RF magnetic field strength

 B_{eff} effective B_1 field strength

C capacitance

COS coherence order selection COSY correlation spectroscopy CP cross-polarization

CSA chemical shift anisotropy

CT constant time

CTAB cetyl (hexadecyl) trimethyl ammonium bromide

DAC digital-to-analog converter (conversion)

dB decibel

dB_m decibel relative to 1 mW

DD dipole-dipole

DEPT distortionless enhancement by polarization transfer

DHPC dihexanoylphosphatidylcholine DMPC dimyristoylphosphatidylcholine

DQF double-quantum filter

DSBSC double sideband band suppression carrier DSS 2,2-dimethyl-2-silapentane-5-sulfonic acid

F noise figure

F1, F2 frequency domain of multidimensional experiments

f_d decoupling efficiency Ft, FT Fourier transformation

g gradient

G pulse field gradient strength

GND ground

HCN proton/carbon/nitrogen HCX proton/carbon/heteronuclei

HMQC heteronuclear multi-quantum correlation HSQC heteronuclear single-quantum coherence

i current, imaginary unit

I spin quantum number, spin I, current

IF intermediate frequency

INEPT insensitive nuclei enhanced by polarization transfer

IPAP in-phase anti-phase j imaginary unit

J scalar (indirect, spin–spin) coupling constant (in hertz)

 $J(\omega)$ spectral density function at frequency ω

 $K_{\rm A}$ association constant $K_{\rm D}$ dissociation constant

L inductance

LC liquid crystal, inductor-capacitor LED longitudinal eddy-current delay

LO local oscillator LSB least significant bit M magnetization

M₀ equilibrium bulk (macroscopic) magnetization

MAS magic-angle spinning
MSB most significant bit
NMR nuclear magnetic resonance
NOE nuclear Overhauser enhancement
NOESY nuclear Overhauser spectroscopy

p coherence order

P nuclear angular momentum, power levels of the signals (in watt)

PAS principal axis system

PEP preservation of equivalent pathway

PSD phase sensitive detector pw₉₀ 90° pulse length

Q nuclear quadrupole moment, quality factor, adiabatic factor, Q factor of

probe circuits

R resistance

R₁ spin-lattice (longitudinal) relaxation rate R₂ spin-spin (transverse) relaxation rate

RDC residual dipolar coupling

RF radio frequency

rMD restrained molecular dynamics rmsd root-mean-square deviation

ROESY rotating frame Overhauser spectroscopy

RT real time

S Saupe order matrix, spin S, generalized order parameter

S² squared generalized order parameter SAR structure–activity relationship

SC superconducting SDS sodium dodecyl sulfate se sensitivity enhancement

SL spin lock
SQ single quantum
SSB single sideband
ST sweep-tune

 T_1 spin-lattice (longitudinal) relaxation time

t_1, t_2	time domain of multidimensional experiments
$T_{1\rho}$	T_1 of spin locked magnetization in rotating frame
T_2	spin–spin (transverse) relaxation time
T_2^*	effective T_2
$T_{2\rho}^{2}$	T_2 of spin locked magnetization in rotating frame
TMS	tetramethylsilane
TOCSY	total correlation spectroscopy
T/R	transmitter/receiver
TROSY	transverse relaxation optimized spectroscopy
V	voltage
$V_{ m pp}$	peak-to-peak voltage
$V_{ m rms}^{ m pp}$	root-mean-square amplitude of a signal (in Volt)
VT	variable temperature
w_0, w_1, w_2	transition probabilities for zero-, single-, and
	double-quantum transitions
X	heteronucleus
Z	impedance, generalized resistor
δ	chemical shift (in ppm)
γı	gyromagnetic ratio of nucleus I
η	nuclear Overhauser enhancement, filling factor of probe
,	coil, asymmetric parameter of principal axis system,
	viscosity
λ	wavelength, decoupling scaling factor
μ_0	permeability of vacuum
μ	magnetic dipole moment, nuclear angular moment
ν _D	dipolar coupling constant
ρ	density operator
σ	chemical shift tensor, conductivity of sample,
	cross-relaxation rate
$\sigma_{ m dia}$	diamagnetic shielding
$\sigma_{ m para}$	paramagnetic shielding
$ au_{ m c}$	correlation time
$ au_{ m e}$	effective correlation time
$ au_{ m m}$	global correlation time
$ au_{ m S}$	internal correlation time
Ω	frequency offset, free precession frequency
ω	angular frequency
ω_0	Larmor frequency (in rad \sec^{-1}), carrier frequency
ω_1	frequency of B_1 field (in rad \sec^{-1}), Larmor frequency in
-	the rotating frame
$\omega_{ m L}$	local oscillator frequency (in rad sec ⁻¹), carrier frequency
ω_{R}	intermediate frequency (in rad \sec^{-1})
Ξ	frequency ratio of chemical shift reference
-	. 1

Amide proton exchange 95, 127, 128, 160, 163, Albihate spin systems 191, 221, 222 chemical shifts 22	2D (two-dimensional) NMR 136–137 2QF-COSY 141–142 3D (three-dimensional) NMR 162–163 90°C pulse 108, 112 excitation null 108, 113 resonance offset 111 180°C pulse 108, 112 catenation 179 composite 117 decoupling. See Decoupling, 180°C pulse 115 excitation null 108, 113 imperfect 117, 124 nonresonant phase shift 139 pulsed field gradients 124 refocusing 151 resonance offset 111 AB spin system 26 Absorptive lineshape 141 Acquisition period, direct 136–137 indirect 136–137 initial delay 133, 135, 152, 154, 166 adjusting 133, 135 See also Evolution period 136–137 Acquisition period, indirect. See Evolution period, indirect 136–137 ADC. See Analog-to-digital converter 57, 67, 76–79 Adiabatic pulse 120 Adiabatic relaxation contributions 40 Adjoint operator 49 Aggregation 95, 96 Alanine chemical shifts 22 Aliasing and folding 16 Alignment media 96–98 Allowed transition 3 Amide. See Side Chain 22 chemical shifts 22 Amide proton chemical shift dispersion 186	Amide acid chemical shifts proteins 22 random coil 22, 217 Amino acid spin systems 179, 185, 186 13C-13C correlation (HCCH) 179-181 Amplifier, rf 61, 62, 64 Amplitude, rf 61, 63, 64, 65 Amplitude modulated pulse 115, 120 Analog signal 77 Analog-to-digital converter (ADC) 57, 67, 76-79 Angle, phase 139 Angle, polar 29 Angular momentum 2-3 Angular momentum quantum number 2, 3 Anisotropic chemical shift. See Chemical shift anisotropy (CSA) 20, 36, 37, 41 Anisotropic diffusion. See Diffusion, anisotropic rotational 252 Annealing, simulated (SA); rMD 213, 214-216, 222-225 Antiphase lineshape 141 Apodization 130-132 heteronuclear correlation 152, 163 multidimensional NMR 132 resolution enhancement 130-131 Apodization function cosine bell 132 exponential 130 Lorentzian-to-gaussian 131 sine bell, phase shifted 132 transformation 132 ARIA 225 Aromatic rings 21 local magnetic fields 21-22
191, 221, 222 cnemical snitts 22	Amide proton exchange 95, 127, 128, 160, 163,	Aromatic spin systems
	191, 221, 222	chemical shifts 22

Artifact suppression 124, 125	¹³ C- ¹³ C correlations (HCCH) 162, 179–181
phase cycling 139	$^{13}C^{\alpha}$ $^{-13}C^{\beta}$ decoupling 177
pulsed field gradient 139–140	$^{13}C^{\beta}$ – $^{13}C^{\alpha}$ correlations (CBCA) 173, 176
Assignments, resonance	See also CBCA(CO)NH; CBCANH;
13 C $^{\beta}$ - 13 C $^{\alpha}$ correlations (CBCA) 162, 173	HCCNH-TOCSY; 176–179, 173–176,
¹³ C– ¹³ C correlations (HCCH) 162, 179–181	179–182
heteronuclear-edited NMR 162, 185	13 C $^{\alpha}$ and 13 CO
homonuclear NMR 186	decoupling 108
sequential 160, 161	nonresonant phase shift 139, 177
stereospecific 221	off resonance excitation 113–115
triple-resonance NMR 186–187	resonance frequency difference 114
Atomic coordinates 214, 215, 216	rf field strength excitation 114
Attenuation, rf power 61–62, 108	Calibration, NOESY 219
Audiofrequency filter. See Filter, audiofrequency	Capacitance 68–71
17, 66	Carrier frequency 8, 43, 60, 62, 63, 64, 65, 66, 74,
Audiofrequency signal 1, 65, 66	102, 103, 110
Autocorrelation or diagonal peak 136, 141	Cascades pulse 116
Autocorrelation function 36	CBCA(CO)NH 176–179
Autorelaxation	CBCANH 173–176
See also Cross-relaxation 33, 34, 41	
	Chemical exchange 127, 196, 218, 248, 252
Average chemical shift 20, 22	Chemical shift
Average dipolar coupling 27, 28, 36	average 22
Average scalar coupling 23	conformation-dependent 216–217
AX spin system 26	degeneracy 225
Axial symmetry 31	2D NMR 221
AX _n spin system 26	3D heteronuclear-edited NMR 186
	dispersion 186
B ₁ field. See rf Magnetic field 6–11	evolution, product operators 52
Back-calculation 225, 228	isotropic 20
Backbone	reference 18–20
conformation 226, 227	secondary 219
fingerprint region 185, 186	structure, dependence 216–217
spin system 186	tensor 20
Backbone resonance assignment 229	water 19
Backbone to side-chain correlations 186, 187	Chemical shift anisotropy (CSA) 20, 36, 37, 41
Balanced mixer; BM 62	axial symmetry 159
Bandwidth, frequency 14, 65, 85	¹³ C 159
Baseline correction 129	¹⁵ N 159
Baseline distortions 128, 130	heteronuclear 41,159
Basis functions 48	relaxation 36–37, 41
Bicelles 30, 96, 97	Chemical shift overlap. See Chemical shift,
Bloch equations 9–11	degeneracy 187, 211, 225
derivation 10	Chemical shift frequency range 6
free-procession 10	Chemical shifts, ¹³ C 22
laboratory reference frame 11	assignments 160–161, 162
limitations 11	13 C $^{\alpha}$ and 13 C $^{\beta}$, distinguishing 176
	13 cg 113 co 11 cg 1 d
rotating reference frame 11	13 C $^{\alpha}$ and 13 CO, resonance difference between
Boltzmann distribution	proteins 108, 113, 114
spin system 4	Chemical shifts, ¹ H 22
Bras and kets 49	proteins 22
Broadband decoupling. See Decoupling, phase	random coil 22
modulated 118-119	secondary structure dependence 216–217
Broadband isotropic mixing. See Isotropic mixing	resonance frequency difference 22, 108,
117–118	113, 114
Bulk angular momentum 5	Circuits
<i>G</i>	open 76
¹³ C chemical shift. See Chemical shifts, ¹³ C	parallel 69, 70, 71
21–22	parallel-series 71, 72
¹³ C isotropic labeling 90–94	series 69, 70, 71

series-parallel 71, 72	Connectivity 162, 169, 177, 186
short 70, 71, 75	Constant-time (CT) evolution period 154, 156
Coherence	Constant-time (CT) HMQC 156
antiphase 46	Constant ranges 24
double quantum (DQ) 42	Constraint violations 215, 216, 224, 225, 226
in phase 45, 46, 47	Constraints, accuracy 226
multiple quantum 153, 154, 155, 156	Constraints, experimental 216–222
single quantum 149, 150, 155, 156, 158	chemical shifts 216–217
zero quantum (ZQ) 33, 34	dihedral angle, J coupling 217–218
Coherence, dephasing 116, 122, 139, 140	distance, NOE 218–220
pulsed field gradient 138–146	hydrogen-bond 215, 222, 226
relaxation 40	orientational RDC 220–221
static magnetic field inhomogeneity 40	Constraints, short range 214
Coherence, phase shift 139–141	Constraints per residue 224
frequency discrimination 137–138	Constraints geometry 216, 224
rf pulse 139	Continuous (CW) rf field 33, 34
Coherence level. See Coherence order 138–140	Convolution 13
Coherence level diagram 42, 138–140	Convolution theorem 13
Coherence order 138–140	Coordinates, atomic 214, 215, 216
change in 138–140	Coordinate frame 6
herteronuclear 140	laboratory 6–8
Coherence selection 138–139	rotating 6–8
Coherence transfer 140, 142, 143	Correlated spectroscopy. See COSY 140–141
antiphase 141	Correlation, heteronuclear. See heteronuclear
continuous (CW) rf field 117	correlation 149–151
COSY-type 140–141	Correlations, side-chain to backbone
heteronuclear 155, 156, 161	heteronuclear 185
HMQC-type 155	Correlation time 36, 247, 248, 250
INEPT 43, 150	effective 247, 260
in-phase 47	rotational 247
COSY-type 141	Cosine bell apodization; 90° shifted sine
TOCSY-type 142–143	apodization 132
isotropic mixing 118, 143	Cosine-modulated signal 141
magnetization transfer 117–118, 143, 151, 154	COSY 140–141
rf pulse 42	antiphase 141
single quantum 42	lineshape 141
through-bond 144	N type 140, 141
through-space 144	phase twisted 141
TOCSY-type 143	P type 140, 141
triple-resonance 161; See also Triple resonance	CPMG 255, 256, 257
NMR 164–179	Cross-correlation 41, 158, 248, 251–253, 257
Coherence transfer pathway 42	Cross-peak 41, 136, 137, 141, 161
selection 138–139	antiphase 141
phase cycle 138–139	line shape 141
pulsed field gradient 138–139	phase twisted 141
Coil, main; See also magnet solenoid 58, 59	overlap 142, 137, 162, 179, 184
Coil, rf 68–74	Cross-polarization
Coil, SC shim; See also cryogenic shims;	See also Isotropic mixing, TOCSY 117, 118,
cryoshims 59	142, 143–145
Coil, shim 60	Cross-relaxation 33, 34, 41, 144, 246, 253, 256,
Complete assignment 162, 185–187	258
Complex Fourier transformation 12–15	dipolar 258
Composite pulse 117–119	laboratory frame 34, 144
	,
Composite pulse decoupling. See Decoupling, phase-modulated 118–119	NOE and ROE, 34, 144–146
pnase-modulated 118–119 Computer-aided assignments 225	rotating frame 34, 144
	through-space correlation 144
Concentration, sample 90, 95	See also Dipolar relaxation; NOE; NOESY;
Conformation, protein; See also	ROE; ROESY 32–35, 145, 144–146, 160
protein structure 213, 217, 227	Cryogenic probe 73, 74, 80, 90, 95

CSA. See Chemical shift anisotropy (CSA) 20, 36, 37, 41	Dirac model 23, 24 Dirac notation 48
CTAB 97	Dispersion, chemical shift 186
Cutoff, filter 17	Dispersive phase 104
CW rf field. See continuous rf field 33, 34	Dispersive signal 109, 110, 141
on in note, see commedes it note object	Distance, lower bound 214, 215, 218, 225
	Distance, upper bound 214, 215, 225
dB. See Decibel 61, 62	Distance constraints 214, 218–220
DC offset 129	Distance geometry 213, 214
Decay constant	DMPC 96–98
See also Relaxation rate constants 245, 246, 248	DMPC/DHPC bicelles 96–98
Decibel (dB) 61, 62	Double quantum filter (DQF) coherence 141–142
dBm 63, 64	Double quantum transition 33, 34
Decoupling, 180° pulse 118, 151	Double sensitivity enhancement 179, 180
constant-time evolution 135, 155, 156, 166, 169	Double sideband band suppressed carrier (DSBSC)
HSQC 151	62
off resonance 108	DSS 18, 19, 20, 22, 106, 107
phase-modulated	Duplexer 81
See also Isotropic mixing 118–119	Dynamic range 77, 79
proton 47	Dynamical simulated annealing (SA); rMD 213,
supercycle 118	222
Degenerate resonances 32, 160, 173, 177, 186,	Dynamics, internal 246, 247
187, 211, 225	,
Denaturation 98	DUDD 126 120 160
Denature 96, 99	eBURP 126, 128, 168 Effective completion time 247, 260, 261
Density matrix 47–51	Effective correlation time 247, 260, 261
diagonal elements 50	Effective magnetic field 11, 257 Effective transverse relaxation time; T* 40
Density matrix formalism 47–51	
Dephasing, coherence 139, 140	Eigenstate 48
Deshielding 22	Eigenvalue 48 Electromotive force (EMF) 74
Detection, phase-sensitive 137, 141	, ,
Detection, quadrature 67, 137	Electron 18, 20, 21, 23 Electronic shielding 18, 23
Detector, phase-sensitive 62, 66	•
Deuterium; ² H 20, 60, 62, 93, 105	Energy 1, 2, 3–5 Energy levels 16, 33, 34
DHPC 96–98	Enlargy levels 16, 33, 34 Enhancement, NOE 34–35
Diagonal peaks 136, 141, 146	Ensemble of structures 213, 214, 216, 228
Diffusion, rotational 252	Equation of motion 216
anisotropic 252	Equilibrium, thermal 5
correlation time 252, 253	magnetization 5, 11
isotropic 253	Evolution 136
relaxation 253	Evolution period 136, 137, 138
Diffusion, spin 35, 127, 144, 145, 218,	constant time 154, 156
219, 225	initial 134, 135, 154, 166
Digital resolution 115, 125, 132, 136, 141, 163	Exchangeable protons
Digital signal processing 80	See also Amide proton exchange 160, 163
Digitizer 80	Excitation null 108, 113–115, 168
Dihedral angle 25, 214, 217, 218, 222	Excited state 4, 35, 37
constraints 218, 222, 224	EXORCYCLE 124
Karplus, curve, 25, 217, 218	Expansion 4, 50
2,2-Dimethyl-2-silapentane-5-sulfonic acid (DSS)	Expectation value 50
18, 19, 20, 22, 106, 107	Exponential apodization 130, 131
Dipolar coupling 27, 28	Expression system 90–91
heteronuclear 31, 32	Expression vectors 90–91
constraints 27	Extreme narrowing 35, 40, 259
oreientational dependence 27	22, 10, 20
distance dependence 27	E 126 127 129 140
DIPSI-2 118, 144	F ₁ 136, 137, 138, 140
DIPSI-3 108, 118	F ₂ 136, 137, 138, 140
Dirac delta function 14	FFT (fast Fourier transformation) 12

FID (free-induction decay) 11, 12, 13, 17, 36,	scalar coupling constant 24, 25
40, 46	Global energy minimum 214, 216
Field gradient. See Pulsed field gradient (PFG)	Global folding 216, 223, 224
105, 121–125	Gradient, pulse field 105, 121–125
Filling factor 73, 74	Gradient echo 127, 128
Filter 16, 17, 65, 66, 82, 84, 85	Gradient-enhanced HNCA 164–169
analog 16	Gradient-enhanced heteronuclear single quantum
bandpass 65	coherence (HSQC) 149–154
cutoff 17	Gyromagnetic ratio 2, 3
digital 16–17	
solvent 129	¹ H chemical shift 18, 19, 20, 22
transition band 16, 17	$^{1}\mathrm{H}^{\mathrm{N}}_{-}^{1}\mathrm{H}^{\alpha}$ fingerprint region 185, 186
tunable 66	Hamiltonian 47, 49
Filter, isotope. See Isotope filter 202–204	HCCH-TOCSY 164, 179-182
Filter function. See Apodization function 132	Heat transfer processes 57, 59
Filtering 85, 93, 129	α -helix. See Secondary structure 217, 218, 219,
Fingerprint region 185, 186	221
First-order phase correction 133, 134, 135	Heteronuclear coherence order 42, 124
Flip angle, pulse 50, 61, 62, 109, 110, 114, 117,	Heteronuclear-edited NMR 200, 201, 202
118	Heteronuclear-edited NOESY 184, 200, 201
Flip-back 126, 127–128, 253	Heteronuclear-edited TOCSY 186, 187
Folding 16	Heteronuclear multiple quantum coherence
Forbidden transition 33	(HMQC) 149, 150, 154–156
Force constant 215, 216, 223, 224	Heteronuclear scalar coupling constants 24, 25,
Fourier transform, 12–14, 15, 36, 116	155, 161
Fourier pair 12	Heteronuclear single quantum coherence (HSQC)
Fourier transform algorithms	149–154
complex 137–138	High-resolution 3D structure 217
fast (FFT) 12	His-tag 90, 91, 99
real 6, 7, 138	HMQC (heteronuclear multiple quantum coherence)
scaling first point 135	149, 150, 154–156
Fourier transform theorems 12–14	HMQC-type sequence 155, 170, 171, 180
Free-induction decay; FID 11–13, 17, 36,	HNCA 161, 162, 164–168
40, 46	HN(CA)CO 161, 162, 164, 171-176
Free precession 44, 50, 52	HNCO 162, 164–168
product operator formalism 52	HN(CO)CA 161, 162, 164, 176-179
Frequency-dependent phase error; First order phase	HOHAHA; TOCSY 142–143
correction 133–135	Homogeneity, magnetic field 57, 59, 60, 80, 101,
Frequency dimensions 136	104, 105, 125
Frequency discrimination. See Quadrature detection	Homonuclear chemical shifts 22
141, 158	Homonuclear Hartman-Hahn 145
hypercomplex (States) 137–138 N/P selection 140–141	Homonuclear NOE enhancement 35
	Homonuclear scalar coupling 23, 24
PEP (preservation of equivalent pathways) 150, 152, 153	Homonuclear spin 45, 54
	HSQC (heteronuclear single quantum coherence)
pulsed field gradient 121–125 Redfield's method 67	149–154
States-TPPI 137–138	HSQC-NOESY 184-186
time-proportional phase-incrementation (TPPI)	HSQC-TOCSY 186
method 67, 137–138	Hydrogen bond 215, 216, 222
Frequency-independent phase error; Zero order	Hypercomplex (States) frequency discrimination
phase correction 133–135	137–138
Frequency labeling 140, 150, 151	
Full-width-at-half-height 40	IF; Intermediate frequency 58, 61, 62–64, 66, 84,
i un-widul-at-nan-noight 40	85
GARP 108, 112, 118, 119	Impedance 63, 64, 68–72, 75, 76, 81, 86, 102, 103
Gaussian function 14	Imperfect 180° pulse 124, 125, 181, 200
Gaussian pulse 14, 15, 115–117	In-phase coherence 45, 46, 47
Geminal protons 24, 25	In-phase excitation 116

Indirect dimension 125, 120, 134, 135, 137, 138, 141	Liquid crystal 28, 30, 31 Liquid crystalline media 96, 97
Inductance 68, 69, 70, 72	Liquid helium vessel 58, 59
Induction, IPTG 93	Liquid nitrogen vessel 58, 59
Inductor-capacitor (LC) 68, 69, 70, 71, 72	Local error function 250, 260
INEPT (insensitive nuclei enhanced by polarization	Local magnetic fields 18, 21, 23, 24
transfer) 43, 46–47, 150, 151, 152,	
153, 156	Local minimum 215, 216
Inhomogeneity, rf pulse; magnetic field	Local motion 216, 260
homogeneity, rf	Local oscillator; LO 62, 85
Instability, instrument 121	Lock, field frequency 19, 20, 58, 60, 62, 80, 102,
	104–106
Interleaved acquisition 259	Long range magnetization transfer 143
Intermediate frequency; IF 58, 61, 62–64, 66,	Long-range NOE 186, 218
84, 85	Longitudinal eddy-current delay; LED 195
Intermolecular interaction 36	Longitudinal magnetization 74, 124, 151, 258, 259
Internuclear distance vector 27, 28, 29, 30, 32	Longitudinal relaxation 35, 252, 256
Interresidue connectivity 169	Lorentzian lineshape 12, 13
Interresidue NOE 160	Low pass filter 85, 129
Intramolecular dynamics; internal dynamics 246,	Lowering operator 46
247	Lysis buffer 93, 94, 99
Intraresidue correlations 169	, , ,
Intraresidue connectivity 169	
Inversion, magnetization 32	Magic T 81
Inversion recovery 51	Magnet, superconducting 57, 58
IPTG 92	Magnetic field
Isolated spin 44, 51	homogeneity 57, 59, 60, 80, 101, 104, 105, 125
Isotope filter 202–204	inhomogeneity 40
Isotopic labeling 89, 95	Magnetic field mapping 60
Isotropic mixing 117–118, 143	Magnetic field, shimming 101, 102, 104–106
Isotropic mixing sequences 117–118	Magnetic moment 2, 23
	Magnetic quantum number 2, 3
J coupling constant 23–25, 155, 161	Magnetic solenoid 57, 58, 59
Jump-return 126, 128	Magnetization 5–10
	Magnetization transfer 117, 118, 143, 151
W 1 05 017	Mapping, magnetic field 59, 60
Karplus equation 25, 217	Matching 68, 71, 72, 102, 103
Kronecker delta function 29	Matrix 29, 42, 44–51, 158, 159, 213, 214, 225,
	260
Labels, isotopic Labeling, isotopic 89, 95	Methanol, temperature calibration 105, 106, 107
Laboratory frame 2, 5–8, 10, 11	•
Larmor frequency 1, 3, 4, 6, 7	Methylene group 174, 175, 178, 181, 219, 221
LB media 92	Micro NMR tube 95
Ligand 95, 191–202	Minimal media 93
Line-broadening 74, 131	Mixer 62, 63, 64, 84, 85
Linear prediction 129–130	Mixing period 117, 137, 143, 184, 203
initial data points 130	Mixing time 117, 143, 144, 145, 215, 218, 219
mirror image 130	MLEV-17 17, 118, 143
Lineshape 1, 12, 13, 41, 42, 74, 94, 104, 107	Molecular dynamics, restrained; rMD 160, 213,
absorptive 141, 168	214, 215, 223, 251
dispersive 141	Molecular frame 28, 29, 30, 247, 250
Gaussian 131	Multidimensional NMR 47, 74, 92, 101, 115–118,
Lorentzian 12, 131	139, 144, 149, 150
Linewidth 20, 40, 60, 74, 80, 96, 131, 158, 159,	2D (two-dimensional) 136, 179, 198, 201, 202,
161, 162	140
Gaussian 131	3D (three-dimensional) 102, 162, 164–185
Lorentzian 131	4D (four-dimensional) 179, 186, 187
Liouville-von Neumann equation 50	Multiple quantum coherence 43, 153–156, 166,
Lipari–Szabo formalism 246, 250	167, 168
Liquid NH ₂ 19 20 22	Multiplet 41, 155, 158, 159

¹⁵ N reference 107, 135	Pascal triangle 26
¹⁵ N relaxation 260	Peak-to-peak voltage 64, 65, 82, 83
N-type 140, 141, 142, 151	PEP (preservation of equivalent
Natural abundance 89, 150	pathways) 150, 152, 153, 154, 163, 167
NMR spectrometer 1, 10, 18, 19, 20, 57, 58, 62,	Peptide 89, 94, 95, 143, 169, 201, 224, 229, 246
63, 79	Perturbation 32, 115
NOE 28, 32–35, 95, 144, 145, 160, 186, 187, 212	PFG. See Pulsed field gradient 105, 121–125
build up curve 144, 145	Phage, filamentous 30, 98
difference 198, 259, 260	Phase, NMR spectrum 13, 133–135
distance restraint 162, 214,215	Phase correction 133–135
enhancement 34, 35, 145	first-order 133–135
heteronuclear 35, 258–260	zero-order 133–135
rate constant 246	Phase cycle 138–139
steady-state 32, 103, 110, 111, 145, 163, 253,	EXORCYCLE 124
258	frequency discrimination 141, 158
transferred 196–198	Phase error 128, 133–135
transient 258	Phase-modulated pulse 115, 117, 119
See also ROE 145	Phase modulated sequence 118
NOESY 144–146, 160, 186	Phase sensitive 62, 66, 137, 141, 143, 145, 152,
NOESY-HSQC 184	154, 158
Noise figure 86, 87	Phase sensitive detector; PSD 62, 66, 67
N/P selection 140	Phasing. See Phase correction 133–135
	Population 1, 3, 4, 5, 32, 33, 34, 36, 40, 43, 48, 60,
Nuclear Overhauser effect. See NOE; ROE 32–35,	125
145	
Nuclear Overhauser effect spectroscopy, See	Boltzmann distribution 4, 36, 60 inversion 32, 117, 118
NOESY; ROESY 144–146, 160	saturation 32, 33, 34
Nuclei, active 2, 216	
Nuclei, spin 2, 5, 11	Post-acquisition solvent suppression. See Solvent suppression filter 129
coupled 23, 25, 27	
Nyquist frequency 16	Power, pulse 6, 9, 61, 62, 80, 111, 112, 113, 115,
Nyquist theorem 16	116, 117, 125
Observable scherence 42 155 174 177 202	Preacquisition delay; predelay 38, 44, 125, 127,
Observable magnetication 5, 51, 151, 152, 156	
Observable magnetization 5, 51, 151, 153, 156,	Preamplifier 57, 58, 65, 66, 73, 76, 82, 86, 87
166, 167	Precession 1, 3, 6, 10, 11, 18, 21, 44, 50, 52, 53,
Off-resonance pulse 101, 115, 168	54, 122, 123
Offset, 101, 104, 106, 109, 110–111	Precision, three dimensional structures 213, 220, 227–228
Offset, dc 129	
Offset, resonance 258	Preparation period 136, 184, 253
One-dimensional (1D) 102, 136, 163, 168	Presaturation 110, 115, 125, 127
One-pulse experiment 11, 43, 50, 109, 111, 116,	Preservation of equivalent pathway. See PEP 150,
122, 126	152, 153
On-resonance 7, 8, 19, 50, 72, 104, 107, 108, 111,	Principal axis 29, 30, 32, 251 Probability 5, 29
114, 115, 116, 118, 128, 129	Probe 7, 68–75
Operator 42, 44–54	
Order parameter 220, 247–251	impedance 63, 64, 68–72, 75, 76, 81, 86,
Orientation of alignment tensor 220	102, 103 quality factor 70, 71, 72, 73
Orientation of angular moment 2	
Orientation of CSA tensor 251	resonance frequency 68–72, 4
Orientation of internuclear vector 27, 29, 30, 32,	tuning and matching 68, 71, 72, 102, 103
247, 253	Probe coil 68–74
Oscillating fields 7, 8, 57, 74, 102	Product operator formalism 42, 44, 45, 47, 51, 52–54
Oscilloscope 63, 77, 81, 82, 85	
Out-and-back 161, 164, 170, 172	Protease inhibitors 94
Oversampling 16, 17	Protein
P-type signal 140, 141, 142, 220	chemical shift 22
P-type signal 140, 141, 142, 220 Paramagnetic shielding 21	denatured 96, 99
Paramagnetic shielding 21 Parts per million (ppm) 18, 19, 21	isotopic labeling 90–94 Protein expression 91–92
1 arts per Hillion (ppin) 10, 19, 21	1 10totti expression 31-37

Protein structure 211–229	Quadrupolar relaxation 37, 251
Proton reference 19, 20	Quadrupole moment 251
Pulse	Quality factor 68, 70, 226, 228
coherence order 138–140	Quantum number 2, 3
composite 117–119	Quarter-wave length cable; $\frac{1}{4}$ wave length cable
flip angle; pulse angle 50, 61, 62, 109, 110, 114,	75–76
117, 118	75–70
	P. G. G.; 1.4; 1.4; 22.20.24(.252
length; pulse width 9, 12, 61, 72, 80, 86, 101,	R ₁ . See Spin-lattice relaxation 33–38, 246–252,
102, 103, 108, 109–110, 112–115	257, 259–262
off-resonance 54, 108, 113–117	$R_{1\rho}$; R_1 in rotating frame 257, 258
selective. See Selective pulses 115–117	R ₂ . See Spin spin relaxation 35, 39–42, 246–252,
shaped. See Selective pulses 115–117	257, 259, 260, 261, 262
spin lock. See Spin lock pulses 108, 118, 143,	R_2^* 40
198, 199	R factor 228
strength; pulse power 6, 9, 61, 62, 80, 111–117,	Radiation dampling 68, 74, 75, 126, 127, 128
125, 126	Radiofrequency magnetic field. See rf magnetic
Pulse sequence 38, 42, 43, 45	field 6–11
Pulse sequences	Raising operator 46
heteronuclear	Random coil chemical shifts 22, 217
HCCH-TOCSY 164, 179-186	Rate constants 245, 246, 248
HMQC 149–151, 154–156	Real Fourier transformation 67, 138
HSOC 149–154	Receiver 9, 11, 57, 58, 65–67
HSQC-TOCSY 186	Receiver gating time 133
NOESY-HSQC 184, 186, 200, 201	Rectargle pulse 15, 52, 116, 125, 126, 168
NOESY-HMQC 200, 202	Rectangle pulse 13, 32, 110, 123, 120, 100 Rectangular selective pulse 125, 126, 127, 128,
TROSY 158–160	1 , , , ,
homonuclear	146, 255
COSY 140–141	Recycle delay; Recycle time 137, 254, 255, 259
flip-back 126, 127–128, 153	Redfield's method for frequency discrimination 67
1 , , ,	Reference, chemical shift 18–20
jump-return 126, 128	Reference frame
NOESY 144–146, 160, 186	laboratory 6–8
DQF-COSY 141–142	molecular 28, 29, 30, 247, 250
ROESY 144–146, 160, 186, 197	rotating 6–8
TOCSY 142–143, 117	Reference frequency 18, 19, 20, 61
WATERGATE 126, 127, 128, 152	Refinement, 3D structures 212, 216, 222, 223,
triple-resonance	226, 228
CBCA(CO)NH 161, 164, 176–179	Reflection bridge 81
CBCANH 161, 164, 173-176	Refocused INEPT 47, 253
HNCA 161, 164–169	Refocusing, 180° pulse 124, 125, 135, 165, 166,
HN(CA)CO 161, 164, 171–173	181
HNCO 161, 164–169	Refocusing, gradient 122, 139-141, 151, 168
HN(CO)CA 161, 164, 169–171	Refocusing period, IPAP 156, 157
Pulse field gradient (PFG) 105, 121–125	Relaxation
coherence selection 138–139	cross-correlation 41, 158, 248, 251, 252, 255,
dephasing coherence 139, 140	257
frequency discrimination 141	cross-relaxation 33, 34, 41
shape factor 139	Lipari-Szabo formalism 246, 250
solvent suppression 126, 127–128, 152	Longitudinal. See Spin-lattice relaxation 33–38,
strength 123, 126, 196, 197, 208	
Pulsed field gradient profile 80	246–252, 257, 259–262
	rate constants 245, 246, 248
Pure absorption 133, 142, 154	rotating frame 145, 256
Pure phase 184, 254, 257	spin-lattice 33–38, 246–252, 257, 259–262
Purification, protein 94	spin-spin 35, 39–42, 246–252, 257, 259, 260,
Purity 94, 99	261, 262
	transverse. See spin–spin relaxation 35, 39–42,
Quadrature detection 67, 137	246–252, 257, 259, 260, 261, 262
Quadrature image 80	Relaxation measurements
Quadrupolar coupling 251	inversion recovery 38–39, 253–256
Quadrupolar interaction 245, 251	T_2 and $T_{1\rho}$ 255, 256–258

Relaxation mechanisms 35–42	Sensitivity 5, 47, 60, 63, 66, 72, 73, 74, 78, 80, 85
Relaxation theory 35–42, 245–253	cryogenic probe 68, 73, 74, 80
Relayed COSY 173, 177	high field 5, 60, 95
Reorientation, molecular, See Diffusion,	heteronuclear NMR 47, 149, 150
rotational 28, 36, 252, 253	Noise; signal-to-noise (S/N) ratio; 16, 17, 60,
Resistance 62, 69, 71, 72, 73, 74 Resolution	65, 73, 80, 85, 86, 87, 127, 130, 131, 132, 150
digital 115, 125, 132, 136, 141, 163	probe 72, 73, 80
enhancement 130–131	Sensitivity-enhancement. See PEP 121, 150,
Resonance degeneracy 160, 173, 177, 186, 225	152,153
Resonance dispersion 186	Sequence specific assignment 160, 161, 185–187
Resonance frequency 4, 6, 14, 18, 19, 21, 23, 33, 34, 56, 68–72, 74	Sequential assignment strategy 160–162, 185–187 Sequential NOE 221
Resonance offset 258	Shaped pulses 115–117
Restrained molecular dynamics; rMD 212–215, 222–225	β-Sheet. <i>See</i> Secondary structure 186, 212, 217, 218, 221, 222
Reverse refocused INEPT 253	Shielding, chemical 37
rf coil 68–74	Shielding, diamagnetic 21
rf magnetic field 6–11	Shielding, magnetic 245
ROE 145	Shielding, paramagnetic 21
See also Cross-relaxation; NOE ROESY	Shielding constant 18, 20, 21
Root-mean-square-deviation (rmsd) 226, 227, 234	Shielding electronic 18, 23
Root-mean-square noise 86, 87	Shim assembly; shim coil 19, 59, 60, 77, 79
Root-mean-square voltage 83	Shimming 19, 60, 80, 104–106
Rotating frame transformation 6–8	Side-chain 97, 142, 143, 149, 161, 162, 179, 185,
Rotating reference frame 6–8	187
Rotating reference frame 6–8 Rotational correlation time. See diffusion, rotational	Side-chain spin system 186, 187
correlation time 195, 218, 247, 252	Signal
Rotational diffusion 36, 252	amplitude 40, 61, 65, 78, 131, 254
Rotational diffusion 50, 232	analog 16, 77
	antiphase 47
Sample preparation 89, 93, 94, 95–98, 99	audiofrequency 1, 65
Samples, temperature 4	background 199, 207
Sampling delay 134, 135	complex 42, 140
Sampling interval 16	cosine-modulated 141
Sampling rate 16, 67	degeneracy 211, 221
Sampling theorem; Nyguist theorem 16	deuterium lock 104, 107, 111
SAR; Structure activity relationship 191–195	dispersive 109, 110, 116
Saturation 32, 33, 34, 104, 110, 125, 126	distortion 66, 74
Saturation transfer 127, 128, 151, 152, 154, 160,	double sideband 63
198–200	IF 62, 66,
Scalar coupling 23–25, 155, 161	intensity 4, 38, 39, 109, 196
Scalar coupling constants, heteronuclear 24, 25,	N-type 140, 141, 142
155, 161	overlap 158, 184, 206, 256
Scalar coupling constants, homonuclear 23, 24	P-type 140, 141, 142, 220
Scaling, first point 135	quadrature frequency 63
Scaling factor, decoupling 118	reference 77
Scaling theorem; Similarity theorem 13, 116, 130	resolved 206, 221
SDS 97	rf 61, 64, 65, 66, 81
Secondary chemical shifts 219	sine 65
Secondary structure 186, 212, 217, 218, 221–222	sinusoidal 64, 82, 83
chemical shifts 216–217	solvent/solute 74, 75, 109, 110, 125, 127,
determination 217, 218, 219, 221	129, 154
$^{1}H^{N}$ $^{-1}H^{\alpha}$ scalar coupling 218	time domain 12, 15, 16, 38, 133
$^{15}N^{-13}C^{\alpha}$ scalar coupling 218	waveform 65
NOE 218, 219, 221	Signal-to-noise (S/N) ratio 17, 60, 73, 80, 86, 127
SEDUCE 108, 112, 118, 168	field gradient 121, 153, 154
Selective decoupling 118	heteronuclear NMR 47, 149, 150
Selective pulses 115–117, 126	PEP 21, 150, 152, 153

Similarity theorem; scaling theorem 13, 116, 130	Spin–spin relaxation 35, 39–42, 246–252, 257,
Simulated annealing (SA); rMD 213, 214–216,	259, 260, 261, 262
222–225	CPMG 255, 256, 257
Sinc pulse 116, 122, 123, 126, 128	Bloch formulation 39
Sine bell apodization 131, 132	CSA 41, 42, 245–246
Single quantum coherence. See	dipolar 41, 42
coherence, single quantum 42, 149, 150, 155,	heteronuclear 246–252
156, 158	linewidth 40
Single sideband; SSB	magnetic field inhomogeneity 40
Sinusoidal signal 64, 82, 83	spin echo 40
Slow tumbling 156, 158	Spin system assignments 160–161, 162, 185–187
e ,	Spin systems
Solvent exchange. See Amide proton exchange;	AB 26
Chemical exchange 95, 127, 128, 160,	
163, 191, 196, 218, 221, 222	AX 26
Solvent suppression 75, 115, 117, 121	AX_n 26
flip-back 126, 127–128, 253	two-spin. See Two-spin system 24, 26, 32, 33,
jump-return 126, 128	34, 35, 41, 42, 44, 53, 54, 158, 159
postacquisition; solvent suppression filter 129	Spontaneous emission 36
presaturation 110, 115, 125, 127	Stability 18, 60, 90, 93, 95, 97, 109, 121, 229
pulsed field gradient 126, 127	States (hypercomplex) frequency discrimination
saturation transfer 127, 128, 151, 152, 154, 198	137–138
selective pulses 115–117	States-TPPI 137–138
sample concentration 125	Static magnetic field 1, 5, 8, 10, 11, 22, 35, 38, 57
WATERGATE 127	60, 104, 248, 260
Specifications, instrument 79–80	Steady-state NOE 32, 103, 110, 111, 145
Spectral density function 36, 37, 158, 245–249,	Stereospecific assignments 221
251, 252–266	Structural constraints 216–222, 224
autocorrelation 36	Structure determination 211–229
cross-correlation 41, 158, 248, 251–253, 257	accuracy 220, 226, 228
Lipari–Szabo 246, 250	back-calculation 225, 228
Spectrometer 57–75	distance geometry 213, 214
Spectrum analyzer 81, 84–85	global fold 216, 223, 224
Spectrum, frequency-domain 13, 14, 15, 16, 36,	precision 213, 220, 227–228
40, 84, 115, 132, 136	restrained molecular dynamics 213, 214–216,
Spin-1/2 nuclei 2–5	222–225
Spin diffusion 35, 127, 144, 145, 218, 219, 225	secondary structure 217, 218, 219, 221
Spin diffusion limit 35, 145	simulated annealing (SA); rMD 213, 214–216,
Spin echo 40, 43, 44–46	222–225
Spin-lattice relaxation 33–38, 246–252, 257,	Supercycle 118
259–262	Suppression, solvent. See Solvent suppression 75,
Bloch formulation 38	115, 117, 121
CSA 36	
dipolar 36	T 22 28 246 252 257 250 262
¹ H 38	T ₁ 33–38, 246–252, 257, 259–262
heteronuclear 246–252, 259–262	t ₁ 136, 137, 138 T ₂ * 40
inversion recovery 38	Z
quadrupolar 37	T ₂ ; Spin–spin relaxation 35, 39–42, 246–252,
scalar relaxation 37	257, 259, 260, 261, 262
Spin lock filter 198, 199	t ₂ 136, 137, 138, 140, 141, 142
Spin lock filter 198, 199 Spin lock pulses 108, 110, 118, 143, 198, 199	Temperature 4, 18, 19, 59, 73, 79, 80, 86, 92, 96,
	97, 102, 105
isotopic filter 202, 203	calibration 106
ROESY 144–146	Tensor, chemical shift 20
saturation transfer 199, 200	Tertiary structure 186, 212, 217, 218, 220,
T ₂ measurement 256, 257, 258	222–228
transferred NOE 198	Tetramethyl silane (TMS) 18, 19, 106
Spin quantum number 2, 3	Three-dimensional structure, protein 211–229
Spin–spin coupling, See Scalar coupling 23–25,	Through-bond correlation 144
155, 161	Through-space correlation 144

Time-proportional phase-incrementation (TPPI)	Unfolding 91, 94, 212
frequency discrimination 67, 137–138	Uniformly labeled 92, 163, 201
TMS 18, 19, 106	Urea, ¹⁵ N 19, 107, 108, 111, 112, 119
TOCSY (total correlation spectroscopy); HOHAHA	
142–143	
coherence transfer 143	Valine
DIPSI-2 118, 144	assignment 186
DIPSI-3 108, 118	chemical shift 22
Hartmann-Hahn matching 145	diastereotopic protons 221
isotropic mixing 117–118	Vicinal protons 25
mixing time 143	Viscosity 37, 195
MLEV17 117, 118, 143	Voltage 61, 63, 64, 65, 66, 68, 69, 79, 81,
spin lock 143	84, 103
trim pulses 143	
TOCSY, heteronuclear edited 186, 187	
TPPI. See Time-proportional phase-incrementation	WALTZ-16 108, 112, 117, 118, 119, 143,
frequency discrimination 63, 137–138	259
Trace element solution 93	Water radiation damping; radiation damping 68,
Transferred NOE 196–198	74, 75, 126,
Transient NOE 258	127, 128
Transmitter, rf 60–65	Water suppression. See Solvent suppression 75,
,	Water suppression. <i>See</i> Solvent suppression 75, 115, 117, 121
Transverse magnetization 9, 11, 35, 38, 42, 45, 72,	
,	115, 117, 121
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178	115, 117, 121 WATERGATE 127
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. <i>See</i> Spin–spin relaxation	115, 117, 121 WATERGATE 127 Wavefunction; Eigenstate 48
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. <i>See</i> Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260, 261, 262	115, 117, 121 WATERGATE 127 Wavefunction; Eigenstate 48 Wave length 75
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. <i>See</i> Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260,	WATERGATE 127 Wavefunction; Eigenstate 48 Wave length 75 Weak coupling 23, 26, 171
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. <i>See</i> Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260, 261, 262 Trim pulse. <i>See</i> Spin lock pulses, TOCSY 118,	WATERGATE 127 Wavefunction; Eigenstate 48 Wave length 75 Weak coupling 23, 26, 171 Window function. See Apodization function
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. <i>See</i> Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260, 261, 262 Trim pulse. <i>See</i> Spin lock pulses, TOCSY 118, 143, 198	Wavefunction; Eigenstate 48 Wave length 75 Weak coupling 23, 26, 171 Window function. See Apodization function 130–132
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. <i>See</i> Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260, 261, 262 Trim pulse. <i>See</i> Spin lock pulses, TOCSY 118, 143, 198 Triple-resonance, NMR 164–187	Wavefunction; Eigenstate 48 Wave length 75 Weak coupling 23, 26, 171 Window function. See Apodization function 130–132
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. <i>See</i> Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260, 261, 262 Trim pulse. <i>See</i> Spin lock pulses, TOCSY 118, 143, 198 Triple-resonance, NMR 164–187 Tris-HCl, Tris buffer 93, 94, 98	WATERGATE 127 Wavefunction; Eigenstate 48 Wave length 75 Weak coupling 23, 26, 171 Window function. See Apodization function 130–132 WURST 120, 204 z gradient 104, 105, 122, 123, 124
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. <i>See</i> Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260, 261, 262 Trim pulse. <i>See</i> Spin lock pulses, TOCSY 118, 143, 198 Triple-resonance, NMR 164–187 Tris-HCl, Tris buffer 93, 94, 98 Tuning and matching 68, 71, 72, 102, 103	WATERGATE 127 Wavefunction; Eigenstate 48 Wave length 75 Weak coupling 23, 26, 171 Window function. See Apodization function 130–132 WURST 120, 204
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. <i>See</i> Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260, 261, 262 Trim pulse. <i>See</i> Spin lock pulses, TOCSY 118, 143, 198 Triple-resonance, NMR 164–187 Tris-HCl, Tris buffer 93, 94, 98 Tuning and matching 68, 71, 72, 102, 103 Two-spin system 24, 26, 32–35, 41–44, 53, 54,	WATERGATE 127 Wavefunction; Eigenstate 48 Wave length 75 Weak coupling 23, 26, 171 Window function. See Apodization function 130–132 WURST 120, 204 z gradient 104, 105, 122, 123, 124
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. See Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260, 261, 262 Trim pulse. See Spin lock pulses, TOCSY 118, 143, 198 Triple-resonance, NMR 164–187 Tris-HCl, Tris buffer 93, 94, 98 Tuning and matching 68, 71, 72, 102, 103 Two-spin system 24, 26, 32–35, 41–44, 53, 54, 158, 159	WATERGATE 127 Wavefunction; Eigenstate 48 Wave length 75 Weak coupling 23, 26, 171 Window function. See Apodization function 130–132 WURST 120, 204 z gradient 104, 105, 122, 123, 124 Zeeman
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. See Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260, 261, 262 Trim pulse. See Spin lock pulses, TOCSY 118, 143, 198 Triple-resonance, NMR 164–187 Tris-HCl, Tris buffer 93, 94, 98 Tuning and matching 68, 71, 72, 102, 103 Two-spin system 24, 26, 32–35, 41–44, 53, 54, 158, 159 AB 26 AX 26	WATERGATE 127 Wavefunction; Eigenstate 48 Wave length 75 Weak coupling 23, 26, 171 Window function. See Apodization function 130–132 WURST 120, 204 z gradient 104, 105, 122, 123, 124 Zeeman energy levels 3–4, 32
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. See Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260, 261, 262 Trim pulse. See Spin lock pulses, TOCSY 118, 143, 198 Triple-resonance, NMR 164–187 Tris-HCl, Tris buffer 93, 94, 98 Tuning and matching 68, 71, 72, 102, 103 Two-spin system 24, 26, 32–35, 41–44, 53, 54, 158, 159 AB 26	WATERGATE 127 Wavefunction; Eigenstate 48 Wave length 75 Weak coupling 23, 26, 171 Window function. See Apodization function 130–132 WURST 120, 204 z gradient 104, 105, 122, 123, 124 Zeeman energy levels 3–4, 32 transitions 4
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. See Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260, 261, 262 Trim pulse. See Spin lock pulses, TOCSY 118, 143, 198 Triple-resonance, NMR 164–187 Tris-HCl, Tris buffer 93, 94, 98 Tuning and matching 68, 71, 72, 102, 103 Two-spin system 24, 26, 32–35, 41–44, 53, 54, 158, 159 AB 26 AX 26 energy diagram 33, 34	WATERGATE 127 Wavefunction; Eigenstate 48 Wave length 75 Weak coupling 23, 26, 171 Window function. See Apodization function 130–132 WURST 120, 204 z gradient 104, 105, 122, 123, 124 Zeeman energy levels 3–4, 32 transitions 4 Zero filling 132–135
Transverse magnetization 9, 11, 35, 38, 42, 45, 72, 74, 115, 122, 124, 125, 178 Transverse relaxation. See Spin–spin relaxation 35, 39–42, 246–252, 257, 259, 260, 261, 262 Trim pulse. See Spin lock pulses, TOCSY 118, 143, 198 Triple-resonance, NMR 164–187 Tris-HCl, Tris buffer 93, 94, 98 Tuning and matching 68, 71, 72, 102, 103 Two-spin system 24, 26, 32–35, 41–44, 53, 54, 158, 159 AB 26 AX 26 energy diagram 33, 34 energy states 1, 2, 3–4, 6, 23, 24, 33	WATERGATE 127 Wavefunction; Eigenstate 48 Wave length 75 Weak coupling 23, 26, 171 Window function. See Apodization function 130–132 WURST 120, 204 z gradient 104, 105, 122, 123, 124 Zeeman energy levels 3–4, 32 transitions 4 Zero filling 132–135 Zero-order phase correction 133–135,