### INORGANIC CHEMISTRY

### **Experiment 11**

# COMPLEXOMETRIC TITRATIONS

Discussion: Complexometric titration is a form of volumetric analysis in which the formation of a coloured complex is used to indicate the end point of a titration. A metal ion indicator capable of producing colour change is usually used to detect the end-point of the titrations. These titrations are particularly useful for the determination of metal ion or mixture of different metal ions in the solution.

EDTA (ethylene diaminetetraacetic acid) is an excellent complexing agent used in complexometric titration

The structure (I) is the unreacted form of EDTA and is a tetrabasic acid. The four electron rich acetate groups together with the two nitrogen lone pairs makes it a hexadentate ligand which

For simplicity EDTA is given the formula H<sub>4</sub>Y. It being a weak acid dissociates stepwise. will form complexes with octahedral geometry.

th octaneous 
$$p$$
  
A is given the formula  $H_4Y$ . It being a  $H_4Y$  is given the formula  $H_4Y$ . It being a  $H_4Y$  is  $pK_1 = 2.0$   
 $H_4Y$   $\longrightarrow$   $H^+ + H_3Y^-$  :  $pK_2 = 2.7$   
 $H_3Y^ \longrightarrow$   $H^+ + H_2Y^2-$  :  $pK_3 = 6.2$   
 $H_2Y^2 \longrightarrow$   $H^+ + H_2Y^3-$  :  $pK_3 = 6.2$   
 $H_2Y^3 \longrightarrow$   $H^+ + Y^4-$  :  $pK_4 = 10.3$ 

| SI.No. | Burette Reading |                             | Volume of                |
|--------|-----------------|-----------------------------|--------------------------|
|        | Initial         | Final                       | Volume of EDTA used (mL) |
| 1.     | THE RESERVE     | The state of the last winds | ne wie itanses are       |
| 2.     |                 | authorized placy from       | n in the manufactures    |
| 3.     |                 |                             | as prepare areas         |

$$\begin{aligned} \text{Volume of EDTA used} &= V_{\text{EDTA}} = ---- \text{mL} \\ M_{\text{EDTA}} \times V_{\text{EDTA}} &= M_{\text{std. ZnSO}_4} \times V_{\text{std. ZnSO}_4} \\ M_{\text{EDTA}} &= ---- \text{M} \end{aligned}$$

#### 3. Titration of EDTA vs. Given ZnSO<sub>4</sub> Solution:

Burette EDTA.

Conical flask 10 mL given ZnSO<sub>4</sub> + 20 mL H<sub>2</sub>O + 2mL buffer

Indicator Erichrome Black-T.

Colour change Red to Blue.

| SI.No. | Burette Reading |                 | Volume of      |
|--------|-----------------|-----------------|----------------|
|        | Initial         | Final           | EDTA used (mL) |
| 1.     |                 |                 | Chescott Ha    |
| 2.     |                 |                 |                |
| 3.     |                 | DESCRIPTION AND |                |

Volume of EDTA used = 
$$V_{\text{EDTA}}$$
 = \_\_\_\_ mL  
 $M_{\text{EDTA}} \times V_{\text{EDTA}} = M_{\text{ZnSO}_4} \times V_{\text{ZnSO}_4}$   
 $M_{\text{ZnSO}_4} =$ \_\_\_\_ M

Strength of given ZnSO<sub>4</sub> solution = M<sub>ZnSO<sub>4</sub></sub> × molecular weight of ZnSO<sub>4</sub>  $= \left(M_{\rm ZnSO_4} \times 287.56\right) \, \text{g/L}$ 

Strength of Zn(II) in given  $ZnSO_4$  solution =  $M_{ZnSO_4} \times$  atomic weight of Zn $= (M_{ZnSO_4} \times 65.3) \times 65.3 \text{ g/L}$ 

Result: The strength of Zn(II) in the given ZnSO<sub>4</sub> solution is \_\_\_\_\_ g/L.

#### Experiment 11(c)

Aim:

To estimate the amount of M/100 BaSO<sub>4</sub> using M/100 EDTA in complexometric titration using methylthymol blue are a solution using methylthymol blue as an indicator by direct tiration. Prepare standard ZnSO<sub>4</sub> solution to standardise EDTA to standardise EDTA.

Theory: [Same as in experiment 11(a).

- procedure: 1. Preparation of Buffer Solution of NH<sub>3</sub>-NH<sub>4</sub>Cl (pH= 10): It is prepared by adding 142 mL concentrated NH<sub>3</sub> solution to 17.5 g NH<sub>4</sub>Cl and diluting to 250 mL using distilled water.
  - 2. Preparation of Standard ZnSO<sub>4</sub> Solution in 100 mL Standard Flask: Prepare standard M/100 ZnSO<sub>4</sub> solution using distilled water by transference method.
  - 3. Titration of EDTA vs. Standard ZnSO<sub>4</sub> Solution (Standardisation of EDTA Solution): Rinse and fill the burette with EDTA solution. Pipette out 10 mL of standard ZnSO4 solution in a conical flask and add 20 mL of water to it. Further add 2 mL of buffer (NH3 - NH4Cl, pH = 10) and 2-3 drops of Erichrome Black-T as an indicator to it. Titrate the solution against EDTA solution until the colour changes from red to blue. Repeat the titration to obtain three concordant readings.
  - 4. Titration of EDTA vs. Given BaSO, Solution: Rinse and fill the burette with EDTA solution. Pipette out 10 mL of given BaSO4 solution in a conical flask and add 20 mL of water to it. Further add 2 mL of 1M NaOH and 2-3 drops of methyl thymol blue as an indicator to it. Titrate the solution against EDTA solution until the colour changes from blue to grey. Repeat the titration to obtain three concordant readings.

#### Observation and Calculation:

#### Preparation of Standard ZnSO<sub>4</sub> Solution in 100 mL Standard Flask:

Molecular weight of  $ZnSO_4 = 287.56 g$ 

Mass of BaSO<sub>4</sub> required to prepare (M/100) solution in 100 mL flask = 0.4314 g

Mass of empty weighing bottle =  $w_1$  = \_\_\_\_ g Mass of bottle + ZnSO<sub>4</sub> =  $w_2$  = \_\_\_\_ g

Mass of bottle after transferred =  $w_3 =$ \_\_\_\_g

Mass of ZnSO<sub>4</sub> actually transferred =  $w_2 - w_3 = w$  \_\_\_\_\_g

 $M_{\text{std. ZnSO}_4} = \frac{w}{287.56} \times 10 \underline{\qquad} M$ 

# 2. Titration of EDTA vs. Standard ZnSO<sub>4</sub> Solution:

Burette EDTA.

Conical flask 10 mL standard ZnSO<sub>4</sub> + 20 mL H<sub>2</sub>O + 2 mL buffer.

Indicator Erichrome Black-T.

Colour change : Red to Blue.

| I.No. | Burette Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ading | Volume of      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
|       | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Final | EDTA used (mL) |
| 1.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |
| 2.    | The state of the s |       |                |
| 3.    | 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                |

Volume of EDTA used = 
$$V_{\text{EDTA}} = \frac{\text{mL}}{M_{\text{EDTA}} \times V_{\text{EDTA}}} = \frac{M_{\text{std. ZnSO}_4} \times V_{\text{std. ZnSO}_4}}{M_{\text{EDTA}}} = \frac{M}{M}$$

#### 3. Titration of EDTA vs. Given BaSO<sub>4</sub> Solution:

Burette : EDTA.

: 10 mL given BaSO<sub>4</sub> + 20 mL H<sub>2</sub>O + 2 mL 1 M NaOH. Conical flask

Indicator Methyl thymol blue.

Colour change : Blue to grey.

| SI.No. | Burette Reading |                     | -10                 |
|--------|-----------------|---------------------|---------------------|
|        | Initial         | Final               | Volume of           |
| 1.     | THE PERSON      | · mai               | EDTA used (mL)      |
| 2.     | to Benefit .    | orter Criss Control | THE THE PARTY       |
| 3.     |                 |                     | The off the diff in |
|        |                 | minimized a         | ACTION OF MARCH     |

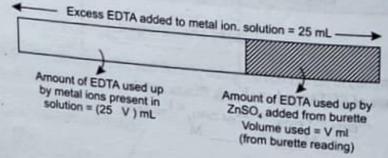
Volume of EDTA used = 
$$V_{\text{EDTA}} = \underline{\qquad} \text{mL}$$

$$M_{\text{EDTA}} \times V_{\text{EDTA}} = M_{\text{BaSO}_4} \times V_{\text{BaSO}_4}$$

$$M_{\text{BaSO}_4} = \underline{\qquad} \text{M}$$
of given BaSO<sub>4</sub> solution =  $M_{\text{BaSO}_4} \times M_{\text{BaSO}_4}$ 

Strength of given  $BaSO_4$  solution =  $M_{BaSO_4} \times molecular$  weight of  $BaSO_4$  $= (M_{\rm BaSO_4} \times 233) \text{ g/L}$ 

Result: The strength of given BaSO<sub>4</sub> solution is \_\_\_\_\_


### Experiment 11(d)

Aim:

To estimate the amount of Al(III) ions in given M/100 AlCl<sub>3</sub> using M/100 EDTA in complexometric titration using Erichrome Black-T as an indicator by back titration. Prepare

Theory:

Back Titration: There are many metals ions (like Al3+) whose concentration cannot be determined directly by titrating against EDTA solution. The reason being that they may get precipitated from the solution or may form inert complexes or sometimes a suitable metal indicator is not available. Thus to determine the concentration of these metal ions, an excess of EDTA solution is added to the solution of metal ions and the resulting solution is buffered to the desired pH. Some portion of the EDTA gets complexed with Al3+ ions in the solution and the rest of the EDTA is back titrated with a standard metal ion solution (like ZnSO<sub>4</sub> or ZnCl<sub>2</sub> or MgCl<sub>2</sub> or MgSO<sub>4</sub>) taken in the burette. The end point is determined by using the metal indicator which responds to the Zn<sup>2+</sup> or Mg<sup>2+</sup> ions introduced in the back



- procedure:
- 1. Preparation of ZnSO<sub>4</sub> Solution in 100 mL Standard Flask: Prepare standard M/100 ZnSO<sub>4</sub> solution using distilled water by transference method.
- 2. Titration of Standard ZnSO4 vs. AlCl3 Solution: Pipette out 10 mL of AlCl3 solution (i.e., Al3+ ions) in a conical flask. To this add 25 mL of EDTA solution and 2 mL of buffer (aq NH<sub>3</sub>, pH = 7-8). Boil the solution for a few minutes to ensure complete complexation of the Al3+ ions. Cool the solution to room temperature and again add 2 mL of buffer (aq NH<sub>3</sub>, pH = 7-8) and 2-3 drops of Erichrome Black-T as indicator. Titrate the solution quickly with standard ZnSO4 solution taken in the burette until the color changes from blue to red. Repeat the titration to obtain three concordant readings. This volume corresponds to the excess EDTA in the solution which remains uncomplexed by Al3+ ions and thus gets uncomplexed with the Zn2+ added from the burette.

#### Observation and Calculation:

### 1. Preparation of Standard ZnSO<sub>4</sub> Solution in 100 mL Standard Flask:

Molecular weight of ZnSO<sub>4</sub> = 287.56 g

Mass of ZnSO<sub>4</sub> required to prepare (M/100) solution in 100 mL flask = 0.4314 g

Mass of empty weighing bottle  $= w_1 = ___g$ 

Mass of bottle +  $ZnSO_4 = w_2 =$ 

Mass of bottle after transference =  $w_3$  = \_\_\_\_\_ g

Mass of ZnSO<sub>4</sub> actually transferred =  $w_2 - w_3 =$  \_\_\_\_

 $M_{\text{std. ZnSO}_4} = \frac{w}{287.56} \times 10 =$ 

### 2. Titration of Standard ZnSO<sub>4</sub> vs. AlCl<sub>3</sub> Solution:

Burette Standard ZnSO4.

10 mL AlCl<sub>3</sub> solution + 20 mL EDTA + 4 mL buffer. Conical flask

Indicator Erichrome Black-T.

Colour change Blue to red.

|        | Burette Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Volume of ZnSO <sub>4</sub> used (mL) |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------|
| SI.No. | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Final        |                                       |
| 1.     | 1000年                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | HELL SAME                             |
| 2.     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | A PROPERTY OF                         |
| 3.     | The same of the sa | CATED - WIND |                                       |

mL Volume of  $ZnSO_4$  used =  $V_{ZnSO_4}$  =

Initial amount of EDTA taken = 25 mL

Amount of EDTA used by  $ZnSO_4 = (V_{ZnSO_4}) mL$ 

: Amount of ED TA used by Al<sup>3+</sup> ion =  $V_{Al^{3+}} = (25 - V_{ZBSO_4})$  mL

 $M_{Al^{3+}} \times V_{Al^{3+}} = M_{ZnSO_4} \times V_{ZnSO_4}$ 

$$M_{\text{Al}\,3+} \times \left(25 - V_{\text{ZnSO}_4}\right) = M_{\text{ZnSO}_4} \times V_{\text{ZnSO}_4(\text{Burette reading})}$$

$$M_{\text{Al}^{3+}} = \underline{\qquad} \text{M}$$

Strength of Al (III) ions in given solution of AlCl<sub>3</sub> =  $M_{Al}^{3+} \times$  atomic weight of Al

$$= (M_{Al^{3+}} \times 27) g/L$$

The strength of Al (III) ions in the given AlCl<sub>3</sub> solution is g/L. Result:

Experiment 11(e)

Aim:

To estimate the amount of Ca(II) in given M/100 CaCO3 solution using M/100 EDT in complexometric titration using Erichrome Black-T as indicator by Substitution displacement titration. Prepare standard ZnSO<sub>4</sub> to standarised EDTA and M/10 Mg EDTA complex solution.

Theory:

Substitution Titration/Displacement Titration: The complex formed between Ca2+ ion and Erichrome Black-T is not very stable (the formation constant of Ca - In is only about one-fourth of that of Mg).

Ca - In < Mg - In (In = indicator).

Ca - EDTA > Mg - EDTA,

As a consequence, significant conversion of Ca - In(red) to HIn2-(blue) occurs will before equivalence i.e., the colour change occurs prematurely in the titration of Ca2+ with EDTA because Ca2+ ions has a large tendency to form Ca - EDTA complex. Thus, with Ca2+ ions alone no sharp end point can be obtained and the transition from red to blue in not observed. Thus, when Ca2+ ions are titrated with EDTA, a relatively stable Ca complex is formed.

$$Ca^{2+}$$
 +  $H_2Y^{2-}$   $\longleftrightarrow$   $CaY^{2-}$  +  $2H^+$  (Complex) (more stable)

Whereas with Mg2+ ions, a somewhat less stable complex is formed.

$$Mg^{2+}$$
 +  $H_2Y^{2-}$   $\longrightarrow$   $MgY^{2-}$  +  $2H^+$  (Complex) (less stable)

Also the order of stability is

$$Ca - EDTA > Mg - EDTA > Mg - In > Ca - In$$

• Ca<sup>2+</sup> ions can be determined by displacement/substitution titration. The displacement of substitution titration reports substitution titration may be used for metal ions (e.g., Ca<sup>2+</sup>) which do not react (or react unsatisfactorily) with most live in the most liv unsatisfactorily) with metal indicator or for metal ions (e.g., Ca<sup>2+</sup>) which do not react to unsatisfactorily) with metal indicator or for metal ions which form EDTA complexes that are more stable than the that are more stable than those of other metals such as Mg and Zn. Thus, this technique is useful where no satisfactor. is useful where no satisfactory indicator is available for the metal ion being determined.

The metal cation (Ca<sup>2+</sup>) to be determined. The metal cation (Ca<sup>2+</sup>) to be determined be treated with Mg – EDTA when the following reaction takes place.

$$Ca^{2+} + MgY^{2-} \longleftrightarrow CaY^{2-} + Mg^{2+}$$
(less stable) (more stable)

 $Ca^{2+}$  +  $MgY^{2-}$   $\longleftrightarrow$   $CaY^{2-}$  +  $Mg^{2+}$  (less stable) (more stable) The amount of  $Mg^{2+}$  ions set free is equivalent to the cations ( $Ca^{2+}$ ) present and can be titrated with a standard solution of EDTA and suitable metal indicator (i.e., Erichrome Black-T).

$$Mg^{2+}$$
 +  $HIn^{2-}$   $\longrightarrow$   $MgIn^{-}$  +  $H^{+}$  (Indicator) (Red)  $\longrightarrow$   $MgY^{2-}$  +  $HIn^{2-}$  +  $H^{+}$  (Red) (Blue)

- Procedure: 1. Preparation of Buffer Solution of NH3-NH4Cl (pH= 10): It is prepared by adding 142 mL concentrated NH3 solution to 17.5 g NH4Cl and diluting to 250 mL using distilled water.
  - 2. Preparation of Standard ZnSO<sub>4</sub> Solution in 100 mL Standard Flask: Prepare standard M/100 ZnSO<sub>4</sub> solution using distilled water by transference method.
  - 3. Titration of EDTA vs. Standard ZnSO<sub>4</sub> Solution (Standardisation of EDTA Solution): Rinse and fill the burette with EDTA solution. Pipette out 10 mL of standard ZnSO4 solution in a conical flask and add 20 mL of water to it. Further add 2 mL of basic buffer (NH3 - NH4Cl, pH = 10) and 2-3 drops of Erichrome Black-T as an indicator to it. Titrate the solution against EDTA solution until the colour changes from red to blue. Repeat the titration to obtain three concordant readings.
  - 4. Titration of EDTA vs. CaCO<sub>3</sub> Solution: Pipette out 10 mL of CaCO<sub>3</sub> solution in a conical flask and add 20 mL of deionised H2O to it. Then add 2 mL buffer (NH3-NH4Cl, pH = 10) and 2 mL of (M/10) Mg—EDTA complex (Mg—EDTA complex is prepared by mixing equal volumes of 0.2 M EDTA solution and 0.2 M MgSO<sub>4</sub> solution). Then add 2-3 drops of Erichrome Black-T as an indicator to it. Titrate the solution against EDTA solution until the color changes from red to blue. Repeat the titration to obtain three concordant readings.

### Observation and Calculation:

### Preparation of ZnSO<sub>4</sub> Solution in 100 mL Standard Flask

Molecular weight of  $ZnSO_4 = 287.56 g$ 

Mass of ZnSO<sub>4</sub> required to prepare (M/100) solution in 100 mL flask =0.4314 g

## M

## Titration of EDTA vs. Standard ZnSO<sub>4</sub> Solution:

Burette

Conical flask : EDTA : 10 mL standard ZnSO<sub>4</sub> + 20 mL H<sub>2</sub>O + 2 mL buffer

Indicator : Erichrome Black-T Colour change : Red to Blue

| SI.No. | Burette Reading |             | Val                      |
|--------|-----------------|-------------|--------------------------|
|        | Initial         | Final       | Volume of EDTA used (mL) |
| 1.     |                 |             | to transfer set.         |
| 2.     |                 |             | TT-Audi                  |
| 3.     |                 | - HIII + 17 | 1616                     |

Volume of EDTA used = 
$$V_{\text{EDTA}} =$$
\_\_\_\_mL  
 $M_{\text{EDTA}} \times V_{\text{EDTA}} = M_{\text{std. ZnSO}_4} \times V_{\text{std. ZnSO}_4}$   
 $M_{\text{EDTA}} =$ \_\_\_\_M

#### 3. Titration of EDTA vs. CaCO<sub>3</sub> Solution:

Burette EDTA.

10 mL CaCO<sub>3</sub> solution + 20 mL H<sub>2</sub>O + 2 mL Mg—EDTA complex + 2 mL buffer Conical flask Indicator

Erichrome Black-T.

Colour change Red to Blue.

| Burette Reading |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maria                         |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Initial         | Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume of<br>EDTA used (mL)   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A le principi A le            |
|                 | The state of the s | No. (0)                       |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Burette Reading Initial Final |

Volume of EDTA used = 
$$V_{\text{EDTA}}$$
 = \_\_\_\_mL  
 $M_{\text{CaCO}_3} \times V_{\text{CaCO}_3} = M_{\text{EDTA}} \times V_{\text{EDTA}}$   
 $M_{\text{CaCO}_3} =$  \_\_\_\_M

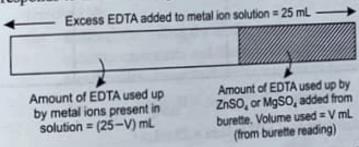
Strength of Ca (II) in given solution of  $CaCO_3 = M_{CaCO_1} \times atomic mass of Ca$  $= (M_{\text{CaCO}_3} \times 20) \text{ g/L}$ 

Result: The strength of Ca (II) in the given CaCO<sub>3</sub> solution is \_\_\_\_\_

### Experiment 11(f)

Aim:

To estimate the amount of Ca (II) in a sample of drug/milk/food sample/biological sample using (M/100) EDTA in complexometric titration using Erichrome Black-T as indicator by back titration. Prepare standard ZnSO<sub>4</sub> solution to standardise EDTA.


Theory:

Back Titration: There are many metal ions (like Ca2+) whose concentration cannot be determined discontinuous they be determined directly by titrating against EDTA solution. The reason being that they from inert complexes. It is the solution and the solution are solved to the solution and the solution are solved to the solution and the solution are solved to the solution are solved from inert complexes. Like in case of Ca2+, the complex formed between Ca2+ ion and Erichrome Black-T is not an example of Ca2+, the complex formed between Ca2+ ion and Erichrome Black-T is not very stable (the formation constant of Ca—In is very low). As

a consequence, significant conversion of Ca - In (red) to HIn2- (blue) occurs well before equivalence i.e. the color change occurs prematurely in the titration of Ca2+ with EDTA because Ca2+ ions has a large tendency to form Ca — EDTA complex. Thus, with Ca2+ ions alone, no sharp end point can be obtained and the transition from red to blue is not observed. Thus, when Ca2+ ions are directly titrated with EDTA, a relatively stable Ca complex is formed.

$$Ca^{2+}$$
 +  $H_2Y^{2-}$   $\longleftrightarrow$   $CaY^{2-}$  +  $2H^+$  (EDTA) (Complex)

Thus to determine the concentration of Ca2+ ions, an excess of EDTA solution is added to the solution of Ca2+ ions and the resulting solution is buffered to the desired pH. Some portion of the EDTA gets complexed with Ca2+ ions in the solution and the rest of the EDTA is back titrated with a standard metal ion solution (like ZnSO4 or ZnCl2 or MgCl2 or MgSO4) taken in the burette. The end point is determined by using the metal indicator which responds to the Zn2+ or Mg2+ ions introduced in the back titration.



- Procedure: 1. Preparation of Buffer Solution of NH3-NH4Cl (pH= 10): It is prepared by adding 142 mL concentrated NH<sub>3</sub> solution to 17.5 g NH<sub>4</sub>Cl and diluting to 250 mL using distilled
  - 2. Preparation of Standard ZnSO<sub>4</sub> Solution in 100 mL Standard Flask: Prepare standard M/100 ZnSO<sub>4</sub> solution using distilled water by transference method.
  - 3. Titration of Standard ZnSO<sub>4</sub> vs. Given Sample of Milk Containing Ca<sup>2+</sup> Ions: Pipette out 10 mL of given sample of milk (i.e., Ca2+ ions) in a conical flask. To this add 25 mL of 0.01 M EDTA solution to it and 2 mL of buffer (NH<sub>3</sub>—NH<sub>4</sub>Cl, pH = 10). Boil the solution for a few minutes to ensure complete complexation of the Ca2+ ions. Cool the solution to room temperature and again add 2 mL of buffer (NH3 - NH4Cl, pH = 10) and 2-3 drops of Erichrome Black-T as indicator. Titrate the solution quickly with standard ZnSO<sub>4</sub> solution taken in the burette until the color changes from blue to red. Repeat the titration to obtain three concordant readings. This volume corresponds to the excess EDTA in the solution which remains uncomplexed by Ca2+ ions and thus gets complexed with the Zn2+ added from the burette.

### Observation and Calculation: 1. Preparation of Standard ZnSO<sub>4</sub> Solution in 100 mL Standard Flask:

Molecular weight of ZnSO<sub>4</sub> = 287.56 g Molecular weight of ZnSO<sub>4</sub> = 287.30 g

Molecular weight of ZnSO<sub>4</sub> = 287.30 g

Molecular weight of ZnSO<sub>4</sub> = 287.30 g

Molecular weight of ZnSO<sub>4</sub> = 287.30 g

Molecular weight of ZnSO<sub>4</sub> = 287.30 g

Molecular weight of ZnSO<sub>4</sub> = 287.30 g

Molecular weight of ZnSO<sub>4</sub> = 287.30 g

Mass of bottle + 
$$ZnSO_4$$
 =  $w_2$  = \_\_\_\_ g

Mass of bottle after transferrence = 
$$w_3$$
 = \_\_\_\_ g

Amount of ZnSO<sub>4</sub> actually transferred =  $w_3 - w_2 = w$  = \_\_\_\_ g

 $M_{\text{std. ZnSO}_4} = \frac{w}{287.56} \times 10 = --- M$ 

#### 2. Titration of Standard ZnSO<sub>4</sub> vs. Given Sample of Milk Containing Ca<sup>2+</sup> Ions:

Burette : Standard ZnSO<sub>4</sub>.

Conical flask : 10 mL of given sample of milk + 20 mL EDTA + 4 mL buffer.

Indicator : Erichrome Black-T.

Colour change : Blue to red.

| SI.No. | Burette Reading            |                    | Volume of        |
|--------|----------------------------|--------------------|------------------|
|        | Initial                    | Final              | EDTA used (mL)   |
| 1.     | or district or a secondary |                    | THE COURSE SHAPE |
| 2.     |                            | THE RESERVE ATTEME |                  |
| 3.     |                            |                    |                  |

Volume of 
$$ZnSO_4$$
 used =  $V_{ZnSO_4}$  = \_\_\_\_mL  
Initial amount of EDTA taken = 25 mL

Amount of EDTA used by 
$$ZnSO_4 = V_{ZnSO_4} mL$$

Amount of EDTA used by 
$$Ca^{2+}$$
 ion =  $V_{Ca^{2+}}(25 - V_{ZnSO_4})$ 

$$M_{\text{Ca}^{2+}} \times V_{\text{Ca}^{2+}} = M_{\text{ZnSO}_4} \times V_{\text{ZnSO}_4}$$

$$M_{\text{Ca}^{2+}} \times (25 - V_{\text{ZnSO}_4}) = M_{\text{ZnSO}_4} \times V_{\text{ZnSO}_4 \text{ (Burette reading)}}$$

$$M_{\text{Ca}^{2+}} = M$$

Strength of  $Ca^{2+}$  ions in given sample of milk =  $M_{Ca^{2+}} \times$  atomic weight of Ca

$$= (M_{\text{Ca}^{2+}} \times 20) \text{ g/L}$$

Result: The strength of Ca<sup>2+</sup> ions in the given sample of milk is \_\_\_\_g/L.

#### Experiment 11(g)

Aim: To determine the total, temporary and permanent hardness of given water sample using

M/100 EDTA in complexometric titration using Erichrome Black-T as an indicator Prepare standard M/100 CaCO<sub>3</sub> solution and M/10 Mg—EDTA complex solution.

Theory: Hard and Soft Water: Depending on the nature of substances disolve in it, natural water is classified as hard and soft.

Soft Water: Water free from soluble salts of Ca/Mg bicarbonate, chloride, sulphate is called soft water. It readily gives lather with soap.

Hard Water: Water containing solube Ca and Mg salts of bicarbonates, chlorides and sulphates is called hard water. It does not give lather with soap because the sodium stearate present in soap changes to the corresponding Ca/Mg salts which precipitates out. Thus, hard water forms scum/precipitate with soap.

water forms scum/precipitate with soap.

Water forms scum/precipitate with soap.

$$2C_{17}H_{35}COONa + Ca^{2+}/Mg^{2+} \longrightarrow (C_{17}H_{35}COO)_2 Ca/Mg \downarrow + 2Na^{+}$$

For example, formation, hard water is unsuitable for laundary washing and

Because of this scum formation, hard water is unsuitable for laundary washing and dyeing. It is also harmful for steam boilers because over a period of time the inner surface of the boiler gets covered with the boiler scale (which is largely CaSO4, CaCO3 and magnesium oxychloride). This boiler scale is a poor heat conductor and thus efficiency is drastically effected and boilers have been put completely out of action by local overheating due to boiler scale. It is therefore necessary to make the water soft before it can be used.

- (A) Temporary Hardness: It is due to the presence of bicarbonates of Ca or Mg. It can be Hardness of water is of 2 types: removed by:
  - (a) Boiling: On boiling the soluble calcium bicarbonate changes to insoluble calcium carbonates and hence get precipitated and soluble magnesium bicarbonates change to insoluble magnesium hydroxides.

tes change to insoluble magnesium hydroxides.

$$Ca(HCO_3)_2 \xrightarrow{\Delta} CaCO_3 \downarrow + H_2O + CO_2 \uparrow$$

$$Mg(HCO_3)_2 \xrightarrow{\Delta} Mg(OH)_2 \downarrow + 2CO_2 \uparrow$$

$$Mg(HCO_3)_2 \xrightarrow{\Delta} Mg(OH)_2 \downarrow + 2CO_2 \uparrow$$

(b) Clark's Process: In this, calculated quantity of lime is added to hard water which causes precipitation of calcium carbonate and magnesium hyroxide which can be filtered off.

which causes proof which can be filtered off.

$$Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + 2Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + 2Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + 2H_2O$$

$$Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + Mg(OH_2) \downarrow + Mg(OH_2)$$

- (B) Permanent Hardness: It is due to the presence of soluble Ca/Mg sulphates/ chlorides. It cannot be removed by boiling. It can be removed by.
  - Treatment with Na2CO3 (washing soda):  $CaSO_4 + Na_2CO_3 \rightleftharpoons CaCO_3 \downarrow + Na_2SO_4$

 $MgSO_4 + Na_2CO_3 \longrightarrow MgCO_3 \downarrow + 2NaCl$ 

Other methods to remove permanent harndness involves ion-exchange method, synthetic Hardness of water is generally due to dissolved Ca and Mg salts and may be determined by

complexometric titration. The hardness is expressed in parts of CaCO<sub>3</sub> per million of water. 1. Preparation of Buffer Solution of NH<sub>3</sub>-NH<sub>4</sub>Cl (pH= 10): It is prepared by adding 142 mL 142 mL concentrated NH<sub>3</sub> solution to 17.5 g NH<sub>4</sub>Cl and diluting to 250 mL using distilled Procedure:

- 2. Preparation of Standard Hard Water (Standard M/100 CaCO<sub>3</sub> in 1000 mL Standard Files of Standard Hard Water (Standard M/100 CaCO<sub>3</sub> in 1000 mL
- Standard Flask): Take 1 g of CaCO<sub>3</sub> and dissolve it in dilute HCl (as CaCO<sub>3</sub> is insoluble): insoluble in water, so first dissolved in dilute HCl) and then evaporate to dryness on

- water bath. The residue left is dissolved in distilled water to make one litre solution. Each mL of this solution contains 1 mg of CaCO<sub>3</sub>.
- 3. Titration of EDTA vs. Standard Hard Water (Standardisation of EDTA): Rinse and fill the burette with EDTA. Pipette out 50 mL of standard hard water in a conical flask. Then add 10 mL buffer (NH<sub>3</sub>—NH<sub>4</sub>Cl, pH = 10) and 10 mL of Mg EDTA complex (Mg EDTA complex is prepared by mixing equal volumes of 0.2 M EDTA solution and 0.2 M MgSO<sub>4</sub> solution). Then add 2–3 drop of Erichrome Black-T as an indicator to it. Titrate the solution against EDTA solution until the colour changes from red to blue. Repeat the titration to obtain three concordant readings.
- 4. Titration of EDTA vs. Given Sample of Water (Determination of Total Hardness): Pipette out 50 mL of given sample of water in a conical flask. Then add 10 mL buffer (NH<sub>3</sub> NH<sub>4</sub>Cl, pH = 10) and 10 mL of Mg EDTA complex. Then add 2-3 drops of Erichrome Black-T as an indicator to it. Titrate the solution against EDTA solution, until the color changes from red to blue. Repeat the titration to obtain three concordant readings.
- 5. Titration of EDTA vs. given sample of water (Determination of Permanent hardness): Take 250 mL of the given sample of water in a 500 mL beaker and boil gently for 20-30 minutes (by boiling, temporary hardness present would be precipitated out as CaCO3 or MgCO<sub>3</sub>). Cool and filter it directly into a 250 mL standard flask. Also during filtration, do not wash the filter paper. Then dilute the filtrate upto the mark with deionsed water and mix well.

Take 50 mL of the filtrate in a conical flask. Then add 10 mL buffer (NH<sub>3</sub>—NH<sub>4</sub>Cl, pH = 10) and 10 mL of Mg — EDTA complex. Then add 2-3 drops of Erichrome Black-T as an indicator to it. Titrate the solution against EDTA solution until the color changes from red to blue. Repeat the titration to obtain three concordant readings.

 Determination of Temporary Hardness: Temporary hardness of given sample of water is calculated by substracting the permanent hardness from the total hardness.

#### Observation and Calculation:

Let volume of the water taken for each titration = 50 mL

Volume of EDTA used when titrated against standard hard water = V1 mL.

Volume of EDTA used when titrated against given sample of hard water = V<sub>2</sub> mL.

Volume of EDTA used when titrated against water having permanent hardness = V<sub>3</sub> mL.

#### (a) Strength of EDTA Solution:

1 mL of standard hard water contains = 1 mg of CaCO<sub>3</sub>.

50 mL of standard hard water contains = 50 mg of CaCO<sub>3</sub>.

Volume of EDTA consumed for 50 mL of standard hard water =  $V_1$  mL.

:. V<sub>1</sub> mL of EDTA is used for = 50 mg of CaCO<sub>3</sub>.

1 mL of EDTA is used for =  $\left(\frac{50}{V_1}\right)$  mg of CaCO<sub>3</sub> or Strength of EDTA solution =  $\left(\frac{50}{V_1}\right)$  mg/mL of EDTA.

# (b) Total Hardness:

Volume of EDTA used for 50 mL of given sample of hard water =  $(V_2)$  mL. Since, 1 mL of EDTA will consume =  $\left(\frac{50}{V_1}\right)$  mg of CaCO<sub>3</sub>  $V_2$  mL of EDTA will consume =  $\left(\frac{50}{V_1} \times V_2\right)$  mg of CaCO<sub>3</sub> Hence, 50 mL of given sample of hard water =  $\left(\frac{50}{V_1} \times V_2\right)$  mg of CaCO<sub>3</sub> 1 mL of sample water =  $\left(\frac{50 \times V_2}{V_1} \times \frac{1}{50}\right)$  mg of CaCO<sub>3</sub> 1000 mL of sample water =  $\left(\frac{50 \times V_2}{V_1} \times \frac{1000}{50}\right)$  mg of CaCO<sub>3</sub>  $= \frac{V_2 \times 1000}{V_1} \text{ mg of CaCO}_3$ Total hardness =  $\frac{V_2 \times 1000}{V}$  ppm

#### (c) Permanent Hardness:

Volume of EDTA used for 50 mL of water, containing permanent hardness =  $V_3$  mL.

Since, 1 mL of EDTA consumes =  $\left(\frac{50}{V_1}\right)$  mg of CaCO<sub>3</sub>.

 $V_3$  mL of EDTA consumes =  $\left(\frac{50}{V_1} \times V_3\right)$  mg of CaCO<sub>3</sub>.

Hence, 50 mL of given sample of water contains permanent hardness =  $\left(\frac{50}{V_1} \times V_3\right)$  mg of CaCO<sub>3</sub>.

1 mL of given sample of water contains permanent hardness =  $\left(\frac{50 \times V_3}{V_1} \times \frac{1}{50}\right)$  mg of CaCO<sub>3</sub>.

1000 mL of water contains permanent =  $\left(\frac{50 \times V_3}{V_1} \times \frac{1000}{50}\right)$  mg of CaCO<sub>3</sub>.

$$= \left(\frac{V_3 \times 1000}{V_1}\right) \text{mg}$$

Permanent hardness =  $\frac{V_3}{V} \times 1000 \text{ ppm}$ 

(d) Temporary Hardness = Total hardness - Permanent hardness.

$$= \left(\frac{V_2 \times 1000}{V_1} - \frac{V_3 \times 1000}{V_1}\right) \text{ppm.}$$

Result:

The given sample of hard water contains

- ppm (a) Total hardness
- ppm (b) Permanent hardness
- ppm (c) Temporary hardness