NOTES ON METRIC SPACES

JUAN PABLO XANDRI

1. INTRODUCTION

Let X be an arbitrary set, which could consist of vectors in R", functions, sequences,
matrices, etc. We want to endow this set with a metric; i.e a way to measure distances
between elements of X. A distance or metric is a function d : X x X — R such that
if we take two elements x,y € X the number d (z,y) gives us the distance between them.
However, not just any function may be considered a metric: as we will see in the formal
definition, a distance needs to satisfy certain properties.

Definition 1.1 (Metric Spaces). Given a set X and a function d : X x X — R, we
say that the pair M = (X,d) is a metric space if and only if d(-) satisfies the following
properties:

(1) (Non-negativeness) For all z,y € X, d(z,y) >0
(2) (Identification) For all z,y € X we have that d(z,y) =0 <= z =y
(3) (Symmetry) For all z,y € X, d(z,y) =d(y,z)

(4) (Triangular inequality) For all z,y,z € X we have that

)

(1.1 d(z,z) <d(z,y) +d(y,=2)

Property (1) just states that a distance is always a non-negative number. Property (2)
tells us that the distance identifies points; i.e. if the distance between x and y is zero, it is
because we are considering the same point. Property (3) states that a metric must measure
distances symmetrically; i.e. it does not matter where we start measuring it. Finally, the
triangular inequality is a generalization of the famous result that holds for the euclidean
distance in the plane

2. EXAMPLES OF METRIC SPACES

2.1. Norms in vector spaces. Let X = R". The typical distance used is the euclidean
distance, defined as

n

da (z,y) = | > (2 — yi)?

i=1
For this metric, all properties except (1.1) are trivially shown. The triangular inequality is

a well known result from linear algebra, known as the Cauchy-Schwartz inequality. However,
1
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this is not the only distance we could define over R™. Consider the distance

n

di (z,y) =) lvi = yil

i=1
which is known as the “taxicab distance”. Another one we could use is the so called “max
distance”, defined as

o (2.) = ma [ — i

where [1:n] = {1,2,--- ,n}. Notice that all this distances can be written as d (z,y) =
N (z — y), for some function N : R” — R. In general, one could define a lot of distances,
based on different functions N(-) that one can come up with. In particular, sometimes we
are interested in a subset of functions called norms. We will define them in a way that it
applies to any vector space X (i.e. any space in which you can calculate z + y and az
with a € R with the usual rules).

Definition 2.1 (Norms). Let X be a vector space (e.g. X =R") and N : X — R. We say
N (+) is a norm if the following 4 conditions hold:

(i): : N(z) >0forallz € X

(ii): : N(z) =0 <= z=0forallz € X
(iii): : N(az) = |a|N(z) foralla e R, z € X
(iv): : N(a+b) <N (a) + N (b) for all a,b € X

Exercise 2.1. Show that the functions Ny (z) = /22, N () = 3, |z;| and N (z) = |z;]

are norms

Proposition 2.1. Let X be a vector space (e.g. X = R") and define dx : X x X — R as
Then, Mn = (X,dN) is a metric space

Proof. We need to prove each of the properties of a distance (from 1 to 4).

Non negativity (1) : Easy, since N (-) > 0 always
Identification (2) : Follows from

dn (z,y) =0 <= Nz —y)=0<=2—y=0 <= =y
(i)
Symmetry (3) : Follows from

dn (z,y) = N (z —y) = N((=1) (y — 2))

=|-1IN(y —z) = dn (y,7)
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Triangle inequality (4) : Take z,y,z € X :
dn(z,2) =N(z—y)=N(@-z2+z2-y) <N (:c—y)+N y— 2| =dn(z,y)+dn (. 2)
=b

O

2.2. Functional Spaces. Probably the most important new concept will be the space X
that consists of functions instead of vectors. The most important one is the so-called “sup-
norm metric” space: pick a norm N : R™ — R and a set A C R™ and define

(2.1) X ={f:A— B such that 3Ky > Osuch that N [f ()] < Kfor all z € A}

(2.2) doo (f,9) = i‘éEN (f (z) —g())

We define the metric space M = B(A,R") = (X, d) as the set of bounded functions
from A to R"™. Note that X is a vector space, defining the sum of functions as the point-wise
sum; i.e.
(f+9)(x)=f(x)+g(z) forallz € A
since the sum of bounded functions is also bounded. Hence, if we show that the function
(2.3) N*(f) = sup [N [f (2)]|
€A

is itself a norm for X, we can apply Proposition 2.1 to show B (A,R™) is indeed a metric
space. First, we need to show that N*(f) < oo for all f € X (i.e. it is a well defined
object). This can be done since we are only taking functions that are bounded, and hence
the supremum always exist (the so-called “Axiom of completeness” of the real numbers).

Now, we show the properties of a norm.
(i) : N*(f) >0 for all f € X. This follows from N being itself a norm

(ic) : N*(f) =0 < f(z) =0forallz € A.
N*(f) =0 <= ZEBN[f(x)]:O<(——)>N[f(x)]:()forall$EA<j
f(x)y=0forallz e A

(a) follows from the fact that if N [f (&)] > 0 for some & € A, then the sup would have to
also be strictly positive. (b) follows from N () being a norm (Property (ii) )

(iii) : N* (af) = |a| N* (f). This comes from the homogeneity of the sup operator:

N*(af) = sup N[af ()] Z_sup|a] N[f (z)] = |afsup N |f (z)] = |o| N" (f)
Tre © Tre Tre

where (c) follows from the fact that N is a norm.
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(iv) : Triangular inequality.

N*(f +9) = EEEN [f (2) + g ()] < ilelgN [f (2)|+N[g ()] = i yggg:yN [f (2)]+N g (y)] <

sup N[f (z)] + sup Ng(y)] = N*(f) + N*(g)

and hence, B (A, R™) is indeed a metric space.

Exercise 2.2. Let A C R". Show that the following are metric spaces: £; (4,R) = (X1, d;)

where
X, = {f:A—>]Rsuch that [, |f ()l dx < OO}

()= [ ) - g(@)ds
€A
and Lo (A,R) = (X, d2) where
X = {f:A—)IRsuchthat f$€Af2(x)dx<oo}

d2 (f,9) :\//EA [f (z) — g ()]* dx

In general, show that given a norm N : R™ — R the pair £n (4,R) = (XN, dn) defined

as
XN:{f:AﬁRsuchthat foAN[f(:c)]dx<oo}

dn (f,g)E/eAN[f(x)—g(w)]d:E

N ={/ NI (@]pd@«}i

is a metric space as well, for any p > 0.

3. METRIC TOPOLOGY

In this section we will be studying the concept of “neighborhood” or closeness in generic

metric spaces. This will be useful when generalizing concepts like “open sets”, “continuous

MW

functions”, “compact sets”, etc.

3.1. Open and closed balls.

Definition 3.1 (Open Ball). Given a metric space M = (X,d), a € X and r > 0 we

define the open ball of center a and radius r as the set

B(a,r)={ze X : d(a,z) <r}
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Definition 3.2 (Open Ball). Given a metric space M = (X,d), a € X and r > 0 we
define the closed ball of center a and radius r as the set

B(a,r)={ze X : d(a,z) <r}
For example, in B ([~1,1],R) when we take the center f () = 23 and radius r, is easy to

see that
gEB(f,r) < g(@) € (f(z)—r f(z)+7)

3.2. Open and closed sets. In our first calculus courses, we saw that an “open set” was
one that did not include its “border”, or more formally, its “frontier”. However, in generic
metric spaces this cannot be graphically checked, so we need to have the formal definition of
this concept. The basic idea is that for a set to be open (and not include its border), every
time we pick an element x € A we must be able to find an open ball around it that it is also

completely included on the same set A.

Definition 3.3 (Interior of a set). Let M = (X,d) be a metric space and A C X. We
say that x € A is interior of A <= 3r; > 0 such that B (z,7;) C A. The set of all interior

points of A is called the interior of A, and is written as A

Definition 3.4 (Open set). A set AC X isopen <= A=A
The first example of open set is in fact, the open balls themselves:

Proposition 3.1 (Open balls are open). Given M = (X,d) a metric space, x € X and
r >0, the set A= B (x,r) is an open set.

Proof. To prove A is open we need to show that for any z € B (z,r) < d(z,z) <r we
need to find a radius r, > 0 such that B (z,r,) C A = B (z,r). This equivalent to prove the

following statement:
(3.1) Ir,>0:forallye X,ifd(y,z) <r, = d(z,y) <r

A natural candidate would be r, = r — d(x, 2). In fact, when r, = r — d (z, z), then for
any y € B(z,r,) :

d(w,y) <d(z,2) +d(zy) < dxz)+[r—d@z)]=r
d(y,z) > r.

and hence d (z,y) <r (i.e. y € B(z,7) ) as we wanted to show. O

In basic calculus, we also thought of “closed sets” as those sets that would include its

boundary, unlike open sets. Intuitively, a set is closed if it includes all the points that are

“pasted to it” in a sense. This concept is that of closure points.
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Definition 3.5 (Closure Set). Given a m.s M = (X,d) and a set A C X , we say that
x € X is a closure point of A <= the following rule holds:

Vr > 0 we have B (z,7) N A # ()

i.e. no matter how close you get to x, there is always a point in A which is even closer to x.
The set of all closure points of A is called the closure of A and is denoted by A

Definition 3.6 (Closed set). A set A C X is closed < A=A

The first result we get, for any given set, is that A is “in between” its interior and its

closure

Proposition 3.2. For any subset A C X, we have
AcAcA
Proof. That A C A is obvious, since if # € A = 3B (x,7) C A and = € B(x,r). For

the closure, is just suffices to note that for any x € A and any r > 0 we have that = €
B(xz,r)N A = z is a closure point. O

Another important property is the one that relates closed an open sets: an closed set is,

by definition, the complement of an open set.

Theorem 3.1. Let M = (X, d) be a metric space. Then the following rule holds:
AC X isopen <= A°={xe X w ¢ A} is closed
and vice versa

Proof. ( Direct —)Suppose A is open. We need to show that A° is closed. Suppose, by
contradiction, that it is not: i.e. there exists a point # € A¢ such that & ¢ A° < % € A.
Since A is open exists 7 > 0 such that B (z,7) C A

I >0: B(z,7) CA=

(3.2) I3 >0: B(2,7)NA =0

But (3.2) contradicts the definition of closure point of A¢ for z = %, and hence & ¢ A°, a
contradiction

( Converse <=) Suppose A€ is closed, and we have to show A is open. Suppose, by
contradiction, that it was not: then, there exist a point & € A that is not interior: i.e.

Vr > 0 exists y € B (z)r) such that y ¢ A <

(3.3) Vr > 0 we have B (Z,7) N A° £ ()
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Condition (3.3) then implies that & is a closure point, and since A€ is closed, we must have
Z € A° < 1z ¢ A. But this contradicts the initial assumption that & € A, proving the

desired result. O
3.3. Operations between open and closed sets.

Theorem 3.2 (Metric Topology). For any given metric space M = (X, d):

(1) A= X and A= are open sets
(2) Let O be a family of open sets of (X,d). Then the set

A*EUA

AeO

s also open
(3) Let {A1, Aa, ..., Ar} be a finite family of open sets. Then the set

i=k
=1
s also open

Proof. Condition (1) is trivial. Take a family of open sets F and take x € A*. Now

r€eEA" — JA, e F:zx e A, = Iry >0: B(z,ry) €Ay CUger4
A, open
= Jdry: B(z,r;) CA
and hence A* is open. For (3), we know that
re€A, < weAforaliell:k] = It >0: B(.fCi,Ti) C A, foralliel[l:k]
A; open

Then, by choosing r, = min; 7%, we have that
i=k
B(z,r,) CB (azjr;) CA;forallie[l: k] = B(x,ry) C ﬂ A=A,
i=1

as we wanted to show. OJ

Corollary 3.1. Given a metric space M = (X,d) the following properties hold:
(1) A= X and A= 10 are closed
(2) Let C be a family of closed sets. Then
c.=C
ceC

1s closed

(3) If {C1,Cy,...,Cy} are closed sets, then

k
cr=Ja
i=1
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s closed too.

Proof. Use previous theorem, jointly with DeMorgan rules: for any family of sets F C
{A: AC X} we have

0y

AeF AeF
(U)o
AeF AeF

O

Remark: Theorem 3.2 is very important, since it relates to the theory of topological
spaces. These are spaces of the form (X, Q) where O is a family of subsets of X that satisfy
properties (1) to (3) of Theorem 3.2. Such a family O is referred to as a topology for X.
That is, in topological spaces, instead of deriving the notion of open and closed sets from a
predefined metric, we start right from Theorem 3.2, treating the “list” of open sets O as a

primitive, and not a result, of the space we study.

4. CONTINUOUS FUNCTIONS

In our elementary calculus courses, he have learned that a continuous function is one that
takes “close” points from its domain X and takes them to also “close” points of the image

Y. We formalize this idea in the definition below.

Definition 4.1 (Continuity). Given metric spaces Mx = (X,dx) and My = (X,dy)
and x € X, we say that a function f : X — Y is continuous at x <= the following rule
holds: for all € > 0 we can find 6., > 0 such that

if yis such that dx (x,y) < dco = dy (f (2), f (y)) <.

or, equivalently: if Bx (-) and By (-) denote open balls in spaces X and Y respectively, f is

continuous at f <=
d0er > 0: f[Bx (x,0e2)] € By [f (2),€]
when f (+) is continuous for all x € X we say “f is continuous”.

4.1. Examples. Example (1) : Let (X,dx) = (Y,dy) = (R, |z —y|) and f (z) = 3z. We
want to show that f is continuous. Take z € R and € > 0, and we need to find d., > 0 such
that if |z — y| < 6., = we also have |f (z) — f (y)| < e. Now, see that

[f () = f(y)l = 3]z =yl

so, if we take 0, = %€, we have that if y : [z — y| < %e then

If (x) = f (y)] = 3]z — y] <3§e:e

proving the desired result.
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Example (2) : Same distance as before, but now X =R, and f (z) = /. Note that:
f —

Therefore, by taking d. , = €/z we have that if |z — y| < ey/z:

y| lz -yl ez
f+f‘ NN

foranya:>0y>0

Vr— vyl =

as we wanted to show.

Example (3) : Suppose A C R" is a bounded Borel set (i.e. we can write an integral on
it), and take (X,dx) = B(A,R) N {f integrable}, (Y,dy)= (R,|z —y|) and T": B(A,R) —

R defined as
()= [ 1@

i.e. T is the calculation of the integral, thought of as a function from the set of all functions

to the real numbers. We will show that T is continuous (for all f integrable). See that for

/A[f( /!f z)| d

sup [f (2) — g (2)1 dx = /Adoo (fi9)dz = p(A)ds (f,9)

zEA

any pair of functions f, g

7=l =|[ f@de= [ gl)as| -
S/A

where ;1 (A) = [, 1dz is the volume of set A. Therefore, given f € X, by taking d 5 = ﬁe
we have that if g : doo (f,9) < ) then

V”ﬁ—T@NSMMMwUﬂ%ﬂNm;€5:€

and hence T is a continuous function.

4.2. Continuity and Topology.

Theorem 4.1. Let (X,dx) and (Y,dy) be two metric spaces, and f: X —Y. Then f is a

continuous function <= the following rule holds:
(4.1) for any open set A C Y we have that f~1 (A) C Xis also open

i.e. the pre-image of open sets is always open.

Proof. (Direct =) Suppose f is continuous, and we want to prove this rule. Take A C Y
an open set: we want to then show that U = f~!(A) is also an open set in (X,dx): i.e.
for any given x € f~1 (A) we need to find 7, > 0 such that By (x,7,) C f~1(A) as well.
Since A is open, we know there exists ry,) > 0 such that By (f (2) ,'r’f(x)) C A. Since

[ is continuous, take € = ry(,) and use it in the definition of continuity: this gives as a
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dee = Orp(, 2 > 0 such that

f [BX (w,&f(w),a;)} C By [f (z) 7Tf(x)} cA
and hence
Bx (2,0ry)2) € F7H(4)

Therefore, we finish the proof by taking r, = 4. () (which as you see, depends only on
the point taken )

(Converse <) If the rule holds, we need to show f is continuous: i.e. given z € X and
e > 0 we need to find 6., > 0 such that f[Bx (z,dc2)] € By [f () ,rf(m)}. Let Ac, =
By (f (x),€). We know that open balls are open, and hence A, is a open subset of Y. Since
the rule in (4.1) is assumed to hold, we know that the set f~1 (A..) = f~! [By (f (2),€)] is
open as well, and since z € A, ;, = there exist some radius ¢, > 0 such that

BX (xvre,z) g fil (AGJ) <~

forally € X : dX(l‘,y)<T€7x:>y€f_1(Ae,x) < f(y) € By (f(x),¢)

ie. dy (f (z), f (y)) < e. Hence, we prove the desired result by choosing 0, = 7¢, (i.e. the
radius involved with the fact that x is interior to the pre-image of By (f (x),€) ) O

In the theory of topological spaces, this theorem is in fact the definition of continuous
function, since it is defined completely in terms of open sets alone. This theorem is also

called the sign conservation theorem, when ¥ = R, as we show in the following Corollary:

Corollary 4.1. Let (X,dx) a metric space and f : X — R a continuous function. Then,
the set
A={zeX : f(x)>0}

is an open set. Moreover, the set
C={xeX : f(x)>0}
is closed

Proof. Simply take U = (0, 4+0oc) (an open set) and note that A = f~* (U), and hence open.
For C, see that we can write it as

C

C=[f" (=0
the complement of an open set as well, and hence closed. ]

A lot of important results of continuous functions can be easily shown using Theorem 4.1.

Theorem 4.2 (Composite of continuous functions). Let (X,dx), (Y,dy),(Z,dz) three
metric spaces, and f : X =Y and g :Y — Z two continuous functions. Then, the composite
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function h : X — Z defined as

h(z)=(g9f) (x) =glf ()]
s also continuous.

Proof. Take an open set A C Z. We need to show that A~ (A) C X is also open. For that,
see that

B (A) = (gf) T (A) = 7 g7 (4)]
Now, g~ 1 (A) C Y is an open set since g (-) is continuous, and also is f~! [¢g~! (A4)], from
the continuity of f, finishing the proof. O

5. SEQUENCES

A sequence is simply a function = : N :— X. We usually write z,, = z(n) € X and
{Zn},en = 7 (+) instead, since we try to distinguish between sequences and other functions
from more generic domains. One of the most important concepts related to sequences is
that of convergence. We say that a sequence converges to an element x if the tail of the
sequence is, eventually, arbitrarily close to x, and hence x,, =~ x when n is “large”. We
formalize this idea in the definition below

Definition 5.1 (Convergence). For a given metric space M = (X,d) and a sequence
{Zn},en in X, we say that x,, converges to x € X <= The following rule holds:

for any € > 03N, € Nsuch that for all n > N, we have d (x,,z) < €

i.e. for any given “closeness” to x, we can find an index N, such that after n = N, the

whole tail of the sequence is within € of z. We usually write

Tp — 2 or limy,_voo Ty, =

5.1. Examples. (1) : Suppose (X,d) = (R, |z — y|). We show that z,, =
take € > 0 and we must find N.such that if n > N, we must have ’% — 0‘

by taking
1 1
N, = [—‘ Emin{neN: n>}
€ €

we have that if n > N, > % — % < € as we wanted to show.

1
n

— 0. For this,
L1 < €. Hence,

n

(2) : Suppose we take the same metric and sequence as before, but now X = (0,1). See
that now, it is no longer true that x,, — 0, since 0 ¢ X (even though it is the intuitive limit
of z,,). In some sense, z,, does not converge in the metric space M = ((0,1), |z — y|) because
X is “incomplete”: it is missing some of the limits of sequences that should converge. This

will relate to the concept of complete metric spaces later on.

(3) : Suppose now that X = B([0,1],R) and d = d and the sequence

1 2
fn(x) =2+ = for all x € [0,1]
n" o on
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we will show that f, — 0(x) = 0 for all x. See that

1 2 1 2 3
doe (0 ().0()) = sup | 2 —0] == (sup 2 ) + 2 =2 0
zef0y ln n " \zelo0,1] non
so we have shown the desired result: see that N, = [%-‘ satisfies the definition of conver-

gence.

(4) : Same metric space as in (3), only that now the sequence we consider is

fo (z) = 2"

What is the natural “candidate” for the limit of this sequence? One would be the so called
“point wise limit” : i.e. the limit of f,, (z) for every single z. See that

0 ifz<l
for given z € [0,1], lim f,(x)= = f*(z)
oo 1 ifz=1

However, the fact that f converges to the limit function f* for any given x does not imply
that f, — f* as a sequence in B([0,1],R). To understand what we mean by this, let’s
calculate the distance between the sequence and f*:

n
doo (f () /" () = sup [a" = f* ()] = sup {"” te<ly
z€[0,1] ze[0,1] |0 ifz=1
But then, doo (frn (+), f*(-)) = 0, which is the required definition for convergence.
What went wrong here? The problem is that there is a difference between convergence
in the sup-norm dy (usually referred to as uniform convergence) and convergence for all z
(called point wise convergence). While is true that uniform convergence implies point wise

convergence, this example shows that the converse is not true.

Proposition 5.1. Let f, be a sequence of bounded functions in B (A, R™) with A C R",
and f € B(A,R™) such that

(5.1) fo—f < supN|[fn(x)— f(z)] >0 asn— oo
€A

i.e. fn converges uniformly to f. Then, for all x € A, the sequence f, (x) € A converges to

f(z) (i-e. fn converges point wise to f)

Proof. It simply follows from the fact that, for any xz € A :

(5:2) 0 <N[fn(z) = f(2)] < zlelBN [fn(y) = F(y)] =0

where the last part comes from condition 5.1. Therefore N [f, (z) — f(z)] — 0 <~
fn () = f(z) for any x € A, as we wanted to show. O

5.2. Topology and Sequences. Why do we care about sequences? It turns out they
provide an easier characterization of most topological concepts: particularly relating to
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closed sets, and how we can check a set is closed without referring to the original definition.

This is the purpose of Theorem 5.1

Theorem 5.1 (Sequential Definition of Closed sets). Let M = (X,d) be a metric space and
C C X. Then, the set C is closed <= the following rule holds: if a sequence {,},cx 15
such that (1) x,, € C for allm and (2) 3x : x, — x, then we must also have that x € C

Theorem 5.1 tells us that showing that a set C' is closed is equivalent to showing a
“theorem”, that states that whenever we have a convergent sequence of points inside the

set, we must be able to show that the limit is inside the set as well.

Proof. (= Direct) Suppose C is closed, and that we have a sequence z,, € C for all n such
that z, — x. We need to show that if that is the case, then we must have x € C as well. We
will prove this by contradiction: suppose the rule is not true, so that x ¢ C' <= x € C°,
which is an open set, since C' is closed by assumption. Therefore, there exist » > 0 such
that Vy : d (z,y) <r =y ¢ C. But since x,, - = we know that if we take ¢ = r we know
that for any n > N.—, we have d (z,,z) < e = r and hence z,, ¢ C for all n > N,.. But this
contradicts the assumption that z,, € C for all n, and hence x must be in C

(<= Reciprocal) Suppose that the rule is true, and we need to show that C' is closed.
Again, the proof will be by contradiction: suppose C is not closed, and hence 3% € C
such that & ¢ C. Now,

2eC < foralle>0, B(Z,e)NC#0

(5.3) <= for all € > 0 there exist z. € C: d(&,z) < €

What we will do now is create a sequence z,, such that x,, € C for all n and x,, — Z :
simply substitute in 5.3 € = % and define x,, = z__1. See that by definition of z1 we must
have x,, € C. Moreover, ! !

0<d(xzpn,2) :d<z%,§:) < % =0
and hence d (z,,2) - 0 <= x, — &. And here lies the contradiction: if the sequence rule
is true, then since x, € C for all n and moreover, x,, — &, we must therefore have & € C.

But we assumed that & ¢ C, reaching the desired contradiction. U

Example 5.1 (Set of non-decreasing functions). Take (X, d) = B(A,R) and the subset
defined as

C={feX: :ife>y=f(z)> f(y) foral z,y € A}
i.e. C is the set of non-decreasing functions. We will show that C is a closed set of functions,
and we will use Theorem 5.1 to show it: i.e. we need to show that the following “Theorem”

is true:

if {fn}nen is such that f, € Cfor all n and f, — f=f € C as well.
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Suppose, by contradiction, that it was not true: hence, there would exist a sequence f,
of non-decreasing functions, converging to a function f that has the following property:
3%,5 € A with & > ¢ but f (2) < f(9). If this was the case, given this pair of points, define
the sequence

an = fo (&) — [ (9)

Since f, € C' by assumption, and & > § we must have a,, > 0 for all n. Moreover, from

Proposition 5.1 we know that

an = 1m[fu (&) = o (§)] = F (&) = £ (5) < 0

which is not possible, since awhich is a closed set, and hence a should be in it, and not in

(—00,0), reaching hence a contradiction.

Example 5.2 (Set of continuous functions). Same space as in Example 5.1, but now
C(A,R™)={f € X : fis continuous for all z € A}

i.e. the set of all bounded, continuous functions. We want to show that this set is closed:
for that, take a sequence f,, € C (A, R™) of continuous functions, and take the limit f € X.
We need to show that f is continuous. For that, take any x € A and ¢ > 0, and we need
to find ¢, > 0 such that if y : N(z —y) < e = N|[f (z) — f (y)] < e. See that for any
n €N:

Nf(z) = f ()] SNf(x) —fo(2) + fu ()= fn(y) + fu(y) = f(y)] <

(5.4)
N[fn () = f(@)4+N[fo (z) = fo @]+N[fn (y) — f ()] SN [fp (2) — fo (y)]+2sup N [fy (2) — [ (2)]

zEA
Now, since f, — f we know that there exists n = n¢ such that if n > ne = dog (fn, f) =
sup,e4 N [fn (2) — f (2)] < §. Since inequality 5.4 is true for any n, is particularly true for
n=ne, and hence

N{f (@) = f ()] <N | foy @) = fu, @) +25 =N [fu, @) = fa, 0)] + 5
Ify: N(z—vy)< (%x — N [fni () — f"i (y)} < §. Hence,
NIf (@)= f )] <N [fag @) = fug )] + 5 <

2 wWhere ¢ is the one

(S5

And since the function f,, (-) is also continuous, if we take d., = 5
4

that comes from the continuity of f,,. (). Then,
4

SO O¢p = 557‘% works to show that f is continuous at z, as we wanted to show
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5.3. Sequences and continuous functions. Probably one of the most useful theorems of

calculus is that continuous functions commute limits: that is, if f is continuous

lim f(zn)=f ( lim xn)

n—oo n—oo
Turns out that this is in fact a characterization of continuity in general metric spaces, as

we see in the following theorem.
Theorem 5.2. Let Mx = (X,dx) and My = (Y,dy) two metric spaces, and f: X =Y.
Then

f is continuous at x € X <= the following rule holds: if x, — xthen f (x,) — f(x)
Proof. (= Direct) Suppose f is continuous: we want to show that if =, — x then
f (xn) — f (x). For that, we need to find N/ such that if n > N/ then dy (f (z,), f (2)) <
e. Since f is a continuous function, we know that 3d., > 0: dx (z,y) < 0, implies
d(f(z), f(y)) < e Since x,, — z, simply take NS = e=s., from the definition of conver-
gence of z,, and continuity proves the rest.

(«<=Converse) By contradiction: suppose the rule is true, but f is not continuous. That

is:
(5.5) Je > 0 : V0 > 0 there exist ys € B (x,6) such that d(x,y5) > €

Now, we will define a sequence z,, — x such that f (z,) /4 f (z), which would contradict

the fact that f was not continuous. Define
Ip = y&:%

i.e. take § = % and let x,, be the ys = y1 of condition 5.5. Now, that same condition implies
that

1 1
wn=y1€B<x,> — 0<d(zp,2) < ——0
n n n

and hence x,, — x. However, we have
d(f(xzp),z)>€>0foralneN

violating the proposed rule. O

6. COMPACT SETS
In R™, we use the definition:
Compact set =Closed and bounded

It is a concept of great importance, since most of the most used theorems in economics
involve compact sets, most notably the Weierstrass theorem, that states that any con-

tinuous function defined on a compact set has maximum and minimum values. Turns out
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that the extension of the concept of compactness for generic metric spaces is NOT that one

of a set that is closed and bounded, but is rather a little more involved.

Definition 6.1 (Open Cover). Given a metric space (X, d) and a set C C X, we say that
a family O C {A: A C X} is an open cover of C <= (1) For all A € O, A is open. (2)
CCUse0 4

Example 6.1. Let X = R and d the usual metric. Take the set C' = (0, +00). One possible
open cover is O; = {R}, since it is an open set. Also is the family

Oy = {A, = (0,n) for n € N}
since it is clear that C = U, ~; An =.

Definition 6.2 (Compact set). Let (X, d) be a metric space and C C X. We say that
C is a compact set <= for all open cover O of C, there exist a finite number of sets

{A, Ag, ..., A} C O such that
i=k
CC U A;
i=1
i.e. for any open cover, we only need a finite number of elements of it to cover the whole
set.

Note that this definition asks as that this rule has to be true for ANY open cover. For
example, for the set C, we know that O; is an open cover that satisfies this property (since
it only consist of one set). However, Oy does not satisfy this property, since for any finite
number of sets {Ay,, An,, ..., Ay, } C O we have

i=k i=k
An': 07 i) = 07 % >C
- G- o)

i=1
and hence Oy violates this property, making C' not compact.

Notice also that the definition of compactness only talks about open sets, and does not
mention distances at all. This therefore generalizes to the study of topological spaces, as
we mentioned above. As you might have imagined, checking that a compact set is so with
the given definition is hard, since one has to consider a huge class of objects to satisfy this

property. Luckily, there is a simpler way to check compactness in general.

Definition 6.3 (Subsequences). Given a sequence {xy}, .y We say that {y,},cy is a sub-
sequence of {x,}
alln € N

nen &= there exist an increasing sequence k, € N such that y,, = zy,, for

Example 6.2. Let z,, = % + (=1)". The sequence y,, = 1 + ﬁ for all n is a subsequence of

{xn}, since
! + (=D =1+ !
€T = — —_ = _— =
2n 2n 2n Yn
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i.e. yp is the composition of z,, with k, = 2n. Note that even if z,, does not have a limit,
we can find subsequences of it that do have limits: for example

1
Yn=x2p =1+ — =1
2n

and )
= = —1—= -1
Zn = Ton+1 ot 1

It turns out that a compact set is a set such that for any sequence we have inside it, we

can always find a subsequence that convergence somewhere inside.

Theorem 6.1. Let M = (X,d) be a metric space and C C X. Then, C is compact <~
the following rule holds:

for any{zn},cny @0 € C there exists y, = {xy, fand y € Csuch that y, — y
i.e. any sequence in C has a convergent subsequence xy,, .

Exercise 6.1. Show that if C' C X is compact, then it is also closed. Show also that if
D C (' is closed and C' is compact, then D is compact as well.
In Problem set 2 you will show that when (X, d) = (R, |z — y|) then we have

C' is compact <= is bounded and closed

The following theorem is of extreme importance in the study of topological spaces: it says

that the image of compact sets through continuous functions is compact as well

Theorem 6.2. Let (X,dx) and (Y,dy) two metric spaces, and C C X a compact subset.
If a function f: X — 'Y is continuous, then f(C)={y €Y : Iz € X with f(x) =y} CY

s a compact set as well.

Proof. Take an open cover O of f (X). We need to find a finite number of sets { A1, Aa, ..., Ay} C
O such that f (X) C U=k A;. Now, if O is an open cover of f (C), we have that

foca= f‘l[f(C)]Qf_I[U A] —

AcO AcO

cclUrt@
AcO
Since f is continuous and A € O is open for all elements of O, we have that the family
O={BCX:B=f""(A) for some A € O}
is an open cover of C. Since C' is compact, we know that there exist a finite number of sets

{Bl, Bo, ..., Bk} = {fil (Al) ,fil (AQ) s ey fil (Ak)} such that

i=k
cCclJr ) = f(C) U A
=1

as we wanted to show. O
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Armed with this, we can easily shown the famous Weierstrass theorem

Theorem 6.3 (Weierstrass). Let (X,d) be a metric space, C C X a compact set and
f: X — R a continuous function. Then,
3z € argmaz f (x)and z€argminf (x)
zeC zeC

i.e. the mazimum and minimum of f over C' are well defined objects.

Proof. Let
Z ={yeR: Jx € X such that f(x) =y} = f(C)

We have f (C) C R is a compact set from the previous theorem, hence it is bounded and
closed. Let f = sup [f (X)] (which exists from f (C) being bounded), and we will show that
Jr € C : f(x) = f. Using the definition of supremum, we know that for all € > 0 there exist
ye € f(C) such that y > f — €. Therefore, let € = % and define the sequence z, = y1 from
the previous condition. We clearly have that z, € f(C) for all n, and that z, — fn Since
f(C) is compact = f (C) is also closed, and hence f € f(C) <= I € X : f(T)=f.

The proof for the minimum is analogous. O
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