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1. Introduction

Let X be an arbitrary set, which could consist of vectors in Rn, functions, sequences,
matrices, etc. We want to endow this set with a metric; i.e a way to measure distances
between elements of X. A distance or metric is a function d : X × X → R such that
if we take two elements x, y ∈ X the number d (x, y) gives us the distance between them.
However, not just any function may be considered a metric: as we will see in the formal
definition, a distance needs to satisfy certain properties.

Definition 1.1 (Metric Spaces). Given a set X and a function d : X × X → R, we
say that the pair M = (X, d) is a metric space if and only if d (·) satisfies the following
properties:

(1) (Non-negativeness) For all x, y ∈ X, d (x, y) ≥ 0
(2) (Identification) For all x, y ∈ X we have that d (x, y) = 0 ⇐⇒ x = y

(3) (Symmetry) For all x, y ∈ X, d (x, y) = d (y, x)
(4) (Triangular inequality) For all x, y, z ∈ X we have that

(1.1) d (x, z) ≤ d (x, y) + d (y, z)

Property (1) just states that a distance is always a non-negative number. Property (2)
tells us that the distance identifies points; i.e. if the distance between x and y is zero, it is
because we are considering the same point. Property (3) states that a metric must measure
distances symmetrically; i.e. it does not matter where we start measuring it. Finally, the
triangular inequality is a generalization of the famous result that holds for the euclidean
distance in the plane

2. Examples of Metric Spaces

2.1. Norms in vector spaces. Let X = Rn. The typical distance used is the euclidean
distance, defined as

d2 (x, y) =

√√√√ n∑
i=1

(xi − yi)2

For this metric, all properties except (1.1) are trivially shown. The triangular inequality is
a well known result from linear algebra, known as the Cauchy-Schwartz inequality. However,
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this is not the only distance we could define over Rn. Consider the distance

d1 (x, y) ≡
n∑
i=1
|xi − yi|

which is known as the “taxicab distance”. Another one we could use is the so called “max
distance”, defined as

d∞ (x, y) ≡ max
i∈[1:n]

|xi − yi|

where [1 : n] ≡ {1, 2, · · · , n}. Notice that all this distances can be written as d (x, y) =
N (x− y), for some function N : Rn → R. In general, one could define a lot of distances,
based on different functions N(·) that one can come up with. In particular, sometimes we
are interested in a subset of functions called norms. We will define them in a way that it
applies to any vector space X (i.e. any space in which you can calculate x + y and αx

with α ∈ R with the usual rules).

Definition 2.1 (Norms). Let X be a vector space (e.g. X = Rn) and N : X → R. We say
N (·) is a norm if the following 4 conditions hold:

(i): : N (x) ≥ 0 for all x ∈ X
(ii): : N (x) = 0 ⇐⇒ x = 0 for all x ∈ X
(iii): : N (αx) = |α|N (x) for all α ∈ R, x ∈ X
(iv): : N (a+ b) ≤ N (a) + N (b) for all a, b ∈ X

Exercise 2.1. Show that the functions N2 (x) =
√
x2
i , N1 (x) =

∑
i |xi| and N∞ (x) = |xi|

are norms

Proposition 2.1. Let X be a vector space (e.g. X = Rn) and define dN : X ×X → R as

dN (x, y) ≡ N (x− y)

Then,MN = (X, dN) is a metric space

Proof. We need to prove each of the properties of a distance (from 1 to 4).
Non negativity (1) : Easy, since N (·) ≥ 0 always
Identification (2) : Follows from

dN (x, y) = 0 ⇐⇒ N (x− y) = 0⇐⇒︸ ︷︷ ︸
(ii)

x− y = 0 ⇐⇒ x = y

Symmetry (3) : Follows from

dN (x, y) = N (x− y) = N ((−1) (y − x)) =︸︷︷︸
(iii) α=−1

= |−1|N (y − x) = dN (y, x)
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Triangle inequality (4) : Take x, y, z ∈ X :

dN (x, z) = N (x− y) = N (x−z + z − y) ≤︸︷︷︸
(iv)

N

x− y︸ ︷︷ ︸
=a

+N

y − z︸ ︷︷ ︸
=b

 = dN (x, y)+dN (y, z)

�

2.2. Functional Spaces. Probably the most important new concept will be the space X
that consists of functions instead of vectors. The most important one is the so-called “sup-
norm metric” space: pick a norm N : Rm → R and a set A ⊆ Rn and define

(2.1) X = {f : A→ B such that ∃Kf > 0such that N [f (x)] ≤ Kf for all x ∈ A}

(2.2) d∞ (f, g) ≡ sup
x∈A

N (f (x)− g (x))

We define the metric space M ≡ B (A,Rn) = (X, d∞) as the set of bounded functions
from A to Rm. Note thatX is a vector space, defining the sum of functions as the point-wise
sum; i.e.

(f + g) (x) = f (x) + g (x) for all x ∈ A

since the sum of bounded functions is also bounded. Hence, if we show that the function

(2.3) N∗ (f) ≡ sup
x∈A
|N [f (x)]|

is itself a norm for X, we can apply Proposition 2.1 to show B (A,Rm) is indeed a metric
space. First, we need to show that N∗ (f) < ∞ for all f ∈ X (i.e. it is a well defined
object). This can be done since we are only taking functions that are bounded, and hence
the supremum always exist (the so-called “Axiom of completeness” of the real numbers).
Now, we show the properties of a norm.

(i) : N∗ (f) ≥ 0 for all f ∈ X. This follows from N being itself a norm

(ii) : N∗ (f) = 0 ⇐⇒ f (x) = 0for all x ∈ A.

N∗ (f) = 0 ⇐⇒ sup
x∈A

N [f (x)] = 0⇐⇒︸ ︷︷ ︸
(a)

N [f (x)] = 0 for all x ∈ A⇐⇒︸ ︷︷ ︸
(b)

f (x) = 0 for all x ∈ A

(a) follows from the fact that if N [f (x̂)] > 0 for some x̂ ∈ A, then the sup would have to
also be strictly positive. (b) follows from N (·) being a norm (Property (ii) )

(iii) : N∗ (αf) = |α|N∗ (f). This comes from the homogeneity of the sup operator:

N∗ (αf) = sup
x∈A

N [αf (x)] =︸︷︷︸
(c)

sup
x∈A
|α|N [f (x)] = |α| sup

x∈A
N [f (x)] = |α|N∗ (f)

where (c) follows from the fact that N is a norm.
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(iv) : Triangular inequality.

N∗ (f + g) = sup
x∈A

N [f (x) + g (x)] ≤ sup
x∈A

N [f (x)]+N [g (x)] = sup
x,y∈A:x=y

N [f (x)]+N [g (y)] ≤

sup
x∈A

N [f (x)] + sup
y∈A

N [g (y)] = N∗ (f) + N∗ (g)

and hence, B (A,Rm) is indeed a metric space.

Exercise 2.2. Let A ⊆ Rn. Show that the following are metric spaces: L1 (A,R) = (X1, d1)
where

X1 =
{
f : A→ R such that

´
x∈A |f (x)| dx <∞

}
d1 (f, g) ≡

ˆ
x∈A
|f (x)− g (x)| dx

and L2 (A,R) = (X, d2) where

X1 =
{
f : A→ R such that

´
x∈Af

2 (x) dx <∞
}

d2 (f, g) ≡
√ˆ

x∈A
[f (x)− g (x)]2 dx

In general, show that given a norm N : Rm → R the pair LN (A,R) = (XN, dN) defined
as

XN =
{
f : A→ R such that

´
x∈A N [f (x)] dx <∞

}
dN (f, g) ≡

ˆ
x∈A

N [f (x)− g (x)] dx

N∗ (f) =
{ˆ

x∈A
N [f (x)]ρ dx

} 1
ρ

is a metric space as well, for any ρ > 0.

3. Metric Topology

In this section we will be studying the concept of “neighborhood” or closeness in generic
metric spaces. This will be useful when generalizing concepts like “open sets”, “continuous
functions”, “compact sets”, etc.

3.1. Open and closed balls.

Definition 3.1 (Open Ball). Given a metric space M = (X, d), a ∈ X and r > 0 we
define the open ball of center a and radius r as the set

B (a, r) = {x ∈ X : d (a, x) < r}
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Definition 3.2 (Open Ball). Given a metric space M = (X, d), a ∈ X and r > 0 we
define the closed ball of center a and radius r as the set

B (a, r) = {x ∈ X : d (a, x) ≤ r}

For example, in B ([−1, 1] ,R) when we take the center f (x) = x3 and radius r, is easy to
see that

g ∈ B (f, r) ⇐⇒ g (x) ∈ (f (x)− r, f (x) + r)

3.2. Open and closed sets. In our first calculus courses, we saw that an “open set” was
one that did not include its “border”, or more formally, its “frontier”. However, in generic
metric spaces this cannot be graphically checked, so we need to have the formal definition of
this concept. The basic idea is that for a set to be open (and not include its border), every
time we pick an element x ∈ A we must be able to find an open ball around it that it is also
completely included on the same set A.

Definition 3.3 (Interior of a set). Let M = (X, d) be a metric space and A ⊆ X. We
say that x ∈ A is interior of A ⇐⇒ ∃rx > 0 such that B (x, rx) ⊆ A. The set of all interior
points of A is called the interior of A, and is written as Å

Definition 3.4 (Open set). A set A ⊆ X is open ⇐⇒ A = Å

The first example of open set is in fact, the open balls themselves:

Proposition 3.1 (Open balls are open). Given M = (X, d) a metric space, x ∈ X and
r > 0, the set A ≡ B (x, r) is an open set.

Proof. To prove A is open we need to show that for any z ∈ B (x, r) ⇐⇒ d (x, z) < r we
need to find a radius rz > 0 such that B (z, rz) ⊆ A = B (x, r). This equivalent to prove the
following statement:

(3.1) ∃rz > 0 : for all y ∈ X, if d (y, z) < rz =⇒ d (x, y) < r

A natural candidate would be rz = r − d (x, z). In fact, when rz = r − d (x, z), then for
any y ∈ B (z, rz) :

d (x, y) ≤ d (x, z) + d (z, y) <︸︷︷︸
d (y, z) > rz

d (x, z) + [r − d (x, z)] = r

and hence d (x, y) < r (i.e. y ∈ B (x, r) ) as we wanted to show. �

In basic calculus, we also thought of “closed sets” as those sets that would include its
boundary, unlike open sets. Intuitively, a set is closed if it includes all the points that are
“pasted to it” in a sense. This concept is that of closure points.
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Definition 3.5 (Closure Set). Given a m.s M = (X, d) and a set A ⊆ X , we say that
x ∈ X is a closure point of A ⇐⇒ the following rule holds:

∀r > 0 we have B (x, r) ∩A 6= ∅

i.e. no matter how close you get to x, there is always a point in A which is even closer to x.
The set of all closure points of A is called the closure of A and is denoted by A

Definition 3.6 (Closed set). A set A ⊆ X is closed ⇐⇒ A = A

The first result we get, for any given set, is that A is “in between” its interior and its
closure

Proposition 3.2. For any subset A ⊆ X, we have

Å ⊆ A ⊆ A

Proof. That Å ⊆ A is obvious, since if x ∈ Å =⇒ ∃B (x, r) ⊆ A and x ∈ B (x, r). For
the closure, is just suffices to note that for any x ∈ A and any r > 0 we have that x ∈
B (x, r) ∩A =⇒ x is a closure point. �

Another important property is the one that relates closed an open sets: an closed set is,
by definition, the complement of an open set.

Theorem 3.1. LetM = (X, d) be a metric space. Then the following rule holds:

A ⊆ X is open ⇐⇒ Ac ≡ {x ∈ X :x /∈ A} is closed

and vice versa

Proof. ( Direct =⇒)Suppose A is open. We need to show that Ac is closed. Suppose, by
contradiction, that it is not: i.e. there exists a point x̂ ∈ Ac such that x̂ /∈ Ac ⇐⇒ x̂ ∈ A.
Since A is open exists r̂ > 0 such that B (x̂, r̂) ⊆ A

∃r̂ > 0 : B (x̂, r̂) ⊆ A =⇒

(3.2) ∃r̂ > 0 : B (x̂, r̂) ∩Ac = ∅

But (3.2) contradicts the definition of closure point of Ac for x = x̂, and hence x̂ /∈ Ac, a
contradiction

( Converse ⇐=) Suppose Ac is closed, and we have to show A is open. Suppose, by
contradiction, that it was not: then, there exist a point x̂ ∈ A that is not interior: i.e.

∀r > 0 exists y ∈ B ( ˆx, r) such that y /∈ A⇐⇒

(3.3) ∀r > 0 we have B (x̂, r) ∩Ac 6= ∅
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Condition (3.3) then implies that x̂ is a closure point, and since Ac is closed, we must have
x̂ ∈ Ac ⇐⇒ x /∈ A. But this contradicts the initial assumption that x̂ ∈ A, proving the
desired result. �

3.3. Operations between open and closed sets.

Theorem 3.2 (Metric Topology). For any given metric spaceM = (X, d):
(1) A = X and A = ∅ are open sets
(2) Let O be a family of open sets of (X, d). Then the set

A∗ ≡
⋃
A∈O

A

is also open
(3) Let {A1, A2, . . . , Ak} be a finite family of open sets. Then the set

A∗ ≡
i=k⋂
i=1

Ai

is also open

Proof. Condition (1) is trivial. Take a family of open sets F and take x ∈ A∗. Now

x ∈ A∗ ⇐⇒ ∃Ax ∈ F : x ∈ Ax =⇒︸︷︷︸
Ax open

∃rx > 0 : B (x, rx) ⊆ Ax ⊆
⋃
A∈F A

=⇒ ∃rx : B (x, rx) ⊆ A

and hence A∗ is open. For (3), we know that

x ∈ A∗ ⇐⇒ x ∈ Ai for all i ∈ [1 : k] =⇒︸︷︷︸
Ai open

∃rix > 0 : B
(
xi, r

i
x

)
⊆ Ai for all i ∈ [1 : k]

Then, by choosing rx ≡ mini rix we have that

B (x, rx) ⊆ B
(
x, rix

)
⊆ Ai for all i ∈ [1 : k] =⇒ B (x, rx) ⊆

i=k⋂
i=1

Ai = A∗

as we wanted to show. �

Corollary 3.1. Given a metric spaceM = (X, d) the following properties hold:
(1) A = X and A = ∅ are closed
(2) Let C be a family of closed sets. Then

C∗ ≡
⋂
C∈C

C

is closed
(3) If {C1, C2, . . . , Ck} are closed sets, then

C∗ ≡
k⋃
i=1

Ci
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is closed too.

Proof. Use previous theorem, jointly with DeMorgan rules: for any family of sets F ⊆
{A : A ⊆ X} we have ( ⋂

A∈F
A

)c
=
⋃
A∈F

Ac

( ⋃
A∈F

A

)c
=
⋂
A∈F

Ac

�

Remark: Theorem 3.2 is very important, since it relates to the theory of topological
spaces. These are spaces of the form (X,O) where O is a family of subsets of X that satisfy
properties (1) to (3) of Theorem 3.2. Such a family O is referred to as a topology for X.
That is, in topological spaces, instead of deriving the notion of open and closed sets from a
predefined metric, we start right from Theorem 3.2, treating the “list” of open sets O as a
primitive, and not a result, of the space we study.

4. Continuous Functions

In our elementary calculus courses, he have learned that a continuous function is one that
takes “close” points from its domain X and takes them to also “close” points of the image
Y . We formalize this idea in the definition below.

Definition 4.1 (Continuity). Given metric spaces MX = (X, dX) and MY = (X, dY )
and x ∈ X, we say that a function f : X → Y is continuous at x ⇐⇒ the following rule
holds: for all ε > 0 we can find δε,x > 0 such that

if yis such that dX (x, y) < δε,x =⇒ dY (f (x) , f (y)) < ε.

or, equivalently: if BX (·) and BY (·) denote open balls in spaces X and Y respectively, f is
continuous at f ⇐⇒

∃δε,x > 0 : f [BX (x, δε,x)] ⊆ BY [f (x) , ε]

when f (·) is continuous for all x ∈ X we say “f is continuous”.

4.1. Examples. Example (1) : Let (X, dX) = (Y, dY ) = (R, |x− y|) and f (x) = 3x. We
want to show that f is continuous. Take x ∈ R and ε > 0, and we need to find δε.x > 0 such
that if |x− y| < δε,x =⇒ we also have |f (x)− f (y)| < ε. Now, see that

|f (x)− f (y)| = 3 |x− y|

so, if we take δε,x ≡ 1
3ε, we have that if y : |x− y| < 1

3ε then

|f (x)− f (y)| = 3 |x− y| < 31
3ε = ε

proving the desired result.
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Example (2) : Same distance as before, but now X = R+ and f (x) =
√
x. Note that:(√

x−√y
)

= x− y√
x+√y for any x > 0, y ≥ 0

Therefore, by taking δε,x ≡ ε
√
x we have that if |x− y| < ε

√
x:∣∣√x−√y∣∣ = |x− y|√

x+√y ≤
|x− y|√

x
<
ε
√
x√
x

= ε

as we wanted to show.

Example (3) : Suppose A ⊆ Rn is a bounded Borel set (i.e. we can write an integral on
it), and take (X, dX) = B (A,R)∩ {f integrable}, (Y, dY ) = (R, |x− y|) and T : B (A,R)→
R defined as

T (f) =
ˆ
A
f (x) dx

i.e. T is the calculation of the integral, thought of as a function from the set of all functions
to the real numbers. We will show that T is continuous (for all f integrable). See that for
any pair of functions f, g :

|T (f)− T (g)| =
∣∣∣∣ˆ
A
f (x) dx−

ˆ
A
g (x) dx

∣∣∣∣ =
∣∣∣∣ˆ
A

[f (x)− g (x)]
∣∣∣∣ ≤ ˆ

A
|f (x)− g (x)| dx

≤
ˆ
A

[
sup
z∈A
|f (z)− g (z)|

]
dx =

ˆ
A
d∞ (f, g) dx = µ (A) d∞ (f, g)

where µ (A) =
´
A 1dx is the volume of set A. Therefore, given f ∈ X, by taking δε,f = 1

µ(A)ε

we have that if g : d∞ (f, g) < ε
µ(A) then

|T (f)− T (g)| ≤ µ (A) d∞ (f, g) < µ (A) ε

µ (A) = ε

and hence T is a continuous function.

4.2. Continuity and Topology.

Theorem 4.1. Let (X, dX) and (Y, dY ) be two metric spaces, and f : X → Y . Then f is a
continuous function ⇐⇒ the following rule holds:

(4.1) for any open set A ⊆ Y we have that f−1 (A) ⊆ Xis also open

i.e. the pre-image of open sets is always open.

Proof. (Direct =⇒) Suppose f is continuous, and we want to prove this rule. Take A ⊆ Y
an open set: we want to then show that U = f−1 (A) is also an open set in (X, dX): i.e.
for any given x ∈ f−1 (A) we need to find rx > 0 such that BX (x, rx) ⊆ f−1 (A) as well.
Since A is open, we know there exists rf(x) > 0 such that BY

(
f (x) , rf(x)

)
⊆ A. Since

f is continuous, take ε = rf(x) and use it in the definition of continuity: this gives as a
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δε,x = δrf(x),x > 0 such that

f
[
BX

(
x, δrf(x),x

)]
⊆ BY

[
f (x) , rf(x)

]
⊆ A

and hence
BX

(
x, δrf(x),x

)
⊆ f−1 (A)

Therefore, we finish the proof by taking rx ≡ δrf(x),x (which as you see, depends only on
the point taken x)

(Converse ⇐=) If the rule holds, we need to show f is continuous: i.e. given x ∈ X and
ε > 0 we need to find δε,x > 0 such that f [BX (x, δε,x)] ⊆ BY

[
f (x) , rf(x)

]
. Let Aε,x =

BY (f (x) , ε). We know that open balls are open, and hence Aε,x is a open subset of Y. Since
the rule in (4.1) is assumed to hold, we know that the set f−1 (Aε,x) = f−1 [BY (f (x) , ε)] is
open as well, and since x ∈ Aε,x =⇒ there exist some radius rε,x > 0 such that

BX (x, rε,x) ⊆ f−1 (Aε,x) ⇐⇒

for all y ∈ X : dX (x, y) < rε,x =⇒ y ∈ f−1 (Aε,x) ⇐⇒ f (y) ∈ BY (f (x) , ε)

i.e. dY (f (x) , f (y)) < ε. Hence, we prove the desired result by choosing δε,x = rε,x (i.e. the
radius involved with the fact that x is interior to the pre-image of BY (f (x) , ε) ) �

In the theory of topological spaces, this theorem is in fact the definition of continuous
function, since it is defined completely in terms of open sets alone. This theorem is also
called the sign conservation theorem, when Y = R, as we show in the following Corollary:

Corollary 4.1. Let (X, dX) a metric space and f : X → R a continuous function. Then,
the set

A = {x ∈ X : f (x) > 0}

is an open set. Moreover, the set

C = {x ∈ X : f (x) ≥ 0}

is closed

Proof. Simply take U = (0,+∞) (an open set) and note that A = f−1 (U), and hence open.
For C, see that we can write it as

C =
[
f−1 (−∞, 0)

]c
the complement of an open set as well, and hence closed. �

A lot of important results of continuous functions can be easily shown using Theorem 4.1.

Theorem 4.2 (Composite of continuous functions). Let (X, dX) , (Y, dY ) , (Z, dZ) three
metric spaces, and f : X → Y and g : Y → Z two continuous functions. Then, the composite
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function h : X → Z defined as

h (x) ≡ (gf) (x) = g [f (x)]

is also continuous.

Proof. Take an open set A ⊆ Z. We need to show that h−1 (A) ⊆ X is also open. For that,
see that

h−1 (A) = (gf)−1 (A) = f−1
[
g−1 (A)

]
Now, g−1 (A) ⊆ Y is an open set since g (·) is continuous, and also is f−1 [g−1 (A)

]
, from

the continuity of f, finishing the proof. �

5. Sequences

A sequence is simply a function x : N :→ X. We usually write xn = x (n) ∈ X and
{xn}n∈N = x (·) instead, since we try to distinguish between sequences and other functions
from more generic domains. One of the most important concepts related to sequences is
that of convergence. We say that a sequence converges to an element x if the tail of the
sequence is, eventually, arbitrarily close to x, and hence xn ≈ x when n is “large”. We
formalize this idea in the definition below

Definition 5.1 (Convergence). For a given metric space M = (X, d) and a sequence
{xn}n∈N in X, we say that xn converges to x ∈ X ⇐⇒ The following rule holds:

for any ε > 0∃Nε ∈ Nsuch that for all n ≥ Nε we have d (xn, x) < ε

i.e. for any given “closeness” to x, we can find an index Nε such that after n = Nε, the
whole tail of the sequence is within ε of x. We usually write

xn → x or limn→∞ xn = x

5.1. Examples. (1) : Suppose (X, d) = (R, |x− y|). We show that xn = 1
n → 0. For this,

take ε > 0 and we must find Nεsuch that if n ≥ Nε we must have
∣∣∣ 1
n − 0

∣∣∣ = 1
n < ε. Hence,

by taking
Nε =

⌈1
ε

⌉
≡ min

{
n ∈ N : n > 1

ε

}
we have that if n ≥ Nε ≥ 1

ε =⇒ 1
n < ε as we wanted to show.

(2) : Suppose we take the same metric and sequence as before, but now X = (0, 1). See
that now, it is no longer true that xn → 0, since 0 /∈ X (even though it is the intuitive limit
of xn). In some sense, xn does not converge in the metric spaceM = ((0, 1) , |x− y|) because
X is “incomplete”: it is missing some of the limits of sequences that should converge. This
will relate to the concept of complete metric spaces later on.

(3) : Suppose now that X = B ([0, 1] ,R) and d = d∞ and the sequence

fn (x) = 1
n
x+ 2

n
for all x ∈ [0, 1]
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we will show that fn → 0 (x) = 0 for all x. See that

d∞ (fn (·) ,0 (·)) = sup
x∈[0,1]

[ 1
n
x+ 2

n
− 0

]
= 1
n

(
sup
x∈[0,1]

x

)
+ 2
n

= 3
n
→ 0

so we have shown the desired result: see that Nε ≡
⌈

3
ε

⌉
satisfies the definition of conver-

gence.

(4) : Same metric space as in (3), only that now the sequence we consider is

fn (x) = xn

What is the natural “candidate” for the limit of this sequence? One would be the so called
“point wise limit” : i.e. the limit of fn (x) for every single x. See that

for given x ∈ [0, 1], lim
n→∞

fn (x) =

0 if x < 1

1 if x = 1
≡ f∗ (x)

However, the fact that f converges to the limit function f∗ for any given x does not imply
that fn → f∗ as a sequence in B ([0, 1] ,R). To understand what we mean by this, let’s
calculate the distance between the sequence and f∗:

d∞ (fn (·) , f∗ (·)) = sup
x∈[0,1]

|xn − f∗ (x)| = sup
x∈[0,1]

xn if x < 1

0 if x = 1
= 1

But then, d∞ (fn (·) , f∗ (·)) 9 0, which is the required definition for convergence.
What went wrong here? The problem is that there is a difference between convergence

in the sup-norm d∞ (usually referred to as uniform convergence) and convergence for all x
(called point wise convergence). While is true that uniform convergence implies point wise
convergence, this example shows that the converse is not true.

Proposition 5.1. Let fn be a sequence of bounded functions in B (A,Rm) with A ⊆ Rn,
and f ∈ B (A,Rm) such that

(5.1) fn → f ⇐⇒ sup
x∈A

N [fn (x)− f (x)]→ 0 as n→∞

i.e. fn converges uniformly to f . Then, for all x ∈ A, the sequence fn (x) ∈ A converges to
f (x) (i.e. fn converges point wise to f)

Proof. It simply follows from the fact that, for any x ∈ A :

(5.2) 0 ≤ N [fn (x)− f (x)] ≤ sup
y∈A

N [fn (y)− f (y)]→ 0

where the last part comes from condition 5.1. Therefore N [fn (x)− f (x)] → 0 ⇐⇒
fn (x)→ f (x) for any x ∈ A, as we wanted to show. �

5.2. Topology and Sequences. Why do we care about sequences? It turns out they
provide an easier characterization of most topological concepts: particularly relating to
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closed sets, and how we can check a set is closed without referring to the original definition.
This is the purpose of Theorem 5.1

Theorem 5.1 (Sequential Definition of Closed sets). LetM = (X, d) be a metric space and
C ⊆ X. Then, the set C is closed ⇐⇒ the following rule holds: if a sequence {xn}n∈N is
such that (1) xn ∈ C for all n and (2) ∃x : xn → x, then we must also have that x ∈ C

Theorem 5.1 tells us that showing that a set C is closed is equivalent to showing a
“theorem”, that states that whenever we have a convergent sequence of points inside the
set, we must be able to show that the limit is inside the set as well.

Proof. (=⇒ Direct) Suppose C is closed, and that we have a sequence xn ∈ C for all n such
that xn → x. We need to show that if that is the case, then we must have x ∈ C as well. We
will prove this by contradiction: suppose the rule is not true, so that x /∈ C ⇐⇒ x ∈ Cc,
which is an open set, since C is closed by assumption. Therefore, there exist r > 0 such
that ∀y : d (x, y) < r =⇒ y /∈ C. But since xn → x we know that if we take ε = r we know
that for any n ≥ Nε=r we have d (xn, x) < ε = r and hence xn 6/∈ C for all n ≥ Nr. But this
contradicts the assumption that xn ∈ C for all n, and hence x must be in C

(⇐= Reciprocal) Suppose that the rule is true, and we need to show that C is closed.
Again, the proof will be by contradiction: suppose C is not closed, and hence ∃x̂ ∈ C
such that x̂ /∈ C. Now,

x̂ ∈ C ⇐⇒ for all ε > 0, B (x̂, ε) ∩ C 6= ∅

(5.3) ⇐⇒ for all ε > 0 there exist zε ∈ C: d (x̂, zε) < ε

What we will do now is create a sequence xn such that xn ∈ C for all n and xn → x̂ :
simply substitute in 5.3 ε = 1

n and define xn ≡ zε= 1
n
. See that by definition of z 1

n
we must

have xn ∈ C. Moreover,
0 ≤ d (xn, x̂) = d

(
z 1
n
, x̂
)
<

1
n
→ 0

and hence d (xn, x̂)→ 0 ⇐⇒ xn → x̂. And here lies the contradiction: if the sequence rule
is true, then since xn ∈ C for all n and moreover, xn → x̂, we must therefore have x̂ ∈ C.
But we assumed that x̂ /∈ C, reaching the desired contradiction. �

Example 5.1 (Set of non-decreasing functions). Take (X, d) = B (A,R) and the subset
defined as

C = {f ∈ X : if x ≥ y=⇒f (x) ≥ f (y) for all x, y ∈ A}

i.e. C is the set of non-decreasing functions. We will show that C is a closed set of functions,
and we will use Theorem 5.1 to show it: i.e. we need to show that the following “Theorem”
is true:

if {fn}n∈N is such that fn ∈ Cfor all n and fn → f=⇒f ∈ C as well.
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Suppose, by contradiction, that it was not true: hence, there would exist a sequence fn
of non-decreasing functions, converging to a function f that has the following property:
∃x̂, ŷ ∈ A with x̂ > ŷ but f (x̂) < f (ŷ). If this was the case, given this pair of points, define
the sequence

an ≡ fn (x̂)− fn (ŷ)

Since fn ∈ C by assumption, and x̂ > ŷ we must have an ≥ 0 for all n. Moreover, from
Proposition 5.1 we know that

an → lim
n→∞

[fn (x̂)− fn (ŷ)] = f (x̂)− f (ŷ) < 0

which is not possible, since awhich is a closed set, and hence a should be in it, and not in
(−∞, 0), reaching hence a contradiction.

Example 5.2 (Set of continuous functions). Same space as in Example 5.1, but now

C (A,Rm) ≡ {f ∈ X : f is continuous for all x ∈ A}

i.e. the set of all bounded, continuous functions. We want to show that this set is closed:
for that, take a sequence fn ∈ C (A,Rm) of continuous functions, and take the limit f ∈ X.
We need to show that f is continuous. For that, take any x ∈ A and ε > 0, and we need
to find δε,x > 0 such that if y : N (x− y) < δε,x =⇒ N [f (x)− f (y)] < ε. See that for any
n ∈ N:

N [f (x)− f (y)] ≤ N [f (x)−fn (x) + fn (x)−fn (y) + fn (y)− f (y)] ≤

(5.4)
N [fn (x)− f (x)]+N [fn (x)− fn (y)]+N [fn (y)− f (y)] ≤ N [fn (x)− fn (y)]+2 sup

z∈A
N [fn (z)− f (z)]

Now, since fn → f we know that there exists n = n ε
4
such that if n ≥ n ε

4
=⇒ d∞ (fn, f) =

supz∈A N [fn (z)− f (z)] < ε
2 . Since inequality 5.4 is true for any n, is particularly true for

n = n ε
4
, and hence

N [f (x)− f (y)] < N
[
fn ε

4
(x)− fn ε

4
(y)
]

+ 2 ε4 = N
[
fn ε

4
(x)− fn ε

4
(y)
]

+ ε

2

If y : N (x− y) < δ̂ ε
2 ,x

=⇒ N
[
fn ε

4
(x)− fn ε

4
(y)
]
< ε

2 . Hence,

N [f (x)− f (y)] < N
[
fn ε

4
(x)− fn ε

4
(y)
]

+ ε

2 < ε

And since the function fn ε
4

(·) is also continuous, if we take δε,x ≡ δ̂ ε
2 ,x

where δ̂ is the one
that comes from the continuity of fn ε

4
(·). Then,

so δε,x = δ̂ ε
2 ,x

works to show that f is continuous at x, as we wanted to show
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5.3. Sequences and continuous functions. Probably one of the most useful theorems of
calculus is that continuous functions commute limits: that is, if f is continuous

lim
n→∞

f (xn) = f
(

lim
n→∞

xn
)

Turns out that this is in fact a characterization of continuity in general metric spaces, as
we see in the following theorem.

Theorem 5.2. Let MX = (X, dX) and MY = (Y, dY ) two metric spaces, and f : X → Y .
Then

f is continuous at x ∈ X ⇐⇒ the following rule holds: if xn → xthen f (xn)→ f (x)

Proof. (=⇒ Direct) Suppose f is continuous: we want to show that if xn → x then
f (xn)→ f (x). For that, we need to find Nf

ε such that if n ≥ Nf
ε then dY (f (xn) , f (x)) <

ε. Since f is a continuous function, we know that ∃δε,x > 0 : dX (x, y) < δε,x implies
d (f (x) , f (y)) < ε. Since xn → x, simply take Nf

ε = Nε=δε,x from the definition of conver-
gence of xn, and continuity proves the rest.

(⇐=Converse) By contradiction: suppose the rule is true, but f is not continuous. That
is:

(5.5) ∃ε > 0 : ∀δ > 0 there exist yδ ∈ B (x, δ) such that d (x, yδ) ≥ ε

Now, we will define a sequence xn → x such that f (xn) 6→ f (x), which would contradict
the fact that f was not continuous. Define

xn ≡ yδ= 1
n

i.e. take δ = 1
n and let xn be the yδ = y 1

n
of condition 5.5. Now, that same condition implies

that
xn = y 1

n
∈ B

(
x,

1
n

)
⇐⇒ 0 ≤ d (xn, x) < 1

n
→ 0

and hence xn → x. However, we have

d (f (xn) , x) ≥ ε > 0 for all n ∈ N

violating the proposed rule. �

6. Compact Sets

In Rn, we use the definition:

Compact set =Closed and bounded

It is a concept of great importance, since most of the most used theorems in economics
involve compact sets, most notably the Weierstrass theorem, that states that any con-
tinuous function defined on a compact set has maximum and minimum values. Turns out
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that the extension of the concept of compactness for generic metric spaces is NOT that one
of a set that is closed and bounded, but is rather a little more involved.

Definition 6.1 (Open Cover). Given a metric space (X, d) and a set C ⊆ X, we say that
a family O ⊆ {A : A ⊆ X} is an open cover of C ⇐⇒ (1) For all A ∈ O, A is open. (2)
C ⊆

⋃
A∈O A

Example 6.1. Let X = R and d the usual metric. Take the set C = (0,+∞). One possible
open cover is O1 = {R}, since it is an open set. Also is the family

O2 = {An = (0, n) for n ∈ N}

since it is clear that C =
⋃∞
n=1An =.

Definition 6.2 (Compact set). Let (X, d) be a metric space and C ⊆ X. We say that
C is a compact set ⇐⇒ for all open cover O of C, there exist a finite number of sets
{A1, A2, ..., Ak} ⊆ O such that

C ⊆
i=k⋃
i=1

Ai

i.e. for any open cover, we only need a finite number of elements of it to cover the whole
set.

Note that this definition asks as that this rule has to be true for ANY open cover. For
example, for the set C, we know that O1 is an open cover that satisfies this property (since
it only consist of one set). However, O2 does not satisfy this property, since for any finite
number of sets {An1 , An2 , ..., Ank} ⊂ O we have

i=k⋃
i=1

Ani =
i=k⋃
i=1

(0, ni) =
(

0, max
i∈[1:k]

ni

)
⊃ C

and hence O2 violates this property, making C not compact.
Notice also that the definition of compactness only talks about open sets, and does not

mention distances at all. This therefore generalizes to the study of topological spaces, as
we mentioned above. As you might have imagined, checking that a compact set is so with
the given definition is hard, since one has to consider a huge class of objects to satisfy this
property. Luckily, there is a simpler way to check compactness in general.

Definition 6.3 (Subsequences). Given a sequence {xn}n∈N we say that {yn}n∈N is a sub-
sequence of {xn}n∈N ⇐⇒ there exist an increasing sequence kn ∈ N such that yn = xkn for
all n ∈ N

Example 6.2. Let xn = 1
n + (−1)n. The sequence yn = 1 + 1

2n for all n is a subsequence of
{xn}, since

x2n = 1
2n + (−1)2n = 1 + 1

2n = yn
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i.e. yn is the composition of xn with kn = 2n. Note that even if xn does not have a limit,
we can find subsequences of it that do have limits: for example

yn ≡ x2n = 1 + 1
2n → 1

and
zn ≡ x2n+1 = 1

2n+ 1 − 1→ −1

It turns out that a compact set is a set such that for any sequence we have inside it, we
can always find a subsequence that convergence somewhere inside.

Theorem 6.1. Let M = (X, d) be a metric space and C ⊆ X. Then, C is compact ⇐⇒
the following rule holds:

for any {xn}n∈N : xn ∈ C there exists yn = {xkn}and y ∈ Csuch that yn → y

i.e. any sequence in C has a convergent subsequence xkn.

Exercise 6.1. Show that if C ⊆ X is compact, then it is also closed. Show also that if
D ⊆ C is closed and C is compact, then D is compact as well.

In Problem set 2 you will show that when (X, d) = (R, |x− y|) then we have

C is compact ⇐⇒ is bounded and closed

The following theorem is of extreme importance in the study of topological spaces: it says
that the image of compact sets through continuous functions is compact as well

Theorem 6.2. Let (X, dX) and (Y, dY ) two metric spaces, and C ⊆ X a compact subset.
If a function f : X → Y is continuous, then f (C) = {y ∈ Y : ∃x ∈ X with f (x) = y} ⊆ Y
is a compact set as well.

Proof. Take an open coverO of f (X). We need to find a finite number of sets {A1, A2, ..., Ak} ⊆
O such that f (X) ⊆

⋃i=k
i=1 Ai. Now, if O is an open cover of f (C), we have that

f (C) ⊆
⋃
A∈O

A =⇒ f−1 [f (C)] ⊆ f−1
[ ⋃
A∈O

A

]
=⇒

C ⊆
⋃
A∈O

f−1 (A)

Since f is continuous and A ∈ O is open for all elements of O, we have that the family

Ô ≡
{
B ⊆ X : B = f−1 (A) for some A ∈ O

}
is an open cover of C. Since C is compact, we know that there exist a finite number of sets
{B1, B2, ..., Bk} =

{
f−1 (A1) , f−1 (A2) , ..., f−1 (Ak)

}
such that

C ⊆
i=k⋃
i=1

f−1 (Ai) =⇒ f (C) ⊆
⋃i=k
i=1 Ai

as we wanted to show. �
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Armed with this, we can easily shown the famous Weierstrass theorem

Theorem 6.3 (Weierstrass). Let (X, d) be a metric space, C ⊆ X a compact set and
f : X → R a continuous function. Then,

∃x ∈ argmax
x∈C

f (x)and x∈argmin
x∈C

f (x)

i.e. the maximum and minimum of f over C are well defined objects.

Proof. Let
Z = {y ∈ R : ∃x ∈ X such that f (x) = y} = f (C)

We have f (C) ⊂ R is a compact set from the previous theorem, hence it is bounded and
closed. Let f = sup [f (X)] (which exists from f (C) being bounded), and we will show that
∃x ∈ C : f (x) = f . Using the definition of supremum, we know that for all ε > 0 there exist
yε ∈ f (C) such that y > f − ε. Therefore, let ε = 1

n and define the sequence zn = y 1
n
from

the previous condition. We clearly have that zn ∈ f (C) for all n, and that zn → f . Since
f (C) is compact =⇒ f (C) is also closed, and hence f ∈ f (C) ⇐⇒ ∃x ∈ X : f (x) = f .
The proof for the minimum is analogous. �
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