

CHEMISTRY

Assignment Home Work DPP

Nuclear Chemistry (2)

1. 1 gm radium sample is distintegrated by 2.1 mg in 5 years. Then calculate $t_{1/2}$?

Ans. 1648 Years

2. $t_{1/2}$ is equal to 100 years. Calculate t_{avg} .

Ans. 144 Years

3. A radioactive sample disintegrated by 80% in 300 min. Calculate $t_{1/2}$.

Ans. 129.5 Min.

4. The half-life of a radioactive nuclide is 20 years. If a sample of this nuclide has an activity of 6400 disintegrations per minute (dis/min) today, its activity (dis/min) after 100 years would be

Ans. 200

5. Radioactive decay is a first order process. Radioactive carbon in wood sample decays with a half-life of 5770 yr. What is the rate constant (in yr⁻¹) for the decay? What fraction would remain after 11540 yr?

Ans. 1/4

- 6. Calculate the weight of 14 C having the activity equal to 3.7×10^7 dps. $t_{1/2}$ of 14 C is 5730 years.
- 7. There are 0.618 μg of ²⁰⁶Pb and 0.238 μg of ²³⁸U in a rock. If $T_{1/2}$ of ²³⁸U is 1.5 \times 10⁹ yr, age of the rock is

Ans. $3.0 \times 10^9 \text{ yr}$

8. In uranium mineral, the atomic ratio N_{U-238}/N_{Pb-206} is nearly equal to one. The age (in yr) of the mineral is nearly (half-life period of U-238 is 4.5×10^9 yr)

Ans. 4.5×10^9

9. A wood specimen containing ¹⁴C taken from an ancient palace showed 24 counts in 3 minutes per gram of carbon in a detector. however, a fresh wood showed 52 counts in 2 minutes per gram of carbon. Assuming no background signal in the detector and half life of ¹⁴C as 5730 years, the age (in years) of the wood specimen is

Ans. 9745.58 years

North Delhi: 72, Mall Road, G.T.B. Nagar, New Delhi - 110009 South Delhi: 28B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi - 110016. Mob.: 8860108204 Toll Free: 1800 120 5848, *Ph.*: 011-41415514, 09136597244, *Web.*: www.chemacademy.co.in