MATH 110: LINEAR ALGEBRA SPRING 2007/08 PROBLEM SET 2 SOLUTIONS

- **1.** Let V be a vector space over \mathbb{F} . Let $\mathbf{w} \in V$ be a fixed non-zero vector and $\mu \in \mathbb{F}$ be a fixed non-zero scalar.
 - (a) Show that the function $f: \mathbb{F} \to V$ defined by $f(\lambda) = \lambda \mathbf{w}$ is injective. SOLUTION. If $f(\lambda_1) = f(\lambda_2)$, then $\lambda_1 \mathbf{w} = \lambda_2 \mathbf{w}$, and so $(\lambda_1 - \lambda_2) \mathbf{w} = \mathbf{0}$. By Theorem 1.3, we have that $\lambda_1 - \lambda_2 = 0$ since $\mathbf{w} \neq \mathbf{0}$. So $\lambda_1 = \lambda_2$. Hence f is injective.
 - (b) Show that the function $g: V \to V$ defined by $g(\mathbf{v}) = \mu \mathbf{v}$ is bijective. SOLUTION. If $g(\mathbf{v}_1) = g(\mathbf{v}_2)$, then $\mu \mathbf{v}_1 = \mu \mathbf{v}_2$, and so $\mu(\mathbf{v}_1 - \mathbf{v}_2) = \mathbf{0}$. By Theorem 1.3, we have that $\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{0}$ since $\mu \neq 0$. So $\mathbf{v}_1 = \mathbf{v}_2$. Hence g is injective. Since $\mu \neq 0$, it has a multiplicative inverse $\mu^{-1} \in \mathbb{F}$. Given any $\mathbf{v} \in V$ (codomain), the vector $\mu^{-1}\mathbf{v} \in V$ (domain) has the property that $g(\mu^{-1}\mathbf{v}) = \mu(\mu^{-1}\mathbf{v}) = (\mu\mu^{-1})\mathbf{v} = 1\mathbf{v} = \mathbf{v}$. Hence g is surjective.
 - (c) Show that the function $h: V \to V$ defined by $h(\mathbf{v}) = \mathbf{v} + \mathbf{w}$ is bijective. SOLUTION. If $h(\mathbf{v}_1) = h(\mathbf{v}_2)$, then $\mathbf{v}_1 + \mathbf{w} = \mathbf{v}_2 + \mathbf{w}$, and adding, $-\mathbf{w}$, the additve inverse of \mathbf{w} to both sides of the equation gives $\mathbf{v}_1 = \mathbf{v}_2$. Hence h is injective. Given any $\mathbf{v} \in V$ (codomain), the vector $\mathbf{v} - \mathbf{w} \in V$ (domain) has the property that $h(\mathbf{v} - \mathbf{w}) = (\mathbf{v} - \mathbf{w}) + \mathbf{w} = \mathbf{v} + (-\mathbf{w} + \mathbf{w}) = \mathbf{v} + \mathbf{0} = \mathbf{v}$. Hence h is surjective.
- **2.** Let W_1 and W_2 be subspaces of a vector space V. The *sum* of W_1 and W_2 is the subset of V defined by

$$W_1 + W_2 = \{ \mathbf{w}_1 + \mathbf{w}_2 \in V \mid \mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2 \}.$$

(a) Prove that $W_1 + W_2$ is a subspace of V. SOLUTION. Note that $\mathbf{0} = \mathbf{0} + \mathbf{0} \in W_1 + W_2$ and so it is nonempty. Let $\alpha, \beta \in \mathbb{F}$. Let $\mathbf{w}_1 + \mathbf{w}_2, \mathbf{w}'_1 + \mathbf{w}'_2 \in W_1 + W_2$ where $\mathbf{w}_1, \mathbf{w}'_1 \in W_1, \mathbf{w}_2, \mathbf{w}'_2 \in W_2$. Since W_1 and W_2 are subspaces, $\alpha \mathbf{w}_1 + \beta \mathbf{w}'_1 \in W_1$ and $\alpha \mathbf{w}_2 + \beta \mathbf{w}'_2 \in W_2$. Hence

$$\alpha(\mathbf{w}_1 + \mathbf{w}_2) + \beta(\mathbf{w}_1' + \mathbf{w}_2') = (\alpha\mathbf{w}_1 + \beta\mathbf{w}_1') + (\alpha\mathbf{w}_2 + \beta\mathbf{w}_2') \in W_1 + W_2$$

and $W_1 + W_2$ is a subspace by Theorem 1.8.

(b) Prove that $W_1 + W_2$ is the *smallest* subspace of V containing both W_1 and W_2 . Solution. We need to show that if U is any subspace of V such that

$$W_1 \subseteq U$$
 and $W_2 \subseteq U$,

then

$$W_1 + W_2 \subseteq U$$
.

Let $\mathbf{w}_1 + \mathbf{w}_2 \in W_1 + W_2$ where $\mathbf{w}_1 \in W_1$ and $\mathbf{w}_2 \in W_2$. Since $W_1 \subseteq U$, we must have $\mathbf{w}_1 \in U$. Since $W_2 \subseteq U$, we must have $\mathbf{w}_2 \in U$. And since U is a subspace, we must also have that $\mathbf{w}_1 + \mathbf{w}_2 \in U$. Since our choice of $\mathbf{w}_1 + \mathbf{w}_2 \in W_1 + W_2$ is arbitrary, we may conclude that $W_1 + W_2 \subseteq U$.

(c) Prove that $W_1 \cap W_2$ is the *largest* subspace of V contained in both W_1 and W_2 . SOLUTION. We need to show that if U is any subspace of V such that

$$U \subseteq W_1$$
 and $U \subseteq W_2$,

then

$$U \subseteq W_1 \cap W_2$$
.

Date: March 12, 2008 (Version 1.0).

But clearly this is true set theoretically (if $\mathbf{u} \in W_1$ and $\mathbf{u} \in W_2$, then of course $\mathbf{u} \in W_1 \cap W_2$), ie. $W_1 \cap W_2$ is the largest subset of V contained in both W_1 and W_2 . Since we have shown in the lectures that $W_1 \cap W_2$ is also a subspace, we are done.

- 3. Let W_1 and W_2 be subspaces of a vector space V. Show that the following statements are equivalent.
 - (i) $W_1 \cap W_2 = \{ \mathbf{0} \}.$
 - (ii) If $\mathbf{w}_1 \in W_1$ and $\mathbf{w}_2 \in W_2$ are such that $\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{0}$, then $\mathbf{w}_1 = \mathbf{w}_2 = \mathbf{0}$.
 - (iii) If $\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{w}_1' + \mathbf{w}_2'$, where $\mathbf{w}_1, \mathbf{w}_1' \in W_1$ and $\mathbf{w}_2, \mathbf{w}_2' \in W_2$, then $\mathbf{w}_1 = \mathbf{w}_1'$ and $\mathbf{w}_2 = \mathbf{w}_2'$. If any one of these equivalent conditions holds, then $W_1 + W_2$ is written $W_1 \oplus W_2$ and is called the direct sum of W_1 and W_2 .

Solution. (i) \Rightarrow (iii): Suppose $\mathbf{w} \in W_1 + W_2$ can be expressed in two (possibly different) ways. Then

$$\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{w}_1' + \mathbf{w}_2'.$$

and hence

$$\mathbf{w}_1 - \mathbf{w}_1' = \mathbf{w}_2' - \mathbf{w}_2. \tag{3.1}$$

Let the vector in (3.1) be denoted by \mathbf{v} . Note that $\mathbf{v} = \mathbf{w}_1 - \mathbf{w}_1' \in W_1$ and $\mathbf{v} = \mathbf{w}_2' - \mathbf{w}_2 \in W_2$. So $\mathbf{v} \in W_1 \cap W_2$. Since by (i), $W_1 \cap W_2 = \{\mathbf{0}\}$, this means that $\mathbf{v} = \mathbf{0}$. Therefore, we have

$$\mathbf{w}_1 - \mathbf{w}_1' = \mathbf{0} \quad \text{and} \quad \mathbf{w}_2' - \mathbf{w}_2 = \mathbf{0}$$

and so

$$\mathbf{w}_1 = \mathbf{w}_1'$$
 and $\mathbf{w}_2 = \mathbf{w}_2'$.

- (iii) \Rightarrow (ii): If $\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{0} = \mathbf{0} + \mathbf{0}$, then $\mathbf{w}_1 = \mathbf{0}$ and $\mathbf{w}_2 = \mathbf{0}$ by (iii).
- (ii) \Rightarrow (i): Let $\mathbf{v} \in W_1 \cap W_2$. Since $W_1 \cap W_2$ is a subspace, $-\mathbf{v} \in W_1 \cap W_2$. Since $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$, we have $\mathbf{v} = \mathbf{0}$ by (ii). So $W_1 \cap W_2 = \{\mathbf{0}\}.$
- 4. (a) State and prove the analogue of the statements in Problem 2 for the direct sum of three or more subspaces.

SOLUTION. The equivalent statements are

- (i) $W_i \cap (\sum_{j \neq i} W_j) = \{0\} \text{ for } i = 1, \dots, n.$
- (ii) If $\mathbf{w}_1 \in W_1, \dots, \mathbf{w}_n \in W_n$ are such that $\mathbf{w}_1 + \dots + \mathbf{w}_n = \mathbf{0}$, then $\mathbf{w}_1 = \dots = \mathbf{w}_n = \mathbf{0}$. (iii) If $\mathbf{w}_1 + \dots + \mathbf{w}_n = \mathbf{w}'_1 + \dots + \mathbf{w}'_n$, where $\mathbf{w}_1, \mathbf{w}'_1 \in W_1, \dots, \mathbf{w}_n, \mathbf{w}'_n \in W_2$, then $\mathbf{w}_1 = \mathbf{w}_1', \dots, \mathbf{w}_n = \mathbf{w}_n'.$
- (i) \Rightarrow (iii): Suppose $\mathbf{w} \in W_1 + \cdots + W_n$ can be expressed in two (possibly different) ways. Then

$$\mathbf{w}_1 + \dots + \mathbf{w}_n = \mathbf{w}_1' + \dots + \mathbf{w}_n'. \tag{4.2}$$

and hence

$$\mathbf{w}_1 - \mathbf{w}_1' = (\mathbf{w}_2' - \mathbf{w}_2) + \dots + (\mathbf{w}_n - \mathbf{w}_n'). \tag{4.3}$$

Let the vector in (4.3) be denoted by \mathbf{v} . Note that $\mathbf{v} = \mathbf{w}_1 - \mathbf{w}_1' \in W_1$ and $\mathbf{v} = (\mathbf{w}_2' - \mathbf{w}_2) +$ $\cdots + (\mathbf{w}_n - \mathbf{w}'_n) \in W_2 + \cdots + W_n$. So $\mathbf{v} \in W_1 \cap (\sum_{j \neq 1} W_j)$. Since by (i), $W_1 \cap (\sum_{j \neq 1} W_j) =$ $\{0\}$, this means that $\mathbf{v} = \mathbf{0}$. Therefore, we have

$$\mathbf{w}_1 - \mathbf{w}'_1 = \mathbf{0}$$
 and $(\mathbf{w}'_2 - \mathbf{w}_2) + \dots + (\mathbf{w}_n - \mathbf{w}'_n) = \mathbf{0}$

and so

$$\mathbf{w}_1 = \mathbf{w}'_1$$
 and $\mathbf{w}_2 + \dots + \mathbf{w}_n = \mathbf{w}'_2 + \dots + \mathbf{w}_n$.

Now repeat the same argument with

$$\mathbf{w}_2 + \dots + \mathbf{w}_n = \mathbf{w}_2' + \dots + \mathbf{w}_n'$$

in place of (4.2) to conclude that

$$\mathbf{w}_2 = \mathbf{w}_2'$$
 and $\mathbf{w}_3 + \cdots + \mathbf{w}_n = \mathbf{w}_3' + \cdots + \mathbf{w}_n$.

Upon repeating the argument n times, we obtain

$$\mathbf{w}_1 = \mathbf{w}_1', \dots, \mathbf{w}_n = \mathbf{w}_n'.$$

(iii) \Rightarrow (ii): If $\mathbf{w}_1 + \cdots + \mathbf{w}_n = \mathbf{0} = \mathbf{0} + \cdots + \mathbf{0}$, then $\mathbf{w}_1 = \mathbf{0}, \dots, \mathbf{w}_n = \mathbf{0}$ by (iii).

(ii) \Rightarrow (i): Let $\mathbf{v} \in W_i \cap \left(\sum_{j \neq 1} W_j\right)$. Since $W_i \cap \left(\sum_{j \neq 1} W_j\right)$ is a subspace, $-\mathbf{v} \in W_i \cap \left(\sum_{j \neq 1} W_j\right)$. Since $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$, we have $\mathbf{v} = \mathbf{0}$ by (ii).

(b) Let W_1, W_2, W_3 be subspaces of a vector space V. Suppose

$$W_1 \cap W_2 = W_1 \cap W_3 = W_2 \cap W_3 = \{\mathbf{0}\}.$$

Must $W_1 + W_2 + W_3$ be a direct sum?

SOLUTION. Not necessarily. Let $V = \mathbb{R}^2$. Let $W_1 = \{(a,0) \in \mathbb{R}^2 \mid a \in \mathbb{R}\}$, $W_2 = \{(0,a) \in \mathbb{R}^2 \mid a \in \mathbb{R}\}$, and $W_3 = \{(a,a) \in \mathbb{R}^2 \mid a \in \mathbb{R}\}$. Note that

$$W_1 \cap W_2 = W_1 \cap W_3 = W_2 \cap W_3 = \{(0,0)\}\$$

but $W_1+W_2+W_3$ is not a direct sum since the following three non-zero vectors in W_1, W_2, W_3 add up to (0,0):

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

- **5.** Prove or provide a counter example for the following.
 - (a) Let

$$V_1 := \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \in \mathbb{R}^{2 \times 2} \mid a, b \in \mathbb{R} \right\},$$

$$V_2 := \left\{ \begin{bmatrix} c & d \\ d & -c \end{bmatrix} \in \mathbb{R}^{2 \times 2} \mid c, d \in \mathbb{R} \right\}.$$

Is it true that

$$\mathbb{R}^{2\times 2} = V_1 \oplus V_2?$$

SOLUTION. Note that

$$\mathbb{R}^{2\times 2}\ni\begin{bmatrix}x&y\\z&w\end{bmatrix}=\frac{1}{2}\begin{bmatrix}x+w&y-z\\-(y-z)&x+w\end{bmatrix}+\frac{1}{2}\begin{bmatrix}x-w&y+z\\y+z&-(x+w)\end{bmatrix}\in V_1+V_2.$$

So

$$\mathbb{R}^{2\times 2} = V_1 + V_2.$$

Let

$$A = \begin{bmatrix} x & y \\ z & w \end{bmatrix} \in V_1 \cap V_2.$$

Then we must have x = w since $A \in V_1$ and y = z since $A \in V_2$. Hence

$$A = \begin{bmatrix} x & y \\ y & x \end{bmatrix}.$$

But we must also have x = -x since $A \in V_2$ and y = -y since $A \in V_1$. Hence x = y = 0 and

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

So $V_1 \cap V_2 = \{ \mathbf{0} \}$ and so

$$\mathbb{R}^{2\times 2}=V_1\oplus V_2.$$

(b) Let

$$W_1 := \{ p(x) \in \mathbb{P}_3 \mid p(-x) = p(x) \text{ for all } x \in \mathbb{R} \},$$

 $W_2 := \{ p(x) \in \mathbb{P}_3 \mid p(-x) = -p(x) \text{ for all } x \in \mathbb{R} \}.$

Is it true that

$$\mathbb{P}_3 = W_1 \oplus W_2?$$

SOLUTION. Let
$$p(x) = a + bx + cx^2 + dx^3$$
. If $p(-x) = p(x)$, then $a - bx + cx^2 - dx^3 = a + bx + cx^2 + dx^3$

and so
$$b = d = 0$$
. If $p(-x) = -p(x)$, then

$$a - bx + cx^2 - dx^3 = -a - bx - cx^2 - dx^3$$

and so a = c = 0. Hence

$$W_1 = \{a + cx^2 \mid a, c \in \mathbb{R}\},\$$

 $W_2 = \{bx + dx^3 \mid b, d \in \mathbb{R}\}.$

Clearly

$$\mathbb{P}_3 \ni a + bx + cx^2 + dx^3 = (a + cx^2) + (bx + dx^3) \in W_1 + W_2$$

and so

$$\mathbb{P}_3 = W_1 + W_2.$$

If
$$p(x) = a + bx + cx^2 + dx^3 \in W_1 \cap W_2$$
, then $a = c = 0$ and $b = d = 0$. So $W_1 \cap W_2 = \{0\}$ and so

$$\mathbb{P}_3 = W_1 \oplus W_2$$
.