## THE EULER SERIES CONVERGES TO $\pi^2/6$

Consider the function

$$f(x) = \frac{\sin(nx)}{\sin(x)^n}$$

Let let x belong to the open interval  $(0, \pi/2)$  and n be an odd number. We can then with some rewritings use Moivre to get the following.

$$f(x) = \frac{\sin(nx)}{\sin(x)^n} = Im \frac{\cos(nx) + i\sin(nx)}{\sin(x)^n} = Im \frac{e^{inx}}{\sin(x)^n} = Im \left(\frac{\cos(x) + i\sin(x)}{\sin(x)}\right)^n = Im(\cot(x) + i)^n$$

This expression can be expanded with binomial coefficients to get the following;

$$f(x) = Im \sum_{k=0}^{n} \binom{n}{k} i^k \cot^{n-k} x$$

By putting in n=2m+1 (since n was odd) we get the following expression:

$$f(x) = Im \sum_{k=0}^{2m+1} {2m+1 \choose k} i^k \cot^{2m+1-k} x = \sum_{k=oddnumber \ge 1}^{2m+1} {2m+1 \choose k} (-1)^{\frac{k-1}{2}} \cot^{2m+1-k} x$$

We now substitute  $\cot^2 x = t$ , noting that  $\cot^2 x$  is an injective function on our interval. This will give us a polynomial of degree m in t.

$$f(x) = p(t) = \binom{2m+1}{1}t^m - \binom{2m+1}{3}t^{m-1} + \dots$$

It is known that the sum of the roots of a polynomial of degree d is the coefficient before the term of order d-1 divided by the coefficient before the term of order d with switched sign. This gives us

$$(sumofroots) = \frac{\binom{2m+1}{3}}{\binom{2m+1}{1}} = \frac{2m(2m-1)}{6}$$

To find the roots we look at the original function f(x). It is zero iff sin(nx) = sin((2m+1)x) = 0 so it must be true for a solution to f(x) = 0 that  $(2m+1)x = r\pi$  where r is an integer. This gives us  $x = \frac{r\pi}{2m+1}$ . Since x must be the open interval  $(0, \pi/2)$  this gives us the m solutions  $x_r = \frac{r\pi}{2m+1}$  for r = 1...m.

Due to  $\cot(x)^2$  being injective this gives us m unique roots to p(t), so we have all roots. That gives us the following equality from the root sum formula:

$$\sum_{r=1}^{m} \cot^2 \left( \frac{r\pi}{2m+1} \right) = \frac{2m(2m-1)}{6}$$

A similar equality can be gained for  $\csc^2(x)$  by using the known formula  $\cot^2(x) = \csc^2(x) - 1$ . Putting this into our sum gives

$$\sum_{r=1}^{m} (\csc^2 \left( \frac{r\pi}{2m+1} \right) - 1) = \frac{2m(2m-1)}{6}$$

$$\sum_{r=1}^{m} \csc^{2} \left( \frac{r\pi}{2m+1} \right) = \frac{2m(2m+2)}{6}$$

The inequality  $sin(x) \le x \le tan(x)$  holds for our interval and gives rise to the inequality  $\csc^2(x) \ge 1/x^2 \ge \cot^2(x)$ . By using this inequality with our sums we get the following:

$$\sum_{r=1}^{m}\csc^{2}\left(\frac{r\pi}{2m+1}\right) = \frac{2m(2m+2)}{6} \ge \sum_{r=1}^{m}(\frac{2m+1}{r\pi})^{2} \ge \sum_{r=1}^{m}\cot^{2}\left(\frac{r\pi}{2m+1}\right) = \frac{2m(2m-1)}{6}$$

Somewhat simplified as

$$\frac{2m(2m+2)}{6} \ge \frac{(2m+1)^2}{\pi^2} \sum_{r=1}^{m} \frac{1}{r^2} \ge \frac{2m(2m-1)}{6}$$

This gives us the Euler series partial sums as bounded from above and below by the following:

$$\frac{\pi^2}{6} \frac{2m(2m+2)}{(2m+1)^2} \ge \sum_{r=1}^{m} \frac{1}{r^2} \ge \frac{\pi^2}{6} \frac{2m(2m-1)}{(2m+1)^2}$$

A simple limit process then gives us

$$\frac{\pi^2}{6} \ge \sum_{r=1}^{\infty} \frac{1}{r^2} \ge \frac{\pi^2}{6}$$

and we have proved convergence to  $\frac{\pi^2}{6}$ .