THE EULER SERIES CONVERGES TO 7T2/6

Consider the function
sin(nz)
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Let let = belong to the open interval (0,7/2) and n be an odd number. We
can then with some rewritings use Moivre to get the following.
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This expression can be expanded with binomial coefficients to get the following;
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By putting in n=2m+1 (since n was odd) we get the following expression:
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We now substitute cot? z = ¢, noting that cot? z is an injective function on
our interval. This will give us a polynomial of degree m in t.
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It is known that the sum of the roots of a polynomial of degree d is the
coefficient before the term of order d — 1 divided by the coefficient before
the term of order d with switched sign. This gives us
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To find the roots we look at the original function f(z). It is zero iff sin(nz) =
sin((2m + 1)x) = 0 so it must be true for a solution to f(x) = 0 that
(2m + 1)z = rm where r is an integer. This gives us z = 5% Since  must
be the open interval (0,7/2) this gives us the m solutions z, = 5"
r=1.m.

Due to cot(z)? being injective this gives us m unique roots to p(t), so we have

all roots. That gives us the following equality from the root sum formula:
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A similar equality can be gained for csc?(z) by using the known formula
cot 2(x) = csc?(x) — 1. Putting this into our sum gives
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The inequality sm(x) <z < tan( ) holds for our interval and gives rise
to the inequality csc?(x) > 1/2% > cot?(x). By using this inequality with
our sums we get the following:
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Somewhat simplified as
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This gives us the Euler series partial sums as bounded from above and below
by the following;:
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A simple limit process then gives us:
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and we have proved convergence to % .
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