d'Alembert's solution of the wave equation / energy

We've derived the one-dimensional wave equation

$$u_{tt} = \frac{T}{\rho} u_{xx} = c^2 u_{xx}$$

and now it's time to solve it.

For our first pass, we'll assume that the string is "infinite" and solve the initial-value problem for the equation for $-\infty < x < \infty$ and t > 0, together with initial data

$$u(x,0) = \varphi(x)$$
 $u_t(x,0) = \psi(x)$

specifying the initial displacement and velocity of the string.

In class we solved this by making a clever change of variables (p = x + ct, q = x - ct) but now we'll think about finding "traveling wave" solutions with as-yet-to-be-determined velocity k:

$$u(x,t) = f(x-kt)$$

and determine the possible value of k from the wave equation:

If
$$u(x,t) = f(x-kt)$$
 then $u_{xx} = f''(x-kt)$ and $u_{tt} = k^2 f''(x-kt)$. Therefore we need
$$0 = u_t t - c^2 u_{xx} = k^2 f''(x-kt) - c^2 f''(x-kt) = (k^2 - c^2) f''(x-kt)$$

Since this must hold for all x and t, we either need $f'' \equiv 0$, i.e., f is a linear function (not very interesting for the *wave* equation) or else we need $k^2 - c^2 = 0$, i.e., $k = \pm c$. So we arrive at the solution we've seen in class (since we can add two solutions to get another one):

$$u(x,t) = f(x-ct) + q(x+ct).$$

Initial-value problem

Since the wave equation is second-order in time, it tells us about acceleration. Therefore it makes sense that we need to specify the initial position and velocity of the medium (string) to get a unique solution: In other words, we seek a (the) solution of the initial-value problem:

$$u_{tt} = c^2 u_{xx}$$
 together with $u(x,0) = \varphi(x)$ $u_t(x,0) = \psi(x)$.

We start by writing

$$u(x,t) = f(x-ct) + g(x+ct), \tag{1}$$

which "uses up" the PDE, and now we have to choose f and g so that the initial conditions are satisfied. Substituting f(x - ct) + g(x + ct) for u in the two initial conditions gives us

$$f(x) + g(x) = \varphi(x) \tag{2}$$

and

$$-cf'(x) + cg'(x) = \psi(x) \tag{3}$$

Take the derivative of equation (2) to obtain

$$f'(x) + g'(x) = \varphi'(x) \tag{4}$$

and we can view (3) and (4) together as an algebraic system of two equations in the two unknowns f'(x) and g'(x), since $\varphi(x)$, $\psi(x)$ and c are known (or given) quantities in the PDE and the initial data. To solve it, add c times equation (4) to equation (3) to cancel the f'(x) terms and get that

$$2cg'(x) = c\varphi'(x) + \psi(x). \tag{5}$$

Then subtract equation (3) from c times equation (4) to cancel the g'(x) terms and get that

$$2cf'(x) = c\varphi'(x) - \psi(x). \tag{6}$$

After dividing by 2c and integrating, equation (5) tells us that

$$g(x) = \frac{1}{2}\varphi(x) + \frac{1}{2c} \int_{x}^{x} \psi(s) \, ds$$

where the asterisk means we start the integral "somewhere", which accounts for the constant of integration (and s is the "dummy" variable of integration). Likewise, equation (6) tells us that

$$f(x) = \frac{1}{2}\varphi(x) - \frac{1}{2c} \int_{*}^{x} \psi(s) ds.$$

Therefore

$$u(x,t) = f(x-ct) + g(x+ct) = \frac{1}{2} \left(\varphi(x-ct) + \varphi(x+ct) \right) + \frac{1}{2c} \int_{s-ct}^{s+ct} \psi(s) \, ds \tag{7}$$

where having x-ct as the lower limit of the integral accounts for the minus sign in the f(x) equation, and while there might have been an additional constant of integration, we will check that u(x,t) defined by this formula satisfies the initial-value problem.

First off, u(x,t) in equation (7) is clearly a function of x + ct plus a function of x - ct, so it automatically satisfies the wave equation. So we only need to check the initial conditions:

$$u(x,0) = \frac{1}{2} \left(\varphi(x) + \varphi(x) \right) + \frac{1}{2c} \int_x^x \psi(s) \, ds = \varphi(x)$$

since the integral over an interval of length zero vanishes. Also,

$$u_t(x,0) = \frac{1}{2} \left(-c\varphi'(x) + c\varphi'(x) \right) + \frac{1}{2c} \left(c\psi(x) + c\psi(x) \right) = \psi(x)$$

by the fundamental theorem of calculus and the chain rule.

So we have shown that equation (7) gives a solution of the initial-value problem for the wave equation. It is usually referred to as d'Alembert's solution, since he first wrote about it in the 1740s.

It is useful to take a moment to inspect the solution a bit in order to draw some conclusions about "causality" and the speed of signal propagation (I looked up the spelling!). First, consider a point x_0 on the string at time t_0 — we can ask what part of the initial data affect the value of the solution at the space-time point (x_0, t_0) . The part of the solution that involves the initial position is just $\frac{1}{2} \Big(\varphi(x_0 - ct_0) + \varphi(x_0 + ct_0) \Big)$, so the values of φ at only the two points $x = x_0 - ct_0$ and $x = x_0 + ct_0$ affect the value of the solution at (x_0, t_0) . The part of the solution that involves the initial velocity is

$$\frac{1}{2c} \int_{x_0 - ct_0}^{x_0 + ct_0} \psi(s) \, ds$$

so the only values of ψ at points in the x-interval from $x_0 - ct_0$ to $x_0 + ct_0$ affect the value of $u(x_0, t_0)$. Because of this, the *closed* interval $[x_0 - ct_0, x_0 + ct_0]$ is called the *domain of dependence* for the point (x_0, t_0) .

We can flip this reasoning around, and ask, given a point x_0 , for which points (x,t) is the value of u(x,t) affected by the initial data at x_0 ? From the reasoning in the previous paragraph, these will be the points for which $x - ct \le x_0 \le x + ct$, in other words, the points for which

$$x_0 - ct \le x \le x_0 + ct$$

(to conclude this, solve the two preceding inequalities separately for x). The set of points (x,t) with t > 0 for which this is true form a triangular wedge in the xt-plane having sides emanating from the point $(x_0, 0)$ with slopes $\pm 1/c$. This region in the xt-plane is called the region of influence of the point x_0 . The fact that x_0 influences only points within a distance ct from it at time t tells us that signals propagate with finite speed, [at most] c for solutions of the wave equation. And this is consistent with our experience of sound and other waves.

Energy conservation and inequalities

Since u_t represents the velocity of the string, it is reasonable to relate

$$\frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x,t) \, dx$$

to the total kinetic energy of the string at time t. It is somewhat less obvious that the quantity

$$\frac{1}{2} \int_{-\infty}^{\infty} c^2 u_x^2(x,t) \, dx$$

should be associated with potential energy, but we can conclude that if it starts out finite, the quantity

$$e(t) = \int_{-\infty}^{\infty} \frac{1}{2} \left(u_t^2(x,t) + c^2 u_x^2(x,t) \right) dx$$

remains constant, which implies *conservation of energy*. In turn, this conservation of energy implies that the solution of the wave equation is unique. We'll show this now.

Conservation of energy: If the quantity

$$e(0) = \frac{1}{2} \int_{-\infty}^{\infty} \psi(x)^2 + c^2 \varphi'(x)^2 dx$$

is finite, then so will be the quantity

$$e(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_t(x,t)^2 + c^2 u_x(x,t)^2 dx$$

for all t, and moreover e(t) = e(0) for all t, i.e., e(t) is constant.

Proof. If the initial data $\varphi(x)$ and $\psi(x)$ are bounded functions that are zero outside a finite interval [a,b], then the convergence of the energy integral e(0) for them is not an issue, and then from the range of influence discussion above, we know that at time t, the d'Alembert solution u(x,t) will be bounded and zero outside the x-interval [a-ct,b+ct], so the convergence of the energy integral e(t) is not an issue either. At the end of these notes we'll discuss what happens if we only assume that the energy integral e(0) converges (allowing φ and ψ to be nonzero, although necessarily decaying to zero, on the whole x-axis).

To show that e(t) is a constant, we will show that $\frac{de}{dt} \equiv 0$. To do this, we will use that u satisfies the wave equation and integration by parts as follows:

$$\frac{de}{dt} = \frac{d}{dt} \int_{-\infty}^{\infty} \frac{1}{2} u_t^2 + \frac{1}{2} c^2 u_x^2 \, dx = \int_{-\infty}^{\infty} \frac{\partial}{\partial t} (\frac{1}{2} u_t^2 + \frac{1}{2} c^2 u_x^2) \, dx = \int_{-\infty}^{\infty} u_t u_{tt} + c^2 u_x u_{xt} \, dx.$$

We're going to integrate the second term of this by parts. Writing the integration by parts formula as

$$\int f \, dg = fg - \int g \, df$$

we take $f = u_x$ and $dg = u_{xt} dx = u_{tx} dx$ (Keep in mind that the variable of integration is x, and we are treating t as a constant for the purposes of doing the integral). Then $df = u_{xx} dx$ and $g = u_t$, so we get that

$$\int_{-\infty}^{\infty} u_x u_{xt} \, dx = \left. u_t(x) u_x(x) \right|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} u_{xx} u_t \, dx$$

If we continue to assume that u(x,t) is zero outside the x-interval [a-ct, b+ct] (so u_x and u_t will be zero there also), the term being evaluated at $-\infty$ and $+\infty$ (i.e., the "boundary term") will be zero, and so we can insert this into our most recent expression for the derivative of e(t):

$$\frac{de}{dt} = \int_{-\infty}^{\infty} u_t u_{tt} + c^2 u_x u_{xt} \, dx. = \int_{-\infty}^{\infty} u_t u_{tt} - c^2 u_{xx} u_t \, dx = \int_{-\infty}^{\infty} u_t (u_{tt} - c^2 u_{xx}) \, dx$$

But the last expression in parenthesis is identically zero because u satisfies the wave equation. Therefore we have shown that

$$\frac{de}{dt} = 0$$

so e(t) is constant (i.e., energy is conserved).

Uniqueness. There is only one finite-energy solution of the initial-value problem for the wave equation.

Proof. Suppose there are two different finite-energy solutions of the initial-value problem

$$u_t t = c^2 u_{xx}$$
 $u(x,0) = \varphi(x)$ $u_t(x,0) = \psi(x)$,

call them $u_1(x,t)$ and $u_2(x,t)$. Then their difference, $v(x,t) = u_1(x,t) - u_2(x,t)$ certainly satisfies the (linear!) wave equation, and the initial data for v are

$$v(x,0) = u_1(x,0) - u_2(x,0) = \varphi(x) - \varphi(x) = 0$$

and

$$v_t(x,0) = (u_1)_t(x,0) - (u_2)_t(x,0) = \psi(x) - \psi(x) = 0.$$

Therefore the energy corresponding to v(x,t) is zero at time t=0, and by conservation of energy it is always zero. But then we can conclude that $v_x(x,t) = v_t(x,t) = 0$ for all x and t — hence v is a constant function. And since v(x,0) = 0, v(x,t) must be identically zero. Therefore there is no difference between the two solutions (any two finite-energy solutions) of the initial-value problem.

A more refined look at energy. We can remove the finite-energy hypothesis in our uniqueness statement by looking a little more carefully at the idea of the domain of dependence and using Green's theorem in a clever way. From the discussion of domain of dependence (the solution at (x_0, t_0) depends only on the initial data in the interval $[x_0 - ct_0, x_0 + ct_0]$), it is not hard to conclude that the solution on the x-interval $a \le x \le b$ at time t_0 depends only on the initial data in the interval $[a - ct_0, b + ct_0]$. It would follow then that the energy at time $t = t_0$ in [a, b] should be no greater than the energy at time t = 0 in the interval $[a - ct_0, b + ct_0]$ (it might be less, since some of the initial energy would be elsewhere on the x axis).

To translate all this into formulas, we seek to show that

$$\int_{a}^{b} \frac{1}{2} (u_{t}(s, t_{0})^{2} + c^{2} u_{x}(s, t_{0})^{2}) ds \le \int_{a - ct_{0}}^{b + t_{0}} \frac{1}{2} (u_{t}(s, 0)^{2} + c^{2} u_{x}(s, 0)^{2}) ds$$

To do this, we're going to use Green's theorem in a very clever way. Recall that Green's theorem is the following (it might look a tiny bit different from what you're used to, since I've changed the variable usually called y to t):

$$\iint\limits_{R} \frac{\partial N}{\partial x} - \frac{\partial M}{\partial t} \, dx \, dt = \oint_{\mathrm{bd}(R)} M \, dx + N \, dt$$

where M and N are functions of x and t, R is a region in the xt-plane, and $\mathrm{bd}(R)$ is its boundary, traversed counterclockwise.

We're going to apply Green's theorem to the trapezoid in the xt-plane with vertices $(a - ct_0, 0)$, $(b + ct_0, 0)$, (b, t_0) and (a, t_0) and to the functions $M = \frac{1}{2}(u_t^2 + c^2u_x^2)$ and $N = c^2u_xu_t$. It's easy

to see where M comes from — that was our energy integrand from before. N is chosen so that the double integral in Green's theorem will be zero, because

$$\frac{\partial N}{\partial x} - \frac{\partial M}{\partial t} = c^2(u_{xx}u_t + u_xu_{tx}) - (u_tu_{tt} + c^2u_xu_{xt}) = u_t(c^2u_{xx} - u_{tt}) = 0$$

because $u_{xt} = u_{tx}$ and because u satisfies the wave equation. So the double integral on the left side of Green's theorem is zero — now we have to evaluate the line integral on the right side. It has four parts:

• We'll start at the bottom left corner of the trapezoid, starting at $(a-ct_0,0)$. The first segment goes from there to $(b+ct_0,0)$. Parametrize it as x=s, y=0 for $a-ct_0 \le s \le b+ct_0$. Then dx=ds and dy=0, so this part of the integral becomes

$$\int_{a-ct_0}^{b+ct_0} \frac{1}{2} \Big((u_t(s,0))^2 + c^2 (u_x(s,0))^2 \Big) \, ds$$

in other words, it is the energy at time t = 0 in the interval $[a - ct_0, b + ct_0]$.

• Next, we have to integrate the segment starting at $(b + ct_0, 0)$ and ending at (b, t_0) . We can parametrize this as $x = b + c(t_0 - s)$, y = s for $0 \le s \le t_0$. Then dx = -c ds and dy = ds and this part of the integral becomes

$$\int_0^{t_0} \frac{-c}{2} \Big(u_t(b + c(t_0 - s), s))^2 + c^2 (u_x(b + c(t_0 - s), s))^2 \Big) + c^2 u_x(b + c(t_0 - s), s) u_t(b + c(t_0 - s), s) ds$$

To process this, let's rewrite it without the indication of where to evaluate u_t and u_x each time:

$$\int_0^{t_0} \frac{-c}{2} (u_t^2 + u_x^2) + c^2 u_t u_x \, ds = -c \int_0^{t_0} \frac{1}{2} u_t^2 - c u_t u_x + \frac{1}{2} c^2 u_x^2 \, ds$$
$$= -\frac{c}{2} \int_0^{t_0} (u_t - c u_x)^2 \, ds$$

Therefore this part of the line integral is ≤ 0 .

• The third part of the integral goes along the segment from (b, t_0) to (a, t_0) . It can be parametrized as x = s, $y = t_0$ for s going from b to a (we know that a < b but that's okay), so we have dx = ds and dy = 0. This part of the integral becomes:

$$\int_{b}^{a} \frac{1}{2} (u_{t}(s, t_{0})^{2} + c^{2} u_{x}(s, t_{0})^{2}) ds = -\int_{a}^{b} \frac{1}{2} (u_{t}(s, t_{0})^{2} + c^{2} u_{x}(s, t_{0})^{2}) ds$$

in other words, it is the negative of the energy in the interval [a, b] at time $t = t_0$.

• Finally, we have to integrate the segment rom (a, t_0) back to the point $(a - ct_0, 0)$. It can be parametrized as $x = a - c(t_0 - s)$, y = s for s going from t_0 to 0 (again s is decreasing but that's okay). We have dx = c ds and dy = ds so this part of the line integral becomes

$$\int_{t_0}^{0} \frac{c}{2} \Big(u_t(a - c(t_0 - s), s))^2 + c^2 (u_x(a - c(t_0 - s), s))^2 \Big) + c^2 u_x(a - c(t_0 - s), s) u_t(a - c(t_0 - s), s) ds$$

And once again, to process this, we rewrite it without the indication of where to evaluate u_t and u_x each time:

$$\int_{t_0}^{0} \frac{c}{2} (u_t^2 + u_x^2) + c^2 u_t u_x \, ds = c \int_{t_0}^{0} \frac{1}{2} u_t^2 + c u_t u_x + \frac{1}{2} c^2 u_x^2 \, ds$$

$$= \frac{c}{2} \int_{t_0}^{0} (u_t + c u_x)^2 \, ds$$

$$= -\frac{c}{2} \int_{0}^{t_0} (u_t + c u_x)^2 \, ds$$

So this part of the integral is non-positive (just like the second part above).

Because the line integral evaluates to zero, we can summarize our calculations as follows:

Energy in
$$[a - ct_0, b + ct_0]$$
 at $t = 0$ – Energy in $[a, b]$ at $t = t_0$ = something non-negative

This is the essential energy inequality — it allows us to conclude that if the initial data are zero, there cannot be any solution of the initial value problem other than $u \equiv 0$ (finite energy or not) because we can conclude that the energy remains zero in any trapezoid with its base on the x-axis and its left and right slanted sides of slopes 1/c and -1/c respectively. And we can cover the xt-plane with such trapezoids, so the only possible solution of the initial value problem is the zero solution. So we have shown:

Uniqueness. There is only one solution of the initial-value problem for the wave equation.

Postscript: What if the initial data are not zero outside a finite interval? This follows from the refined version of the energy inequality. As long as the total energy

$$e(0) = \frac{1}{2} \int_{-\infty}^{\infty} \psi(x)^2 + c^2 \varphi'(x)^2 dx$$

is finite, then the number e(0) serves as an upper bound for the energy on any finite interval [a, b] at time $t = t_0$

$$\frac{1}{2} \int_{a}^{b} u_{t}(x, t_{0})^{2} + c^{2} u_{x}(x, t_{0})^{2} dx$$

because we now know that

$$\frac{1}{2} \int_{a}^{b} u_{t}(x,t_{0})^{2} + c^{2} u_{x}(x,t_{0})^{2} dx \leq \frac{1}{2} \int_{a-ct_{0}}^{b+ct_{0}} u_{t}(x,0)^{2} + c^{2} u_{x}(x,0)^{2} dx \leq \frac{1}{2} \int_{-\infty}^{\infty} \psi(x)^{2} + c^{2} \varphi'(x)^{2} dx = e(0).$$

But now we can let a and b go to $-\infty$ and $+\infty$ respectively and we know that the value of the integral will increase, but be bounded above. Therefore it must converge to a finite value and so the quantity

$$e(t_0) = \frac{1}{2} \int_{-\infty}^{\infty} u_t(x,t)^2 + c^2 u_x(x,t)^2 dx$$

will exist and be finite. And then the reasoning from the finite-energy case applies.