
d’Alembert’s solution of the wave equation / energy

We’ve derived the one-dimensional wave equation

utt =
T

ρ
uxx = c2uxx

and now it’s time to solve it.

For our first pass, we’ll assume that the string is “infinite” and solve the initial-value problem

for the equation for −∞ < x <∞ and t > 0, together with initial data

u(x, 0) = ϕ(x) ut(x, 0) = ψ(x)

specifying the initial displacement and velocity of the string.

In class we solved this by making a clever change of variables (p = x + ct, q = x − ct) but now

we’ll think about finding “traveling wave” solutions with as-yet-to-be-determined velocity k:

u(x, t) = f(x− kt)

and determine the possible value of k from the wave equation:

If u(x, t) = f(x− kt) then uxx = f ′′(x− kt) and utt = k2f ′′(x− kt). Therefore we need

0 = utt− c2uxx = k2f ′′(x− kt)− c2f ′′(x− kt) = (k2 − c2)f ′′(x− kt)

Since this must hold for all x and t, we either need f ′′ ≡ 0, i.e., f is a linear function (not very

interesting for the wave equation) or else we need k2 − c2 = 0, i.e., k = ±c. So we arrive at the

solution we’ve seen in class (since we can add two solutions to get another one):

u(x, t) = f(x− ct) + g(x+ ct).

Initial-value problem

Since the wave equation is second-order in time, it tells us about acceleration. Therefore it makes

sense that we need to specify the initial position and velocity of the medium (string) to get a unique

solution: In other words, we seek a (the) solution of the initial-value problem:

utt = c2uxx together with u(x, 0) = ϕ(x) ut(x, 0) = ψ(x).

We start by writing

u(x, t) = f(x− ct) + g(x+ ct), (1)

which “uses up” the PDE, and now we have to choose f and g so that the initial conditions are

satisfied. Substituting f(x− ct) + g(x+ ct) for u in the two initial conditions gives us

f(x) + g(x) = ϕ(x) (2)
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and

−cf ′(x) + cg′(x) = ψ(x) (3)

Take the derivative of equation (2) to obtain

f ′(x) + g′(x) = ϕ′(x) (4)

and we can view (3) and (4) together as an algebraic system of two equations in the two unknowns

f ′(x) and g′(x), since ϕ(x), ψ(x) and c are known (or given) quantities in the PDE and the initial

data. To solve it, add c times equation (4) to equation (3) to cancel the f ′(x) terms and get that

2cg′(x) = cϕ′(x) + ψ(x). (5)

Then subtract equation (3) from c times equation (4) to cancel the g′(x) terms and get that

2cf ′(x) = cϕ′(x)− ψ(x). (6)

After dividing by 2c and integrating, equation (5) tells us that

g(x) =
1

2
ϕ(x) +

1

2c

∫ x

∗
ψ(s) ds

where the asterisk means we start the integral “somewhere”, which accounts for the constant of

integration (and s is the “dummy” variable of integration). Likewise, equation (6) tells us that

f(x) =
1

2
ϕ(x)− 1

2c

∫ x

∗
ψ(s) ds.

Therefore

u(x, t) = f(x− ct) + g(x+ ct) =
1

2

(
ϕ(x− ct) + ϕ(x+ ct)

)
+

1

2c

∫ x+ct

x−ct
ψ(s) ds (7)

where having x−ct as the lower limit of the integral accounts for the minus sign in the f(x) equation,

and while there might have been an additional constant of integration, we will check that u(x, t)

defined by this formula satisfies the initial-value problem.

First off, u(x, t) in equation (7) is clearly a function of x + ct plus a function of x − ct, so it

automatically satisfies the wave equation. So we only need to check the initial conditions:

u(x, 0) =
1

2

(
ϕ(x) + ϕ(x)

)
+

1

2c

∫ x

x

ψ(s) ds = ϕ(x)

since the integral over an interval of length zero vanishes. Also,

ut(x, 0) =
1

2

(
−cϕ′(x) + cϕ′(x)

)
+

1

2c

(
cψ(x) + cψ(x)

)
= ψ(x)

by the fundamental theorem of calculus and the chain rule.

So we have shown that equation (7) gives a solution of the initial-value problem for the wave

equation. It is usually referred to as d’Alembert’s solution, since he first wrote about it in the 1740s.
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It is useful to take a moment to inspect the solution a bit in order to draw some conclusions

about “causality” and the speed of signal propagation (I looked up the spelling!). First, consider a

point x0 on the string at time t0 — we can ask what part of the initial data affect the value of the

solution at the space-time point (x0, t0). The part of the solution that involves the initial position

is just 1
2

(
ϕ(x0 − ct0) + ϕ(x0 + ct0)

)
, so the values of ϕ at only the two points x = x0 − ct0 and

x = x0 + ct0 affect the value of the solution at (x0, t0). The part of the solution that involves the

initial velocity is

1

2c

∫ x0+ct0

x0−ct0
ψ(s) ds

so the only values of ψ at points in the x-interval from x0−ct0 to x0+ct0 affect the value of u(x0, t0).

Because of this, the closed interval [x0 − ct0 , x0 + ct0] is called the domain of dependence for the

point (x0, t0).

We can flip this reasoning around, and ask, given a point x0, for which points (x, t) is the value

of u(x, t) affected by the initial data at x0? From the reasoning in the previous paragraph, these

will be the points for which x− ct ≤ x0 ≤ x+ ct, in other words, the points for which

x0 − ct ≤ x ≤ x0 + ct

(to conclude this, solve the two preceding inequalities separately for x). The set of points (x, t) with

t > 0 for which this is true form a triangular wedge in the xt-plane having sides emanating from

the point (x0, 0) with slopes ±1/c. This region in the xt-plane is called the region of influence of

the point x0. The fact that x0 influences only points within a distance ct from it at time t tells us

that signals propagate with finite speed, [at most] c for solutions of the wave equation. And this is

consistent with our experience of sound and other waves.

Energy conservation and inequalities

Since ut represents the velocity of the string, it is reasonable to relate

1

2

∫ ∞
−∞

u2t (x, t) dx

to the total kinetic energy of the string at time t. It is somewhat less obvious that the quantity

1

2

∫ ∞
−∞

c2u2x(x, t) dx

should be associated with potential energy, but we can conclude that if it starts out finite, the

quantity

e(t) =

∫ ∞
−∞

1

2

(
u2t (x, t) + c2u2x(x, t)

)
dx

remains constant, which implies conservation of energy. In turn, this conservation of energy implies

that the solution of the wave equation is unique. We’ll show this now.
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Conservation of energy: If the quantity

e(0) =
1

2

∫ ∞
−∞

ψ(x)2 + c2ϕ′(x)2 dx

is finite, then so will be the quantity

e(t) =
1

2

∫ ∞
−∞

ut(x, t)
2 + c2ux(x, t)2 dx

for all t, and moreover e(t) = e(0) for all t, i.e., e(t) is constant.

Proof. If the initial data ϕ(x) and ψ(x) are bounded functions that are zero outside a finite interval

[a, b], then the convergence of the energy integral e(0) for them is not an issue, and then from the

range of influence discussion above, we know that at time t, the d’Alembert solution u(x, t) will be

bounded and zero outside the x-interval [a− ct, b+ ct], so the convergence of the energy integral e(t)

is not an issue either. At the end of these notes we’ll discuss what happens if we only assume that

the energy integral e(0) converges (allowing ϕ and ψ to be nonzero, although necessarily decaying

to zero, on the whole x-axis).

To show that e(t) is a constant, we will show that
de

dt
≡ 0. To do this, we will use that u satisfies

the wave equation and integration by parts as follows:

de

dt
=

d

dt

∫ ∞
−∞

1
2u

2
t + 1

2c
2u2x dx =

∫ ∞
−∞

∂

∂t
( 1
2u

2
t + 1

2c
2u2x) dx =

∫ ∞
−∞

ututt + c2uxuxt dx.

We’re going to integrate the second term of this by parts. Writing the integration by parts formula

as ∫
f dg = fg −

∫
g df

we take f = ux and dg = uxt dx = utx dx (Keep in mind that the variable of integration is x, and we

are treating t as a constant for the purposes of doing the integral). Then df = uxx dx and g = ut,

so we get that ∫ ∞
−∞

uxuxt dx = ut(x)ux(x)

∣∣∣∣∞
−∞
−
∫ ∞
−∞

uxxut dx

If we continue to assume that u(x, t) is zero outside the x-interval [a− ct , b+ ct] (so ux and ut will

be zero there also), the term being evaluated at −∞ and +∞ (i.e., the “boundary term”) will be

zero, and so we can insert this into our most recent expression for the derivative of e(t):

de

dt
=

∫ ∞
−∞

ututt + c2uxuxt dx. =

∫ ∞
−∞

ututt − c2uxxut dx =

∫ ∞
−∞

ut(utt − c2uxx) dx

But the last expression in parenthesis is identically zero because u satisfies the wave equation.

Therefore we have shown that
de

dt
= 0

so e(t) is constant (i.e., energy is conserved).
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Uniqueness. There is only one finite-energy solution of the initial-value problem for the wave

equation.

Proof. Suppose there are two different finite-energy solutions of the initial-value problem

utt = c2uxx u(x, 0) = ϕ(x) ut(x, 0) = ψ(x),

call them u1(x, t) and u2(x, t). Then their difference, v(x, t) = u1(x, t) − u2(x, t) certainly satisfies

the (linear!) wave equation, and the initial data for v are

v(x, 0) = u1(x, 0)− u2(x, 0) = ϕ(x)− ϕ(x) = 0

and

vt(x, 0) = (u1)t(x, 0)− (u2)t(x, 0) = ψ(x)− ψ(x) = 0.

Therefore the energy corresponding to v(x, t) is zero at time t = 0, and by conservation of energy

it is always zero. But then we can conclude that vx(x, t) = vt(x, t) = 0 for all x and t — hence v

is a constant function. And since v(x, 0) = 0, v(x, t) must be identically zero. Therefore there is no

difference between the two solutions (any two finite-energy solutions) of the initial-value problem.

A more refined look at energy. We can remove the finite-energy hypothesis in our uniqueness

statement by looking a little more carefully at the idea of the domain of dependence and using

Green’s theorem in a clever way. From the discussion of domain of dependence (the solution at

(x0, t0) depends only on the initial data in the interval [x0 − ct0 , x0 + ct0]), it is not hard to

conclude that the solution on the x-interval a ≤ x ≤ b at time t0 depends only on the initial data

in the interval [a− ct0 , b+ ct0]. It would follow then that the energy at time t = t0 in [a, b] should

be no greater than the energy at time t = 0 in the interval [a− ct0 , b+ ct0] (it might be less, since

some of the initial energy would be elsewhere on the x axis).

To translate all this into formulas, we seek to show that∫ b

a

1
2 (ut(s, t0)2 + c2ux(s, t0)2) ds ≤

∫ b+t0

a−ct0

1
2 (ut(s, 0)2 + c2ux(s, 0)2) ds

To do this, we’re going to use Green’s theorem in a very clever way. Recall that Green’s theorem

is the following (it might look a tiny bit different from what you’re used to, since I’ve changed the

variable usually called y to t):∫∫
R

∂N

∂x
− ∂M

∂t
dx dt =

∮
bd(R)

M dx+N dt

where M and N are functions of x and t, R is a region in the xt-plane, and bd(R) is its boundary,

traversed counterclockwise.

We’re going to apply Green’s theorem to the trapezoid in the xt-plane with vertices (a− ct0, 0),

(b + ct0, 0), (b, t0) and (a, t0) and to the functions M = 1
2 (u2t + c2u2x) and N = c2uxut . It’s easy
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to see where M comes from — that was our energy integrand from before. N is chosen so that the

double integral in Green’s theorem will be zero, because

∂N

∂x
− ∂M

∂t
= c2(uxxut + uxutx)− (ututt + c2uxuxt) = ut(c

2uxx − utt) = 0

because uxt = utx and because u satisfies the wave equation. So the double integral on the left side

of Green’s theorem is zero — now we have to evaluate the line integral on the right side. It has four

parts:

• We’ll start at the bottom left corner of the trapezoid, starting at (a−ct0, 0). The first segment

goes from there to (b+ ct,0 0). Parametrize it as x = s, y = 0 for a− ct0 ≤ s ≤ b+ ct0. Then

dx = ds and dy = 0, so this part of the integral becomes∫ b+ct0

a−ct0

1
2

(
(ut(s, 0))2 + c2(ux(s, 0))2

)
ds

in other words, it is the energy at time t = 0 in the interval [a− ct0 , b+ ct0].

• Next,we have to integrate the segment starting at (b + ct0, 0) and ending at (b, t0). We can

parametrize this as x = b+ c(t0 − s), y = s for 0 ≤ s ≤ t0. Then dx = −c ds and dy = ds and

this part of the integral becomes∫ t0

0

−c
2

(
ut(b+c(t0−s), s))2+c2(ux(b+c(t0−s), s))2

)
+c2ux(b+c(t0−s), s)ut(b+c(t0−s), s) ds

To process this, let’s rewrite it without the indication of where to evaluate ut and ux each

time: ∫ t0

0

−c
2

(u2t + u2x) + c2utux ds = −c
∫ t0

0

1
2u

2
t − cutux + 1

2c
2u2x ds

= − c
2

∫ t0

0

(ut − cux)2 ds

Therefore this part of the line integral is ≤ 0.

• The third part of the integral goes along the segment from (b, t0) to (a, t0). It can be

parametrized as x = s, y = t0 for s going from b to a (we know that a < b but that’s

okay), so we have dx = ds and dy = 0. This part of the integral becomes:∫ a

b

1
2 (ut(s, t0)2 + c2ux(s, t0)2) ds = −

∫ b

a

1
2 (ut(s, t0)2 + c2ux(s, t0)2) ds

in other words, it is the negative of the energy in the interval [a, b] at time t = t0.

• Finally, we have to integrate the segment rom (a, t0) back to the point (a− ct0, 0). It can be

parametrized as x = a − c(t0 − s), y = s for s going from t0 to 0 (again s is decreasing but

that’s okay). We have dx = c ds and dy = ds so this part of the line integral becomes∫ 0

t0

c

2

(
ut(a−c(t0−s), s))2+c2(ux(a−c(t0−s), s))2

)
+c2ux(a−c(t0−s), s)ut(a−c(t0−s), s) ds
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And once again, to process this, we rewrite it without the indication of where to evaluate ut

and ux each time:∫ 0

t0

c

2
(u2t + u2x) + c2utux ds = c

∫ 0

t0

1
2u

2
t + cutux + 1

2c
2u2x ds

=
c

2

∫ 0

t0

(ut + cux)2 ds

= − c
2

∫ t0

0

(ut + cux)2 ds

So this part of the integral is non-positive (just like the second part above).

Because the line integral evaluates to zero, we can summarize our calculations as follows:

Energy in [a− ct0, b+ ct0] at t = 0 − Energy in [a, b] at t = t0 = something non-negative

This is the essential energy inequality — it allows us to conclude that if the initial data are zero,

there cannot be any solution of the initial value problem other than u ≡ 0 (finite energy or not)

because we can conclude that the energy remains zero in any trapezoid with its base on the x-axis

and its left and right slanted sides of slopes 1/c and −1/c respectively. And we can cover the xt-plane

with such trapezoids, so the only possible solution of the initial value problem is the zero solution.

So we have shown:

Uniqueness. There is only one solution of the initial-value problem for the wave equation.

Postscript: What if the initial data are not zero outside a finite interval? This follows

from the refined version of the energy inequality. As long as the total energy

e(0) =
1

2

∫ ∞
−∞

ψ(x)2 + c2ϕ′(x)2 dx

is finite, then the number e(0) serves as an upper bound for the energy on any finite interval [a, b]

at time t = t0
1

2

∫ b

a

ut(x, t0)2 + c2ux(x, t0)2 dx

because we now know that

1

2

∫ b

a

ut(x, t0)2+c2ux(x, t0)2 dx ≤ 1

2

∫ b+ct0

a−ct0
ut(x, 0)2+c2ux(x, 0)2 dx ≤ 1

2

∫ ∞
−∞

ψ(x)2+c2ϕ′(x)2 dx = e(0).

But now we can let a and b go to −∞ and +∞ respectively and we know that the value of the

integral will increase, but be bounded above. Therefore it must converge to a finite value and so the

quantity

e(t0) =
1

2

∫ ∞
−∞

ut(x, t)
2 + c2ux(x, t)2 dx

will exist and be finite. And then the reasoning from the finite-energy case applies.


