
MAT 772: Numerical Analysis

James V. Lambers

August 23, 2016

2

Contents

1 Solution of Equations by Iteration 7

1.1 Nonlinear Equations . 7

1.1.1 Existence and Uniqueness 7

1.1.2 Sensitivity . 8

1.2 Simple Iteration . 9

1.3 Iterative Solution of Equations 16

1.4 Relaxation . 17

1.5 Newton’s Method . 18

1.6 The Secant Method . 25

1.7 The Bisection Method . 28

1.8 Safeguarded Methods . 31

2 Polynomial Interpolation 35

2.1 Lagrange Interpolation . 35

2.2 Convergence . 40

2.3 Hermite Interpolation . 43

2.4 Differentiation . 45

2.4.1 Finite Difference Approximations 46

3 Numerical Integration 53

3.1 Integration . 53

3.2 Well-Posedness . 53

3.2.1 Newton-Cotes Quadrature 54

3.3 Error Estimates . 57

3.4 The Runge Phenomenon Revisited 59

3.5 Composite Formulae . 60

3.6 Richardson Extrapolation . 63

3.7 The Euler-Maclaurin Expansion 65

3.8 Romberg Integration . 67

3

4 CONTENTS

4 Polynomial Approximation in the ∞-norm 73

4.1 Normed Linear Spaces . 73

4.2 Best Approximation in the ∞-norm 74

4.3 Chebyshev Polynomials . 77

4.4 Interpolation . 78

5 Polynomial Approximation in the 2-norm 81

5.1 Best Approximation in the 2-norm 81

5.2 Inner Product Spaces . 84

5.3 Orthogonal Polynomials . 86

5.4 Comparisons . 94

6 Numerical Integration - II 97

6.1 Construction of Gauss Quadrature Rules 97

6.2 Error Estimation for Gauss Quadrature 101

6.3 Composite Gauss Formulae 105

6.4 Radau and Lobatto Quadrature 106

7 Piecewise Polynomial Approximation 107

7.1 Linear Interpolating Splines 107

7.2 Basis Functions for Linear Splines 109

7.3 Cubic Splines . 110

7.3.1 Cubic Spline Interpolation 110

7.3.2 Constructing Cubic Splines 111

7.3.3 Well-Posedness and Accuracy 115

7.4 Hermite Cubic Splines . 117

7.5 Basis Functions for Cubic Splines 118

8 Initial Value Problems for ODEs 121

8.1 Theory of Initial-Value Problems 121

8.2 One-Step Methods . 122

8.3 Consistency and Convergence 125

8.4 An Implicit One-Step Method 127

8.5 Runge-Kutta Methods . 128

8.6 Multistep Methods . 132

8.7 Consistency and Zero-Stability 136

8.8 Stiff Differential Equations . 139

8.9 Dahlquist’s Theorems . 144

8.10 Analysis of Multistep Methods 145

CONTENTS 5

Index 148

6 CONTENTS

Chapter 1

Solution of Equations by
Iteration

1.1 Nonlinear Equations

The solution of a single linear equation is an extremely simple task. We now
explore the much more difficult problem of solving nonlinear equations of
the form

f(x) = 0,

where f(x) : Rn → Rm can be any known function. A solution x of such a
nonlinear equation is called a root of the equation, as well as a zero of the
function f .

1.1.1 Existence and Uniqueness

For simplicity, we assume that the function f : Rn → Rm is continuous
on the domain under consideration. Then, each equation fi(x) = 0, i =
1, . . . ,m, defines a hypersurface in Rm. The solution of f(x) = 0 is the
intersection of these hypersurfaces, if the intersection is not empty. It is not
hard to see that there can be a unique solution, infinitely many solutions,
or no solution at all.

For a general equation f(x) = 0, it is not possible to characterize the
conditions under which a solution exists or is unique. However, in some
situations, it is possible to determine existence analytically. For example, in
one dimension, the Intermediate Value Theorem implies that if a continuous
function f(x) satisfies f(a) ≤ 0 and f(b) ≥ 0 where a < b, then f(x) = 0
for some x ∈ (a, b).

7

8 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

Similarly, it can be concluded that f(x) = 0 for some x ∈ (a, b) if the
function (x − z)f(x) ≥ 0 for x = a and x = b, where z ∈ (a, b). This
condition can be generalized to higher dimensions. If S ⊂ Rn is an open,
bounded set, and (x − z)T f(x) ≥ 0 for all x on the boundary of S and for
some z ∈ S, then f(x) = 0 for some x ∈ S. Unfortunately, checking this
condition can be difficult in practice.

One useful result from calculus that can be used to establish existence
and, in some sense, uniqueness of a solution is the Inverse Function Theorem,
which states that if the Jacobian of f is nonsingular at a point x0, then f is
invertible near x0 and the equation f(x) = y has a unique solution for all y
near f(x0).

If the Jacobian of f at a point x0 is singular, then f is said to be
degenerate at x0. Suppose that x0 is a solution of f(x) = 0. Then, in
one dimension, degeneracy means f ′(x0) = 0, and we say that x0 is a double
root of f(x). Similarly, if f (j)(x0) = 0 for j = 0, . . . ,m− 1, then x0 is a root
of multiplicity m. We will see that degeneracy can cause difficulties when
trying to solve nonlinear equations.

1.1.2 Sensitivity

The absolute condition number of a function f(x) is a measure of how a
perturbation in x, denoted by x + ε for some small ε, is amplified by f(x).
Using the Mean Value Theorem, we have

|f(x+ ε)− f(x)| = |f ′(c)(x+ ε− x)| = |f ′(c)||ε|

where c is between x and x+ ε. With ε being small, the absolute condition
number can be approximated by |f ′(x)|, the factor by which the perturbation
in x (ε) is amplified to obtain the perturbation in f(x).

In solving a nonlinear equation in one dimension, we are trying to solve
an inverse problem; that is, instead of computing y = f(x) (the forward
problem), we are computing x = f−1(0), assuming that f is invertible near
the root. It follows from the differentiation rule

d

dx
[f−1(x)] =

1

f ′(f−1(x))

that the condition number for solving f(x) = 0 is approximately 1/|f ′(x∗)|,
where x∗ is the solution. This discussion can be generalized to higher di-
mensions, where the condition number is measured using the norm of the
Jacobian.

1.2. SIMPLE ITERATION 9

Using backward error analysis, we assume that the approximate solution
x̂ = f̂−1(0), obtained by evaluating an approximation of f−1 at the exact
input y = 0, can also be viewed as evaluating the exact function f−1 at a
nearby input ŷ = ε. That is, the approximate solution x̂ = f−1(ε) is the
exact solution of a nearby problem.

From this viewpoint, it can be seen from a graph that if |f ′| is large near
x∗, which means that the condition number of the problem f(x) = 0 is small
(that is, the problem is well-conditioned), then even if ε is relatively large,
x̂ = f−1(ε) is close to x∗. On the other hand, if |f ′| is small near x∗, so that
the problem is ill-conditioned, then even if ε is small, x̂ can be far away from
x∗.

1.2 Simple Iteration

A nonlinear equation of the form f(x) = 0 can be rewritten to obtain an
equation of the form

g(x) = x,

in which case the solution is a fixed point of the function g. This formu-
lation of the original problem f(x) = 0 will leads to a simple solution
method known as fixed-point iteration, or simple iteration. Before we de-
scribe this method, however, we must first discuss the questions of existence
and uniqueness of a solution to the modified problem g(x) = x. The follow-
ing result answers these questions.

Theorem (Brouwer’s Fixed Point Theorem) Let g be a continuous
function on the interval [a, b]. If g(x) ∈ [a, b] for each x ∈ [a, b], then g has
a fixed point in [a, b].

Given a continuous function g that is known to have a fixed point in an
interval [a, b], we can try to find this fixed point by repeatedly evaluating
g at points in [a, b] until we find a point x for which g(x) = x. This is the
essence of the method of fixed-point iteration, the implementation of which
we now describe.

Algorithm (Fixed-Point Iteration) Let g be a continuous function de-
fined on the interval [a, b]. The following algorithm computes a number
x∗ ∈ (a, b) that is a solution to the equation g(x) = x.

Choose an initial guess x0 in [a, b].
for k = 0, 1, 2, . . . do

xk+1 = g(xk)

10 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

if |xk+1 − xk| is sufficiently small then
x∗ = xk+1

return x∗

end
end

Under what circumstances will fixed-point iteration converge to a fixed
point x∗? We say that a function g that is continuous on [a, b] satisfies a
Lipschitz condition on [a, b] if there exists a positive constant L such that

|g(x)− g(y)| ≤ L|x− y|, x, y ∈ [a, b].

The constant L is called a Lipschitz constant. If, in addition, L < 1, we say
that g is a contraction on [a, b].

If we denote the error in xk by ek = xk − x∗, we can see from the fact
that g(x∗) = x∗ that if xk ∈ [a, b], then

|ek+1| = |xk+1 − x∗| = |g(xk)− g(x∗)| ≤ L|xk − x∗| ≤ L|ek| < |ek|.

Therefore, if g satisfies the conditions of the Brouwer Fixed-Point Theorem,
and g is a contraction on [a, b], and x0 ∈ [a, b] , then fixed-point iteration is
convergent; that is, xk converges to x∗.

Furthermore, the fixed point x∗ must be unique, for if there exist two
distinct fixed points x∗ and y∗ in [a, b], then, by the Lipschitz condition, we
have

0 < |x∗ − y∗| = |g(x∗)− g(y∗)| ≤ L|x∗ − y∗| < |x∗ − y∗|,

which is a contradiction. Therefore, we must have x∗ = y∗. We summarize
our findings with the statement of the following result.

Theorem (Contraction Mapping Theorem) Let g be a continuous func-
tion on the interval [a, b]. If g(x) ∈ [a, b] for each x ∈ [a, b], and if there exists
a constant 0 < L < 1 such that

|g(x)− g(y)| ≤ L|x− y|, x, y ∈ [a, b],

then g has a unique fixed point x∗ in [a, b], and the sequence of iterates
{xk}∞k=0 converges to x∗, for any initial guess x0 ∈ [a, b].

In general, when fixed-point iteration converges, it does so at a rate
that varies inversely with the Lipschitz constant L. If the smallest possible
Lipschitz constant on an interval containing x∗ actually approaches zero as
the width of the interval converges to zero, then the iteration can converge

1.2. SIMPLE ITERATION 11

much more rapidly. We will discuss convergence behavior of various methods
for solving nonlinear equations in a later lecture.

Often, there are many ways to convert an equation of the form f(x) = 0
to one of the form g(x) = x, the simplest being g(x) = x−φ(x)f(x) for any
function φ. However, it is important to ensure that the conversion yields a
function g for which fixed-point iteration will converge.

Example We use fixed-point iteration to compute a fixed point of g(x) =
cosx in the interval [0, 1]. Since | cosx| ≤ 1 for all x, and cosx ≥ 0 on
[0, π/2], and π/2 > 1, we know that cosx maps [0, 1] into [0, 1]. Since cosx
is continuous for all x, we can conclude that cosx has a fixed point in [0, 1].
Because g′(x) = − sinx, and | − sinx| ≤ |− sin 1| on [0, 1], we can apply the
Mean Value Theorem to obtain

| cosx− cos y| = | − sin c||x− y| ≤ | − sin 1||x− y|,

for any x, y ∈ [0, 1], where c lies between x and y. As | sin 1| < 1, we conclude
that cosx is a contraction on [0, 1], and therefore it has a unique fixed point
on [0, 1].

To use fixed-point iteration, we first choose an initial guess x0 in [0, 1].
As discussed above, fixed-point iteration will converge for any initial guess,
so we choose x0 = 0.5. The table on page 4 shows the outcome of several
iterations, in which we compute xk+1 = cosxk for k = 0, 1, 2, As the
table shows, it takes nearly 30 iterations to obtain the fixed point to five
decimal places, and there is considerable oscillation in the first iterations
before a reasonable approximate solution is obtained. This oscillation is
shown in Figure 1.1.

As xk converges, it can be seen from the table that the error is reduced
by a factor of roughly 2/3 from iteration to iteration. This suggests that
cosx is a relatively poor choice for the iteration function g(x) to solve the
equation g(x) = cosx. 2

In general, nonlinear equations cannot be solved in a finite sequence
of steps. As linear equations can be solved using direct methods such as
Gaussian elimination, nonlinear equations usually require iterative methods.
In iterative methods, an approximate solution is refined with each iteration
until it is determined to be sufficiently accurate, at which time the iteration
terminates. Since it is desirable for iterative methods to converge to the
solution as rapidly as possible, it is necessary to be able to measure the
speed with which an iterative method converges.

To that end, we assume that an iterative method generates a sequence
of iterates x0,x1,x2, . . . that converges to the exact solution x∗. Ideally, we

12 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

Figure 1.1: Fixed-point iteration applied to the equation cosx = x, with
x0 = 0.5.

would like the error in a given iterate xk+1 to be much smaller than the
error in the previous iterate xk. For example, if the error is raised to a
power greater than 1 from iteration to iteration, then, because the error is
typically less than 1, it will approach zero very rapidly. This leads to the
following definition.

Definition (Order and Rate of Convergence) Let {xk}∞k=0 be a se-
quence in Rn that converges to x∗ ∈ Rn and assume that xk 6= x∗ for each
k. We say that the order of convergence of {xk} to x∗ is order r, with
asymptotic error constant C, if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖r

= C,

where r ≥ 1. If r = 1, then the number ρ = − log10C is called the asymp-
totic rate of convergence.

If r = 1, and 0 < C < 1, we say that convergence is linear. If r = 1 and
C = 0, or if 1 < r < 2 for any positive C, then we say that convergence is

1.2. SIMPLE ITERATION 13

superlinear. If r = 2, then the method converges quadratically, and if r = 3,
we say it converges cubically, and so on. Note that the value of C need only
be bounded above in the case of linear convergence.

When convergence is linear, the asymptotic rate of convergence ρ indi-
cates the number of correct decimal digits obtained in a single iteration. In
other words, b1/ρc+1 iterations are required to obtain an additional correct
decimal digit, where bxc is the “floor” of x, which is the largest integer that
is less than or equal to x.

If g satisfies the conditions of the Contraction Mapping Theorem with
Lipschitz constant L, then Fixed-point Iteration achieves at least linear con-
vergence, with an asymptotic error constant that is bounded above by L.
This value can be used to estimate the number of iterations needed to obtain
an additional correct decimal digit, but it can also be used to estimate the
total number of iterations needed for a specified degree of accuracy.

From the Lipschitz condition, we have, for k ≥ 1,

|xk − x∗| ≤ L|xk−1 − x∗| ≤ Lk|x0 − x∗|.

From

|x0−x∗| ≤ |x0−x1 +x1−x∗| ≤ |x0−x1|+ |x1−x∗| ≤ |x0−x1|+L|x0−x∗|

we obtain

|xk − x∗| ≤
Lk

1− L
|x1 − x0|.

Therefore, in order to satisfy |xk−x∗| ≤ ε, the number of iterations, k, must
satisfy

k ≥ ln |x1 − x0| − ln(ε(1− L))

ln(1/L)
.

That is, we can bound the number of iterations after performing a single
iteration, as long as the Lipschitz constant L is known.

We know that Fixed-point Iteration will converge to the unique fixed
point in [a, b] if g satisfies the conditions of the Contraction Mapping The-
orem. However, if g is differentiable on [a, b], its derivative can be used to
obtain an alternative criterion for convergence that can be more practical
than computing the Lipschitz constant L. If we denote the error in xk by
ek = xk−x∗, we can see from Taylor’s Theorem and the fact that g(x∗) = x∗

that

ek+1 = xk+1 − x∗ = g(xk)− g(x∗) = g′(x∗)(xk − x∗) +
1

2
g′′(ξk)(xk − x∗)2

= g′(x∗)ek +O(e2
k),

14 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

where ξk lies between xk and x∗. Therefore, if |g′(x∗)| ≤ k, where k < 1,
then Fixed-point Iteration is locally convergent; that is, it converges if x0 is
chosen sufficiently close to x∗. This leads to the following result.

Theorem (Fixed-point Theorem) Let g be a continuous function on the
interval [a, b], and let g be differentiable on [a, b]. If g(x) ∈ [a, b] for each
x ∈ [a, b], and if there exists a constant k < 1 such that

|g′(x)| ≤ k, x ∈ (a, b),

then the sequence of iterates {xk}∞k=0 converges to the unique fixed point x∗

of g in [a, b], for any initial guess x0 ∈ [a, b].

It can be seen from the preceding discussion why g′(x) must be bounded
away from 1 on (a, b), as opposed to the weaker condition |g′(x)| < 1 on
(a, b). If g′(x) is allowed to approach 1 as x approaches a point c ∈ (a, b),
then it is possible that the error ek might not approach zero as k increases,
in which case Fixed-point Iteration would not converge.

Suppose that g satisfies the conditions of the Fixed-Point Theorem, and
that g is also continuously differentiable on [a, b]. We can use the Mean
Value Theorem to obtain

ek+1 = xk+1 − x∗ = g(xk)− g(x∗) = g′(ξk)(xk − x∗) = g′(ξk)ek,

where ξk lies between xk and x∗. It follows from the continuity of g′ at
x∗ that for any initial iterate x0 ∈ [a, b], Fixed-point Iteration converges
linearly with asymptotic error constant |g′(x∗)|, since, by the definition of
ξk and the continuity of g′,

lim
k→∞

|ek+1|
|ek|

= lim
k→∞

|g′(ξk)| = |g′(x∗)|.

Recall that the conditions we have stated for linear convergence are nearly
identical to the conditions for g to have a unique fixed point in [a, b]. The
only difference is that now, we also require g′ to be continuous on [a, b].

The derivative can also be used to indicate why Fixed-point Iteration
might not converge.

Example The function g(x) = x2 + 3
16 has two fixed points, x∗1 = 1/4

and x∗2 = 3/4, as can be determined by solving the quadratic equation
x2+ 3

16 = x. If we consider the interval [0, 3/8], then g satisfies the conditions
of the Fixed-point Theorem, as g′(x) = 2x < 1 on this interval, and therefore
Fixed-point Iteration will converge to x∗1 for any x0 ∈ [0, 3/8].

1.2. SIMPLE ITERATION 15

On the other hand, g′(3/4) = 2(3/4) = 3/2 > 1. Therefore, it is not
possible for g to satisfy the conditions of the Fixed-point Theorem. Furthe-
more, if x0 is chosen so that 1/4 < x0 < 3/4, then Fixed-point Iteration
will converge to x∗1 = 1/4, whereas if x0 > 3/4, then Fixed-point Iteration
diverges. 2

The fixed point x∗2 = 3/4 in the preceding example is an unstable fixed
point of g, meaning that no choice of x0 yields a sequence of iterates that
converges to x∗2. The fixed point x∗1 = 1/4 is a stable fixed point of g, meaning
that any choice of x0 that is sufficiently close to x∗1 yields a sequence of
iterates that converges to x∗1.

The preceding example shows that Fixed-point Iteration applied to an
equation of the form x = g(x) can fail to converge to a fixed point x∗ if
|g′(x∗)| > 1. We wish to determine whether this condition indicates non-
convergence in general. If |g′(x∗)| > 1, and g′ is continuous in a neighbor-
hood of x∗, then there exists an interval |x−x∗| ≤ δ such that |g′(x)| > 1 on
the interval. If xk lies within this interval, it follows from the Mean Value
Theorem that

|xk+1 − x∗| = |g(xk)− g(x∗)| = |g′(η)||xk − x∗|,

where η lies between xk and x∗. Because η is also in this interval, we have

|xk+1 − x∗| > |xk − x∗|.

In other words, the error in the iterates increases whenever they fall within a
sufficiently small interval containing the fixed point. Because of this increase,
the iterates must eventually fall outside of the interval. Therefore, it is not
possible to find a k0, for any given δ, such that |xk − x∗| ≤ δ for all k ≥ k0.
We have thus proven the following result.

Theorem Let g have a fixed point at x∗, and let g′ be continuous in a
neighborhood of x∗. If |g′(x∗)| > 1, then Fixed-point Iteration does not
converge to x∗ for any initial guess x0 except in a finite number of iterations.
2

Now, suppose that in addition to the conditions of the Fixed-point The-
orem, we assume that g′(x∗) = 0, and that g is twice continuously differen-
tiable on [a, b]. Then, using Taylor’s Theorem, we obtain

ek+1 = g(xk)− g(x∗) = g′(x∗)(xk − x∗) +
1

2
g′′(ξk)(xk − x∗)2 =

1

2
g′′(ξk)e

2
k,

16 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

where ξk lies between xk and x∗. It follows that for any initial iterate x0 ∈
[a, b], Fixed-point Iteration converges at least quadratically, with asymp-
totic error constant |g′′(x∗)/2|. Later, this will be exploited to obtain a
quadratically convergent method for solving nonlinear equations of the form
f(x) = 0.

1.3 Iterative Solution of Equations

Now that we understand the convergence behavior of Fixed-point Iteration,
we consider the application of Fixed-point Iteration to the solution of an
equation of the form f(x) = 0. When rewriting this equation in the form
x = g(x), it is essential to choose the function g wisely. One guideline is
to choose g(x) = x− φ(x)f(x), where the function φ(x) is, ideally, nonzero
except possibly at a solution of f(x) = 0. This can be satisfied by choosing
φ(x) to be constant, but this can fail, as the following example illustrates.

Example Consider the equation

x+ lnx = 0.

By the Intermediate Value Theorem, this equation has a solution in the
interval [0.5, 0.6]. Furthermore, this solution is unique. To see this, let
f(x) = x+lnx. Then f ′(x) = x+1/x > 0 on the domain of f , which means
that f is increasing on its entire domain. Therefore, it is not possible for
f(x) = 0 to have more than one solution.

We consider using Fixed-point Iteration to solve the equivalent equation

x = x− (1)(x+ lnx) = − lnx.

However, with g(x) = − lnx, we have |g′(x)| = | − 1/x| > 1 on the interval
[0.5, 0.6]. Therefore, by the preceding theorem, Fixed-point Iteration will
fail to converge for any initial guess in this interval. We therefore apply
g−1(x) = e−x to both sides of the equation x = g(x) to obtain

g−1(x) = g−1(g(x)) = x,

which simplifies to
x = e−x.

The function g(x) = e−x satisfies |g′(x)| < 1 on [0.5, 0.6], as g′(x) = −e−x,
and e−x < 1 when the argument x is positive. By narrowing this interval to
[0.52, 0.6], which is mapped into itself by this choice of g, we can apply the
Fixed-point Theorem to conclude that Fixed-point Iteration will converge
to the unique fixed point of g for any choice of x0 in the interval. 2

1.4. RELAXATION 17

1.4 Relaxation

As previously discussed, a common choice for a function g(x) to use with
Fixed-point Iteration to solve the equation f(x) = 0 is a function of the form
g(x) = x− φ(x)f(x), where φ(x) is nonzero. Clearly, the simplest choice of
φ(x) is a constant function φ(x) ≡ λ, but it is important to choose λ so that
Fixed-point Iteration with g(x) will converge.

Suppose that x∗ is a solution of the equation f(x) = 0, and that f is
continuously differentiable in a neighborhood of x∗, with f ′(x∗) = α > 0.
Then, by continuity, there exists an interval [x∗− δ, x∗+ δ] containing x∗ on
which m ≤ f ′(x) ≤ M , for positive constants m and M . It follows that for
any choice of a positive constant λ,

1− λM ≤ 1− λf ′(x) ≤ 1− λm.

By choosing

λ =
2

M +m
,

we obtain

1− λM = −k, 1− λm = k, k =
M −m
M +m

,

which satisfies 0 < k < 1. Therefore, if we define g(x) = x− λf(x), we have
|g′(x)| ≤ k < 1 on [x∗ − δ, x∗ + δ].

Furthermore, if |x− x∗| ≤ δ, then, by the Mean Value Theorem,

|g(x)− x∗| = |g(x)− g(x∗)| = |g′(ξ)||x− x∗| < δ,

and therefore g maps the interval [x∗ − δ, x∗ + δ] into itself. We conclude
that the Fixed-point Theorem applies, and Fixed-point Iteration converges
linearly to x∗ for any choice of x0 in [x∗ − δ, x∗ + δ], with asymptotic error
constant |1− λα| ≤ k.

In summary, if f is continuously differentiable in a neighborhood of a
root x∗ of f(x) = 0, and f(x∗) is nonzero, then there exists a constant λ
such that Fixed-point Iteration with g(x) = x − λf(x) converges to x∗ for
x0 chosen sufficiently close to x∗. This approach to Fixed-point Iteration,
with a constant φ, is known as relaxation.

Convergence can be accelerated by allowing λ to vary from iteration to
iteration. Intuitively, an effective choice is to try to minimize |g′(x)| near
x∗ by setting λ = 1/f ′(xk), for each k, so that g′(xk) = 1 − λf ′(xk) = 0.
This results in linear convergence with an asymptotic error constant of 0,
which indicates faster than linear convergence. We will see that convergence
is actually quadratic.

18 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

1.5 Newton’s Method

To develop a more effective method for solving this problem of computing a
solution to f(x) = 0, we can address the following questions:

• Are there cases in which the problem easy to solve, and if so, how do
we solve it in such cases?

• Is it possible to apply our method of solving the problem in these
“easy” cases to more general cases?

In this course, we will see that these questions are useful for solving a variety
of problems. For the problem at hand, we ask whether the equation f(x) = 0
is easy to solve for any particular choice of the function f . Certainly, if f is a
linear function, then it has a formula of the form f(x) = m(x−a)+b, where
m and b are constants and m 6= 0. Setting f(x) = 0 yields the equation

m(x− a) + b = 0,

which can easily be solved for x to obtain the unique solution

x = a− b

m
.

We now consider the case where f is not a linear function. Using Taylor’s
theorem, it is simple to construct a linear function that approximates f(x)
near a given point x0. This function is simply the first Taylor polynomial of
f(x) with center x0,

P1(x) = f(x0) + f ′(x0)(x− x0).

This function has a useful geometric interpretation, as its graph is the tan-
gent line of f(x) at the point (x0, f(x0)).

We can obtain an approximate solution to the equation f(x) = 0 by
determining where the linear function P1(x) is equal to zero. If the resulting
value, x1, is not a solution, then we can repeat this process, approximating
f by a linear function near x1 and once again determining where this ap-
proximation is equal to zero. The resulting algorithm is Newton’s method,
which we now describe in detail.

Algorithm (Newton’s Method) Let f : R → R be a differentiable func-
tion. The following algorithm computes an approximate solution x∗ to the
equation f(x) = 0.

1.5. NEWTON’S METHOD 19

Choose an initial guess x0

for k = 0, 1, 2, . . . do
if f(xk) is sufficiently small then

x∗ = xk
return x∗

end

xk+1 = xk − f(xk)
f ′(xk)

if |xk+1 − xk| is sufficiently small then
x∗ = xk+1

return x∗

end
end

When Newton’s method converges, it does so very rapidly. However, it
can be difficult to ensure convergence, particularly if f(x) has horizontal
tangents near the solution x∗. Typically, it is necessary to choose a starting
iterate x0 that is close to x∗. As the following result indicates, such a choice,
if close enough, is indeed sufficient for convergence.

Theorem (Convergence of Newton’s Method) Let f be twice continuously
differentiable on the interval [a, b], and suppose that f(c) = 0 and f ′(c) = 0
for some c ∈ [a, b]. Then there exists a δ > 0 such that Newton’s Method
applied to f(x) converges to c for any initial guess x0 in the interval [c −
δ, c+ δ].

Example We will use of Newton’s Method in computing
√

2. This number
satisfies the equation f(x) = 0 where

f(x) = x2 − 2.

Since f ′(x) = 2x, it follows that in Newton’s Method, we can obtain the
next iterate xn+1 from the previous iterate xn by

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2
n − 2

2xn
= xn −

x2
n

2xn
+

2

2xn
=
xn
2

+
1

xn
.

We choose our starting iterate x0 = 1, and compute the next several iterates
as follows:

x1 =
1

2
+

1

1
= 1.5

x2 =
1.5

2
+

1

1.5
= 1.41666667

20 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

x3 = 1.41421569

x4 = 1.41421356

x5 = 1.41421356.

Since the fourth and fifth iterates agree in to eight decimal places, we assume
that 1.41421356 is a correct solution to f(x) = 0, to at least eight decimal
places. The first two iterations are illustrated in Figure 1.2. 2

Figure 1.2: Newton’s Method applied to f(x) = x2 − 2. The bold curve is
the graph of f . The initial iterate x0 is chosen to be 1. The tangent line
of f(x) at the point (x0, f(x0)) is used to approximate f(x), and it crosses
the x-axis at x1 = 1.5, which is much closer to the exact solution than x0.
Then, the tangent line at (x1, f(x1)) is used to approximate f(x), and it
crosses the x-axis at x2 = 1.416̄, which is already very close to the exact
solution.

Example Newton’s Method can be used to compute the reciprocal of a
number a without performing any divisions. The solution, 1/a, satisfies the
equation f(x) = 0, where

f(x) = a− 1

x
.

1.5. NEWTON’S METHOD 21

Since

f ′(x) =
1

x2
,

it follows that in Newton’s Method, we can obtain the next iterate xn+1

from the previous iterate xn by

xn+1 = xn −
a− 1/xn

1/x2
n

= xn −
a

1/xn

2
+

1/xn
1/x2

n

= 2xn − ax2
n.

Note that no divisions are necessary to obtain xn+1 from xn. This itera-
tion was actually used on older IBM computers to implement division in
hardware.

We use this iteration to compute the reciprocal of a = 12. Choosing our
starting iterate to be 0.1, we compute the next several iterates as follows:

x1 = 2(0.1)− 12(0.1)2 = 0.08

x2 = 2(0.12)− 12(0.12)2 = 0.0832

x3 = 0.0833312

x4 = 0.08333333333279

x5 = 0.08333333333333.

We conclude that 0.08333333333333 is an accurate approximation to the
correct solution.

Now, suppose we repeat this process, but with an initial iterate of x0 = 1.
Then, we have

x1 = 2(1)− 12(1)2 = −10

x2 = 2(−10)− 12(−10)2 = −1220

x3 = 2(−1220)− 12(−1220)2 = −17863240

It is clear that this sequence of iterates is not going to converge to the correct
solution. In general, for this iteration to converge to the reciprocal of a, the
initial iterate x0 must be chosen so that 0 < x0 < 2/a. This condition
guarantees that the next iterate x1 will at least be positive. The contrast
between the two choices of x0 are illustrated in Figure 1.3 for a = 8. 2

We now analyze the convergence of Newton’s Method applied to the
equation f(x) = 0, where we assume that f is twice continuously differen-
tiable near the exact solution x∗. Using Taylor’s Theorem, we obtain

ek+1 = xk+1 − x∗

22 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

Figure 1.3: Newton’s Method used to compute the reciprocal of 8 by solving
the equation f(x) = 8 − 1/x = 0. When x0 = 0.1, the tangent line of f(x)
at (x0, f(x0)) crosses the x-axis at x1 = 0.12, which is close to the exact
solution. When x0 = 1, the tangent line crosses the x-axis at x1 = −6,
which causes searcing to continue on the wrong portion of the graph, so the
sequence of iterates does not converge to the correct solution.

= xk −
f(xk)

f ′(xk)
− x∗

= ek −
f(xk)

f ′(xk)

= ek −
1

f ′(xk)

[
f(x∗)− f ′(xk)(x∗ − xk)−

1

2
f ′′(ξk)(xk − x∗)2

]
= ek +

1

f ′(xk)

[
f ′(xk)(x

∗ − xk) +
1

2
f ′′(ξk)(xk − x∗)2

]
= ek +

1

f ′(xk)

[
−f ′(xk)ek +

1

2
f ′′(ξk)e

2
k

]
= ek − ek +

f ′′(ξk)

2f ′(xk)
e2
k

1.5. NEWTON’S METHOD 23

=
f ′′(ξk)

2f ′(xk)
e2
k

where ξk is between xk and x∗.

Suppose that f ′(x∗) 6= 0. Then, by the continuity of f ′ and f ′′, there
exists a δ > 0 such that on the interval Iδ = [x∗ − δ, x∗ + δ], there is a
constant A such that

|f ′′(x)|
|f ′(y)|

≤ A, x, y ∈ Iδ.

If x0 ∈ Iδ is chosen so that |x0 − x∗| ≤ 1/A, then, by the above Taylor
expansion,

|x1 − x∗| ≤
1

2
A|x0 − x∗|2 ≤

1

2
|x0 − x∗|.

Continuing by induction, we obtain

|xk − x∗| ≤ 2−k min{1/A, δ},

and therefore Newton’s method converges to x∗, provided that x0 is chosen
sufficiently close to x∗.

Because, for each k, ξk lies between xk and x∗, ξk converges to x∗ as well.
By the continuity of f ′′ on Iδ, we conclude that Newton’s method converges
quadratically to x∗, with asymptotic error constant

C =
|f ′′(x∗)|
2|f ′(x∗)|

.

Example Suppose that Newton’s Method is used to find the solution of
f(x) = 0, where f(x) = x2 − 2. We examine the error ek = xk − x∗, where
x∗ =

√
2 is the exact solution. We have

k xk |ek|
0 1 0.41421356237310
1 1.5 0.08578643762690
2 1.41666666666667 0.00245310429357
3 1.41421568627457 0.00000212390141
4 1.41421356237469 0.00000000000159

We can determine analytically that Newton’s Method converges quadrati-
cally, and in this example, the asymptotic error constant is |f ′′(

√
2)/2f ′(

√
2)| ≈

0.35355. Examining the numbers in the table above, we can see that the

24 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

number of correct decimal places approximately doubles with each iteration,
which is typical of quadratic convergence. Furthermore, we have

|e4|
|e3|2

≈ 0.35352,

so the actual behavior of the error is consistent with the behavior that is
predicted by theory. 2

It is easy to see from the above analysis, however, that if f ′(x∗) is very
small, or zero, then convergence can be very slow, or may not even occur.

Example The function

f(x) = (x− 1)2ex

has a double root at x∗ = 1, and therefore f ′(x∗) = 0. Therefore, the
previous convergence analysis does not apply. Instead, we obtain

ek+1 = xk+1 − 1

= xk −
f(xk)

f ′(xk)
− 1

= xk −
(xk − 1)2exk

[2(xk − 1) + (xk − 1)2]exk
− 1

= ek −
e2
k

2ek + e2
k

=

[
1− 1

2 + ek

]
ek

=

[
1− 1

xk + 1

]
ek

=
xk

xk + 1
ek.

It follows that if we choose x0 > 0, then Newton’s method converges to
x∗ = 1 linearly, with asymptotic error constant C = 1

2 . 2

Normally, convergence of Newton’s method is only assured if x0 is chosen
sufficiently close to x∗. However, in some cases, it is possible to prove that
Newton’s method converges on an interval, under certain conditions on the
sign of the derivatives of f on that interval. For example, suppose that on
the interval Iδ = [x∗, x∗+δ], f ′(x) > 0 and f ′′(x) > 0, so that f is increasing
and concave up on this interval.

1.6. THE SECANT METHOD 25

Let xk ∈ Iδ. Then, from

xk+1 = xk −
f(xk)

f ′(xk)
,

we have xk+1 < xk, because f , being equal to zero at x∗ and increasing on
Iδ, must be positive at xk. However, because

xk+1 − x∗ =
f ′′(ξk)

2f ′(xk)
(xk − x∗)2,

and f ′ and f ′′ are both positive at xk, we must also have xk+1 > x∗.

It follows that the sequence {xk} is monotonic and bounded, and there-
fore must be convergent to a limit x∗ ∈ Iδ. From the convergence of the
sequence and the determination of xk+1 from xk, it follows that f(x∗) = 0.
However, f is positive on (x∗, x∗ + δ], which means that we must have
x∗ = x∗, so Newton’s method converges to x∗. Using the previous analysis,
it can be shown that this convergence is quadratic.

1.6 The Secant Method

One drawback of Newton’s method is that it is necessary to evaluate f ′(x)
at various points, which may not be practical for some choices of f . The
secant method avoids this issue by using a finite difference to approximate
the derivative. As a result, f(x) is approximated by a secant line through
two points on the graph of f , rather than a tangent line through one point
on the graph.

Since a secant line is defined using two points on the graph of f(x), as
opposed to a tangent line that requires information at only one point on the
graph, it is necessary to choose two initial iterates x0 and x1. Then, as in
Newton’s method, the next iterate x2 is then obtained by computing the
x-value at which the secant line passing through the points (x0, f(x0)) and
(x1, f(x1)) has a y-coordinate of zero. This yields the equation

f(x1)− f(x0)

x1 − x0
(x2 − x1) + f(x1) = 0

which has the solution

x2 = x1 −
f(x1)(x1 − x0)

f(x1)− f(x0)

26 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

which can be rewritten as follows:

x2 = x1 −
f(x1)(x1 − x0)

f(x1)− f(x0)

= x1
f(x1)− f(x0)

f(x1)− f(x0)
− f(x1)(x1 − x0)

f(x1)− f(x0)

=
x1(f(x1)− f(x0))− f(x1)(x1 − x0)

f(x1)− f(x0)

=
x1f(x1)− x1f(x0)− x1f(x1) + x0f(x1)

f(x1)− f(x0)

=
x0f(x1)− x1f(x0)

f(x1)− f(x0)
.

This leads to the following algorithm.

Algorithm (Secant Method) Let f : R→ R be a continuous function. The
following algorithm computes an approximate solution x∗ to the equation
f(x) = 0.

Choose two initial guesses x0 and x1

for k = 1, 2, 3, . . . do
if f(xk) is sufficiently small then

x∗ = xk
return x∗

end

xk+1 =
xk−1f(xk)−xkf(xk−1)

f(xk)−f(xk−1)

if |xk+1 − xk| is sufficiently small then
x∗ = xk+1

return x∗

end
end

Like Newton’s method, it is necessary to choose the starting iterate x0

to be reasonably close to the solution x∗. Convergence is not as rapid as
that of Newton’s Method, since the secant-line approximation of f is not as
accurate as the tangent-line approximation employed by Newton’s method.

Example We will use the Secant Method to solve the equation f(x) = 0,
where f(x) = x2−2. This method requires that we choose two initial iterates
x0 and x1, and then compute subsequent iterates using the formula

xn+1 = xn −
f(xn)(xn − xn−1)

f(xn)− f(xn−1)
, n = 1, 2, 3,

1.6. THE SECANT METHOD 27

We choose x0 = 1 and x1 = 1.5. Applying the above formula, we obtain

x2 = 1.4

x3 = 1.41379310344828

x4 = 1.41421568627451.

As we can see, the iterates produced by the Secant Method are converging
to the exact solution x∗ =

√
2, but not as rapidly as those produced by

Newton’s Method. 2

We now prove that the Secant Method converges if x0 is chosen suffi-
ciently close to a solution x∗ of f(x) = 0, if f is continuously differentiable
near x∗ and f ′(x∗) = α 6= 0. Without loss of generality, we assume α > 0.
Then, by the continuity of f ′, there exists an interval Iδ = [x∗ − δ, x∗ + δ]
such that

3α

4
≤ f ′(x) ≤ 5α

4
, x ∈ Iδ.

It follows from the Mean Value Theorem that

xk+1 − x∗ = xk − x∗ − f(xk)
xk − xk−1

f(xk)− f(xk−1)

= xk − x∗ −
f ′(θk)(xk − x∗)

f ′(ϕk)

=

[
1− f ′(θk)

f ′(ϕk)

]
(xk − x∗),

where θk lies between xk and x∗, and ϕk lies between xk and xk−1. Therefore,
if xk−1 and xk are in Iδ, then so are ϕk and θk, and xk+1 satisfies

|xk+1 − x∗| ≤ max

{∣∣∣∣1− 5α/4

3α/4

∣∣∣∣ , ∣∣∣∣1− 3α/4

5α/4

∣∣∣∣} |xk − x∗| ≤ 2

3
|xk − x∗|.

We conclude that if x0, x1 ∈ Iδ, then all subsequent iterates lie in Iδ, and
the Secant Method converges at least linearly, with asymptotic rate constant
2/3.

The order of convergence of the Secant Method can be determined using
a result, which we will not prove here, stating that if {xk}∞k=0 is the sequence
of iterates produced by the Secant Method for solving f(x) = 0, and if this
sequence converges to a solution x∗, then for k sufficiently large,

|xk+1 − x∗| ≈ S|xk − x∗||xk−1 − x∗|

for some constant S.

28 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

We assume that {xk} converges to x∗ of order α. Then, dividing both
sides of the above relation by |xk − x∗|α, we obtain

|xk+1 − x∗|
|xk − x∗|α

≈ S|xk − x∗|1−α|xk−1 − x∗|.

Because α is the order of convergence, the left side must converge to a
positive constant C as k →∞. It follows that the right side must converge
to a positive constant as well, as must its reciprocal. In other words, there
must exist positive constants C1 and C2

|xk − x∗|
|xk−1 − x∗|α

→ C1,
|xk − x∗|α−1

|xk−1 − x∗|
→ C2.

This can only be the case if there exists a nonzero constant β such that

|xk − x∗|
|xk−1 − x∗|α

=

(
|xk − x∗|α−1

|xk−1 − x∗|

)β
,

which implies that
1 = (α− 1)β and α = β.

Eliminating β, we obtain the equation

α2 − α− 1 = 0,

which has the solutions

α1 =
1 +
√

5

2
≈ 1.618, α2 =

1−
√

5

2
≈ −0.618.

Since we must have α ≥ 1, the rate of convergence is 1.618.

1.7 The Bisection Method

Suppose that f(x) is a continuous function that changes sign on the interval
[a, b]. Then, by the Intermediate Value Theorem, f(x) = 0 for some x ∈
[a, b]. How can we find the solution, knowing that it lies in this interval?

The method of bisection attempts to reduce the size of the interval in
which a solution is known to exist. Suppose that we evaluate f(m), where
m = (a + b)/2. If f(m) = 0, then we are done. Otherwise, f must change
sign on the interval [a,m] or [m, b], since f(a) and f(b) have different signs.
Therefore, we can cut the size of our search space in half, and continue

1.7. THE BISECTION METHOD 29

this process until the interval of interest is sufficiently small, in which case
we must be close to a solution. The following algorithm implements this
approach.

Algorithm (Bisection) Let f be a continuous function on the interval [a, b]
that changes sign on (a, b). The following algorithm computes an approxi-
mation p∗ to a number p in (a, b) such that f(p) = 0.

for j = 1, 2, . . . do
pj = (a+ b)/2
if f(pj) = 0 or b− a is sufficiently small then

p∗ = pj
return p∗

end
if f(a)f(pj) < 0 then

b = pj
else

a = pj
end

end

At the beginning, it is known that (a, b) contains a solution. During each
iteration, this algorithm updates the interval (a, b) by checking whether f
changes sign in the first half (a, pj), or in the second half (pj , b). Once the
correct half is found, the interval (a, b) is set equal to that half. Therefore,
at the beginning of each iteration, it is known that the current interval (a, b)
contains a solution.

The test f(a)f(pj) < 0 is used to determine whether f changes sign in the
interval (a, pj) or (pj , b). This test is more efficient than checking whether
f(a) is positive and f(pj) is negative, or vice versa, since we do not care
which value is positive and which is negative. We only care whether they
have different signs, and if they do, then their product must be negative.

In comparison to other methods, including some that we will discuss,
bisection tends to converge rather slowly, but it is also guaranteed to con-
verge. These qualities can be seen in the following result concerning the
accuracy of bisection.

Theorem Let f be continuous on [a, b], and assume that f(a)f(b) < 0.
For each positive integer n, let pn be the nth iterate that is produced by the
bisection algorithm. Then the sequence {pn}∞n=1 converges to a number p in

30 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

(a, b) such that f(p) = 0, and each iterate pn satisfies

|pn − p| ≤
b− a

2n
.

It should be noted that because the nth iterate can lie anywhere within the
interval (a, b) that is used during the nth iteration, it is possible that the
error bound given by this theorem may be quite conservative.

Example We seek a solution of the equation f(x) = 0, where

f(x) = x2 − x− 1.

Because f(1) = −1 and f(2) = 1, and f is continuous, we can use the
Intermediate Value Theorem to conclude that f(x) = 0 has a solution in the
interval (1, 2), since f(x) must assume every value between −1 and 1 in this
interval.

We use the method of bisection to find a solution. First, we compute the
midpoint of the interval, which is (1 + 2)/2 = 1.5. Since f(1.5) = −0.25, we
see that f(x) changes sign between x = 1.5 and x = 2, so we can apply the
Intermediate Value Theorem again to conclude that f(x) = 0 has a solution
in the interval (1.5, 2).

Continuing this process, we compute the midpoint of the interval (1.5, 2),
which is (1.5+2)/2 = 1.75. Since f(1.75) = 0.3125, we see that f(x) changes
sign between x = 1.5 and x = 1.75, so we conclude that there is a solution
in the interval (1.5, 1.75). The following table shows the outcome of several
more iterations of this procedure. Each row shows the current interval (a, b)
in which we know that a solution exists, as well as the midpoint of the
interval, given by (a+ b)/2, and the value of f at the midpoint. Note that
from iteration to iteration, only one of a or b changes, and the endpoint that
changes is always set equal to the midpoint.

a b m = (a+ b)/2 f(m)

1 2 1.5 −0.25

1.5 2 1.75 0.3125

1.5 1.75 1.625 0.015625

1.5 1.625 1.5625 −0.12109

1.5625 1.625 1.59375 −0.053711

1.59375 1.625 1.609375 −0.019287

1.609375 1.625 1.6171875 −0.0018921

1.6171875 1.625 1.62109325 0.0068512

1.6171875 1.62109325 1.619140625 0.0024757

1.6171875 1.619140625 1.6181640625 0.00029087

1.8. SAFEGUARDED METHODS 31

The correct solution, to ten decimal places, is 1.6180339887, which is the
number known as the golden ratio. 2

For this method, it is easier to determine the order of convergence if we
use a different measure of the error in each iterate xk. Since each iterate is
contained within an interval [ak, bk] where bk − ak = 2−k(b − a), with [a, b]
being the original interval, it follows that we can bound the error xk − x∗
by ek = bk − ak. Using this measure, we can easily conclude that bisection
converges linearly, with asymptotic error constant 1/2.

1.8 Safeguarded Methods

It is natural to ask whether it is possible to combine the rapid convergence
of methods such as Newton’s method with “safe” methods such as bisection
that are guaranteed to converge. This leads to the concept of safeguarded
methods, which maintain an interval within which a solution is known to
exist, as in bisection, but use a method such as Newton’s method to find a
solution within that interval. If an iterate falls outside this interval, the safe
procedure is used to refine the interval before trying the rapid method.

An example of a safeguarded method is the method of Regula Falsi,
which is also known as the method of false position. It is a modification of
the secant method in which the two initial iterates x0 and x1 are chosen so
that f(x0) ·f(x1) < 0, thus guaranteeing that a solution lies between x0 and
x1. This condition also guarantees that the next iterate x2 will lie between
x0 and x1, as can be seen by applying the Intermediate Value Theorem to
the secant line passing through (x0, f(x0)) and (x1, f(x1)).

It follows that if f(x2) 6= 0, then a solution must lie between x0 and x2,
or between x1 and x2. In the first scenario, we use the secant line passing
through (x0, f(x0)) and (x2, f(x2)) to compute the next iterate x3. Oth-
erwise, we use the secant line passing through (x1, f(x1)) and (x2, f(x2)).
Continuing in this fashion, we obtain a sequence of smaller and smaller inter-
vals that are guaranteed to contain a solution, as in bisection, but interval is
updated using a superlinearly convergent method, the secant method, rather
than simply being bisected.

Algorithm (Method of Regula Falsi) Let f : R → R be a continuous
function that changes sign on the interval (a, b). The following algorithm
computes an approximate solution x∗ to the equation f(x) = 0.

repeat

32 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

c = af(b)−bf(a)
f(b)−f(a)

if f(c) = 0 or b− a is sufficiently small then
x∗ = c
return x∗

end
if f(a) · f(c) < 0 then

b = c
else

a = c
end

end

Example We use the Method of Regula Falsi (False Position) to solve
f(x) = 0 where f(x) = x2 − 2. First, we must choose two initial guesses x0

and x1 such that f(x) changes sign between x0 and x1. Choosing x0 = 1
and x1 = 1.5, we see that f(x0) = f(1) = −1 and f(x1) = f(1.5) = 0.25, so
these choices are suitable.

Next, we use the Secant Method to compute the next iterate x2 by
determining the point at which the secant line passing through the points
(x0, f(x0)) and (x1, f(x1)) intersects the line y = 0. We have

x2 = x0 −
f(x0)(x1 − x0)

f(x1)− f(x0)

= 1− (−1)(1.5− 1)

0.25− (−1)

= 1 +
1.5− 1

0.25 + 1

= 1 +
0.5

1.25
= 1.4.

Computing f(x2), we obtain f(1.4) = −0.04 < 0. Since f(x2) < 0 and
f(x1) > 0, we can use the Intermediate Value Theorem to conclude that a
solution exists in the interval (x2, x1). Therefore, we compute x3 by deter-
mining where the secant line through the points (x1, f(x1)) and f(x2, f(x2))
intersects the line y = 0. Using the formula for the Secant Method, we ob-
tain

x3 = x1 −
f(x1)(x2 − x1)

f(x2)− f(x1)

1.8. SAFEGUARDED METHODS 33

= 1.5− (0.25)(1.4− 1.5)

−0.04− 0.25
= 1.41379.

Since f(x3) < 0 and f(x2) < 0, we do not know that a solution exists in
the interval (x2, x3). However, we do know that a solution exists in the
interval (x3, x1), because f(x1) > 0. Therefore, instead of proceeding as in
the Secant Method and using the Secant line determined by x2 and x3 to
compute x4, we use the secant line determined by x1 and x3 to compute x4.
2

34 CHAPTER 1. SOLUTION OF EQUATIONS BY ITERATION

k xk g(xk)

0 0.50000000000000 0.87758256189037

1 0.87758256189037 0.63901249416526

2 0.63901249416526 0.80268510068233

3 0.80268510068233 0.69477802678801

4 0.69477802678801 0.76819583128202

5 0.76819583128202 0.71916544594242

6 0.71916544594242 0.75235575942153

7 0.75235575942153 0.73008106313782

8 0.73008106313782 0.74512034135144

9 0.74512034135144 0.73500630901484

10 0.73500630901484 0.74182652264325

11 0.74182652264325 0.73723572544223

12 0.73723572544223 0.74032965187826

13 0.74032965187826 0.73824623833223

14 0.73824623833223 0.73964996276966

15 0.73964996276966 0.73870453935698

16 0.73870453935698 0.73934145228121

17 0.73934145228121 0.73891244933210

18 0.73891244933210 0.73920144413580

19 0.73920144413580 0.73900677978081

20 0.73900677978081 0.73913791076229

21 0.73913791076229 0.73904958059521

22 0.73904958059521 0.73910908142053

23 0.73910908142053 0.73906900120401

24 0.73906900120401 0.73909599983575

25 0.73909599983575 0.73907781328518

26 0.73907781328518 0.73909006398825

27 0.73909006398825 0.73908181177811

28 0.73908181177811 0.73908737057104

29 0.73908737057104 0.73908362610348

30 0.73908362610348 0.73908614842288

Chapter 2

Polynomial Interpolation

2.1 Lagrange Interpolation

Calculus provides many tools that can be used to understand the behavior of
functions, but in most cases it is necessary for these functions to be continu-
ous or differentiable. This presents a problem in most “real” applications, in
which functions are used to model relationships between quantities, but our
only knowledge of these functions consists of a set of discrete data points,
where the data is obtained from measurements. Therefore, we need to be
able to construct continuous functions based on discrete data.

The problem of constructing such a continuous function is called data
fitting. In this lecture, we discuss a special case of data fitting known as
interpolation, in which the goal is to find a linear combination of n known
functions to fit a set of data that imposes n constraints, thus guaranteeing
a unique solution that fits the data exactly, rather than approximately. The
broader term “constraints” is used, rather than simply “data points”, since
the description of the data may include additional information such as rates
of change or requirements that the fitting function have a certain number of
continuous derivatives.

When it comes to the study of functions using calculus, polynomials are
particularly simple to work with. Therefore, in this course we will focus on
the problem of constructing a polynomial that, in some sense, fits given data.
We first discuss some algorithms for computing the unique polynomial pn(x)
of degree n that satisfies pn(xi) = yi, i = 0, . . . , n, where the points (xi, yi)
are given. The points x0, x1, . . . , xn are called interpolation points. The
polynomial pn(x) is called the interpolating polynomial of the data (x0, y0),
(x1, y1), . . ., (xn, yn). At first, we will assume that the interpolation points

35

36 CHAPTER 2. POLYNOMIAL INTERPOLATION

are all distinct; this assumption will be relaxed in a later lecture.
If the interpolation points x0, . . . , xn are distinct, then the process of

finding a polynomial that passes through the points (xi, yi), i = 0, . . . , n,
is equivalent to solving a system of linear equations Ax = b that has a
unique solution. However, different algorithms for computing the interpo-
lating polynomial use a different A, since they each use a different basis for
the space of polynomials of degree ≤ n.

The most straightforward method of computing the interpolation poly-
nomial is to form the system Ax = b where bi = yi, i = 0, . . . , n, and the
entries of A are defined by aij = pj(xi), i, j = 0, . . . , n, where x0, x1, . . . , xn
are the points at which the data y0, y1, . . . , yn are obtained, and pj(x) = xj ,
j = 0, 1, . . . , n. The basis {1, x, . . . , xn} of the space of polynomials of degree
n+ 1 is called the monomial basis, and the corresponding matrix A is called
the Vandermonde matrix for the points x0, x1, . . . , xn. Unfortunately, this
matrix can be ill-conditioned, especially when interpolation points are close
together.

In Lagrange interpolation, the matrix A is simply the identity matrix, by
virtue of the fact that the interpolating polynomial is written in the form

pn(x) =

n∑
j=0

yjLn,j(x),

where the polynomials {Ln,j}nj=0 have the property that

Ln,j(xi) =

{
1 if i = j
0 if i 6= j

.

The polynomials {Ln,j}, j = 0, . . . , n, are called the Lagrange polynomials
for the interpolation points x0, x1, . . ., xn. They are defined by

Ln,j(x) =

n∏
k=0,k 6=j

x− xk
xj − xk

.

As the following result indicates, the problem of polynomial interpolation
can be solved using Lagrange polynomials.

Theorem Let x0, x1, . . . , xn be n + 1 distinct numbers, and let f(x) be a
function defined on a domain containing these numbers. Then the polyno-
mial defined by

pn(x) =
n∑
j=0

f(xj)Ln,j

2.1. LAGRANGE INTERPOLATION 37

is the unique polynomial of degree n that satisfies

pn(xj) = f(xj), j = 0, 1, . . . , n.

The polynomial pn(x) is called the interpolating polynomial of f(x). We say
that pn(x) interpolates f(x) at the points x0, x1, . . . , xn.

Example We will use Lagrange interpolation to find the unique polynomial
p3(x), of degree 3 or less, that agrees with the following data:

i xi yi
0 −1 3
1 0 −4
2 1 5
3 2 −6

In other words, we must have p3(−1) = 3, p3(0) = −4, p3(1) = 5, and
p3(2) = −6.

First, we construct the Lagrange polynomials {L3,j(x)}3j=0, using the
formula

Ln,j(x) =
3∏

i=0,i 6=j

(x− xi)
(xj − xi)

.

This yields

L3,0(x) =
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)

=
(x− 0)(x− 1)(x− 2)

(−1− 0)(−1− 1)(−1− 2)

=
x(x2 − 3x+ 2)

(−1)(−2)(−3)

= −1

6
(x3 − 3x2 + 2x)

L3,1(x) =
(x− x0)(x− x2)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)

=
(x+ 1)(x− 1)(x− 2)

(0 + 1)(0− 1)(0− 2)

=
(x2 − 1)(x− 2)

(1)(−1)(−2)

=
1

2
(x3 − 2x2 − x+ 2)

38 CHAPTER 2. POLYNOMIAL INTERPOLATION

L3,2(x) =
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)

=
(x+ 1)(x− 0)(x− 2)

(1 + 1)(1− 0)(1− 2)

=
x(x2 − x− 2)

(2)(1)(−1)

= −1

2
(x3 − x2 − 2x)

L3,3(x) =
(x− x0)(x− x1)(x− x2)

(x3 − x0)(x3 − x1)(x3 − x2)

=
(x+ 1)(x− 0)(x− 1)

(2 + 1)(2− 0)(2− 1)

=
x(x2 − 1)

(3)(2)(1)

=
1

6
(x3 − x).

By substituting xi for x in each Lagrange polynomial L3,j(x), for j =
0, 1, 2, 3, it can be verified that

L3,j(xi) =

{
1 if i = j
0 if i 6= j

.

It follows that the Lagrange interpolating polynomial p3(x) is given by

p3(x) =
3∑
j=0

yjL3,j(x)

= y0L3,0(x) + y1L3,1(x) + y2L3,2(x) + y3L3,3(x)

= (3)

(
−1

6

)
(x3 − 3x2 + 2x) + (−4)

1

2
(x3 − 2x2 − x+ 2) + (5)

(
−1

2

)
(x3 − x2 − 2x) +

(−6)
1

6
(x3 − x)

= −1

2
(x3 − 3x2 + 2x) + (−2)(x3 − 2x2 − x+ 2)− 5

2
(x3 − x2 − 2x)− (x3 − x)

=

(
−1

2
− 2− 5

2
− 1

)
x3 +

(
3

2
+ 4 +

5

2

)
x2 + (−1 + 2 + 5 + 1)x− 4

= −6x3 + 8x2 + 7x− 4.

Substituting each xi, for i = 0, 1, 2, 3, into p3(x), we can verify that we
obtain p3(xi) = yi in each case. 2

2.1. LAGRANGE INTERPOLATION 39

While the Lagrange polynomials are easy to compute, they are difficult
to work with. Furthermore, if new interpolation points are added, all of the
Lagrange polynomials must be recomputed. Unfortunately, it is not uncom-
mon, in practice, to add to an existing set of interpolation points. It may be
determined after computing the kth-degree interpolating polynomial pk(x)
of a function f(x) that pk(x) is not a sufficiently accurate approximation
of f(x) on some domain. Therefore, an interpolating polynomial of higher
degree must be computed, which requires additional interpolation points.

To address these issues, we consider the problem of computing the inter-
polating polynomial recursively. More precisely, let k > 0, and let pk(x) be
the polynomial of degree k that interpolates the function f(x) at the points
x0, x1, . . . , xk. Ideally, we would like to be able to obtain pk(x) from poly-
nomials of degree k − 1 that interpolate f(x) at points chosen from among
x0, x1, . . . , xk. The following result shows that this is possible.

Theorem Let n be a positive integer, and let f(x) be a function defined on
a domain containing the n+1 distinct points x0, x1, . . . , xn, and let pn(x) be
the polynomial of degree n that interpolates f(x) at the points x0, x1, . . . , xn.
For each i = 0, 1, . . . , n, we define pn−1,i(x) to be the polynomial of degree
n − 1 that interpolates f(x) at the points x0, x1, . . . , xi−1, xi+1, . . . , xn. If i
and j are distinct nonnegative integers not exceeding n, then

pn(x) =
(x− xj)pn−1,j(x)− (x− xi)pn−1,i(x)

xi − xj
.

This result leads to an algorithm called Neville’s Method that computes
the value of pn(x) at a given point using the values of lower-degree interpo-
lating polynomials at x. We now describe this algorithm in detail.

Algorithm Let x0, x1, . . . , xn be distinct numbers, and let f(x) be a func-
tion defined on a domain containing these numbers. Given a number x∗, the
following algorithm computes y∗ = pn(x∗), where pn(x) is the nth interpo-
lating polynomial of f(x) that interpolates f(x) at the points x0, x1, . . . , xn.

for j = 0 to n do
Qj = f(xj)

end
for j = 1 to n do

for k = n to j do
Qk = [(x− xk)Qk−1 − (x− xk−j)Qk]/(xk−j − xk)

end

40 CHAPTER 2. POLYNOMIAL INTERPOLATION

end
y∗ = Qn

At the jth iteration of the outer loop, the number Qk, for k = n, n−1, . . . , j,
represents the value at x of the polynomial that interpolates f(x) at the
points xk, xk−1, . . . , xk−j .

The preceding theorem can be used to compute the polynomial pn(x) it-
self, rather than its value at a given point. This yields an alternative method
of constructing the interpolating polynomial, called Newton interpolation,
that is more suitable for tasks such as inclusion of additional interpolation
points.

2.2 Convergence

In some applications, the interpolating polynomial pn(x) is used to fit a
known function f(x) at the points x0, . . . , xn, usually because f(x) is not
feasible for tasks such as differentiation or integration that are easy for
polynomials, or because it is not easy to evaluate f(x) at points other than
the interpolation points. In such an application, it is possible to determine
how well pn(x) approximates f(x).

To that end, we assume that x is not one of the interpolation points
x0, x1, . . . , xn, and we define

ϕ(t) = f(t)− pn(t)− f(x)− pn(x)

πn+1(x)
πn+1(t),

where
πn+1(x) = (x− x0)(x− x1) · · · (x− xn)

is a polynomial of degree n + 1. Because x is not one of the interpola-
tion points, it follows that ϕ(t) has at least n + 2 zeros: x, and the n + 1
interpolation points x0, x1, . . . , xn. Furthermore, πn+1(x) 6= 0, so ϕ(t) is
well-defined.

If f is n + 1 times continuously differentiable on an interval [a, b] that
contains the interpolation points and x, then, by the Generalized Rolle’s
Theorem, ϕ(n+1) must have at least one zero in [a, b]. Therefore, at some
point ξ(x) in [a, b], that depends on x, we have

0 = ϕ(n+1)(ξ(x)) = f (n+1)(t)− f(x)− pn(x)

πn+1(x)
(n+ 1)!,

which yields the following result.

2.2. CONVERGENCE 41

Theorem (Interpolation error) If f is n+1 times continuously differentiable
on [a, b], and pn(x) is the unique polynomial of degree n that interpolates
f(x) at the n+1 distinct points x0, x1, . . . , xn in [a, b], then for each x ∈ [a, b],

f(x)− pn(x) =
n∏
j=0

(x− xj)
f (n+1)(ξ(x))

(n+ 1)!
,

where ξ(x) ∈ [a, b].

It is interesting to note that the error closely resembles the Taylor remainder
Rn(x).

If the number of data points is large, then polynomial interpolation be-
comes problematic since high-degree interpolation yields oscillatory polyno-
mials, when the data may fit a smooth function.

Example Suppose that we wish to approximate the function f(x) = 1/(1+
x2) on the interval [−5, 5] with a tenth-degree interpolating polynomial that
agrees with f(x) at 11 equally-spaced points x0, x1, . . . , x10 in [−5, 5], where
xj = −5 + j, for j = 0, 1, . . . , 10. Figure 2.1 shows that the resulting
polynomial is not a good approximation of f(x) on this interval, even though
it agrees with f(x) at the interpolation points. The following MATLAB
session shows how the plot in the figure can be created.

>> % create vector of 11 equally spaced points in [-5,5]

>> x=linspace(-5,5,11);

>> % compute corresponding y-values

>> y=1./(1+x.^2);

>> % compute 10th-degree interpolating polynomial

>> p=polyfit(x,y,10);

>> % for plotting, create vector of 100 equally spaced points

>> xx=linspace(-5,5);

>> % compute corresponding y-values to plot function

>> yy=1./(1+xx.^2);

>> % plot function

>> plot(xx,yy)

>> % tell MATLAB that next plot should be superimposed on

>> % current one

>> hold on

>> % plot polynomial, using polyval to compute values

>> % and a red dashed curve

>> plot(xx,polyval(p,xx),’r--’)

42 CHAPTER 2. POLYNOMIAL INTERPOLATION

>> % indicate interpolation points on plot using circles

>> plot(x,y,’o’)

>> % label axes

>> xlabel(’x’)

>> ylabel(’y’)

>> % set caption

>> title(’Runge’’s example’)

Figure 2.1: The function f(x) = 1/(1 + x2) (solid curve) cannot be interpo-
lated accurately on [−5, 5] using a tenth-degree polynomial (dashed curve)
with equally-spaced interpolation points. This example that illustrates the
difficulty that one can generally expect with high-degree polynomial inter-
polation with equally-spaced points is known as Runge’s example.

2.3. HERMITE INTERPOLATION 43

In general, it is not wise to use a high-degree interpolating polynomial and
equally-spaced interpolation points to approximate a function on an interval
[a, b] unless this interval is sufficiently small. The example shown in Figure
2.1 is a well-known example of the difficulty of high-degree polynomial inter-
polation using equally-spaced points, and it is known as Runge’s example.
2

Is it possible to choose the interpolation points so that the error is min-
imized? To answer this question, we introduce the Chebyshev polynomials

Tk(x) = cos(k cos−1(x)),

which satisfy the three-term recurrence relation

Tk+1(x) = 2xTk(x)− Tk−1(x), T0(x) ≡ 1, T1(x) ≡ x.

These polynomials have the property that |Tk(x)| ≤ 1 on the interval [−1, 1],
while they grow rapidly outside of this interval. Furthermore, the roots of
these polynomials lie within the interval [−1, 1]. Therefore, if the interpo-
lation points x0, x1, . . . , xn are chosen to be the images of the roots of the
(n + 1)st-degree Chebyshev polynomial under a linear transformation that
maps [−1, 1] to [a, b], then it follows that∣∣∣∣∣∣

n∏
j=0

(x− xj)

∣∣∣∣∣∣ ≤ 1

2n
, x ∈ [a, b].

Therefore, the error in interpolating f(x) by an nth-degree polynomial is
determined entirely by f (n+1).

2.3 Hermite Interpolation

Suppose that the interpolation points are perturbed so that two neighboring
points xi and xi+1, 0 ≤ i < n, approach each other. What happens to the
interpolating polynomial? In the limit, as xi+1 → xi, the interpolating
polynomial pn(x) not only satisfies pn(xi) = yi, but also the condition

p′n(xi) = lim
xi+1→xi

yi+1 − yi
xi+1 − xi

.

It follows that in order to ensure uniqueness, the data must specify the value
of the derivative of the interpolating polynomial at xi.

44 CHAPTER 2. POLYNOMIAL INTERPOLATION

In general, the inclusion of an interpolation point xi k times within

the set x0, . . . , xn must be accompanied by specification of p
(j)
n (xi), j =

0, . . . , k − 1, in order to ensure a unique solution. These values are used
in place of divided differences of identical interpolation points in Newton
interpolation.

Interpolation with repeated interpolation points is called osculatory in-
terpolation, since it can be viewed as the limit of distinct interpolation points
approaching one another, and the term “osculatory” is based on the Latin
word for “kiss”.

In the case where each of the interpolation points x0, x1, . . . , xn is re-
peated exactly once, the interpolating polynomial for a differentiable func-
tion f(x) is called the Hermite polynomial of f(x), and is denoted by p2n+1(x),
since this polynomial must have degree 2n+ 1 in order to satisfy the 2n+ 2
constraints

p2n+1(xi) = f(xi), p′2n+1(xi) = f ′(xi), i = 0, 1, . . . , n.

To satisfy these constraints, we define, for i = 0, 1, . . . , n,

Hi(x) = [Li(x)]2(1− 2L′i(xi)(x− xi)),
Ki(x) = [Li(x)]2(x− xi),

where, as before, Li(x) is the ith Lagrange polynomial for the interpolation
points x0, x1, . . . , xn.

It can be verified directly that these polynomials satisfy, for i, j =
0, 1, . . . , n,

Hi(xj) = δij , H ′i(xj) = 0,

Ki(xj) = 0, K ′i(xj) = δij ,

where δij is the Kronecker delta

δij =

{
1 i = j
0 i 6= j

.

It follows that

p2n+1(x) =

n∑
i=0

[f(xi)Hi(x) + f ′(xi)Ki(x)]

is a polynomial of degree 2n+ 1 that satisfies the above constraints.
To prove that this polynomial is the unique polynomial of degree 2n+ 1,

we assume that there is another polynomial p̃2n+1 of degree 2n + 1 that

2.4. DIFFERENTIATION 45

satisfies the constraints. Because p2n+1(xi) = p̃2n+1(xi) = f(xi) for i =
0, 1, . . . , n, p2n+1 − p̃2n+1 has at least n + 1 zeros. It follows from Rolle’s
Theorem that p′2n+1−p̃′2n+1 has n zeros that lie within the intervals (xi−1, xi)
for i = 0, 1, . . . , n− 1.

Furthermore, because p′2n+1(xi) = p̃′2n+1(xi) = f ′(xi) for i = 0, 1, . . . , n,
it follows that p′2n+1 − p̃′2n+1 has n + 1 additional zeros, for a total of at
least 2n+ 1. However, p′2n+1 − p̃′2n+1 is a polynomial of degree 2n, and the
only way that a polynomial of degree 2n can have 2n + 1 zeros is if it is
identically zero. Therefore, p2n+1 − p̃2n+1 is a constant function, but since
this function is known to have at least n + 1 zeros, that constant must be
zero, and the Hermite polynomial is unique.

Using a similar approach as for the Lagrange interpolating polynomial,
combined with ideas from the proof of the uniqueness of the Hermite poly-
nomial, the following result can be proved.

Theorem Let f be 2n + 2 times continuously differentiable on [a, b], and
let p2n+1 denote the Hermite polynomial of f with interpolation points
x0, x1, . . . , xn in [a, b]. Then there exists a point ξ(x) ∈ [a, b] such that

f(x)− p2n+1(x) =
f (2n+2)(ξ(x))

(2n+ 2)!
(x− x0)2(x− x1)2 · · · (x− xn)2.

The representation of the Hermite polynomial in terms of Lagrange poly-
nomials and their derivatives is not practical, because of the difficulty of
differentiating and evaluating these polynomials. Instead, one can construct
the Hermite polynomial using a Newton divided-difference table, in which
each entry corresponding to two identical interpolation points is filled with
the value of f ′(x) at the common point. Then, the Hermite polynomial can
be represented using the Newton divided-difference formula.

2.4 Differentiation

We now discuss how polynomial interpolation can be applied to help solve a
fundamental problem from calculus that frequently arises in scientific appli-
cations, the problem of computing the derivative of a given function f(x).

46 CHAPTER 2. POLYNOMIAL INTERPOLATION

2.4.1 Finite Difference Approximations

Recall that the derivative of f(x) at a point x0, denoted f ′(x0), is defined
by

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

This definition suggests a method for approximating f ′(x0). If we choose h
to be a small positive constant, then

f ′(x0) ≈ f(x0 + h)− f(x0)

h
.

This approximation is called the forward difference formula.
To estimate the accuracy of this approximation, we note that if f ′′(x)

exists on [x0, x0 + h], then, by Taylor’s Theorem, f(x0 + h) = f(x0) +
f ′(x0)h+ f ′′(ξ)h2/2, where ξ ∈ [x0, x0 + h]. Solving for f ′(x0), we obtain

f ′(x0) =
f(x0 + h)− f(x0)

h
− f ′′(ξ)

2
h,

so the error in the forward difference formula is O(h). We say that this
formula is first-order accurate.

The forward-difference formula is called a finite difference approximation
to f ′(x0), because it approximates f ′(x) using values of f(x) at points that
have a small, but finite, distance between them, as opposed to the definition
of the derivative, that takes a limit and therefore computes the derivative
using an “infinitely small” value of h. The forward-difference formula, how-
ever, is just one example of a finite difference approximation. If we replace h
by −h in the forward-difference formula, where h is still positive, we obtain
the backward-difference formula

f ′(x0) ≈ f(x0)− f(x0 − h)

h
.

Like the forward-difference formula, the backward difference formula is first-
order accurate.

If we average these two approximations, we obtain the centered difference
formula

f ′(x0) ≈ f(x0 + h)− f(x0 − h)

2h
.

To determine the accuracy of this approximation, we assume that f ′′′(x)
exists on the interval [x0 − h, x0 + h], and then apply Taylor’s Theorem
again to obtain

f(x0 + h) = f(x0) + f ′(x0)h+
f ′′(x0)

2
h2 +

f ′′′(ξ+)

6
h3,

2.4. DIFFERENTIATION 47

f(x0 − h) = f(x0)− f ′(x0)h+
f ′′(x0)

2
h2 − f ′′′(ξ−)

6
h3,

where ξ+ ∈ [x0, x0+h] and ξ− ∈ [x0−h, x0]. Subtracting the second equation
from the first and solving for f ′(x0) yields

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
− f ′′′(ξ+) + f ′′′(ξ−)

12
h2.

By the Intermediate Value Theorem, f ′′′(x) must assume every value be-
tween f ′′′(ξ−) and f ′′′(ξ+) on the interval (ξ−, ξ+), including the average of
these two values. Therefore, we can simplify this equation to

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
− f ′′′(ξ)

6
h2,

where ξ ∈ [x0−h, x0+h]. We conclude that the centered-difference formula is
second-order accurate. This is due to the cancellation of the terms involving
f ′′(x0).

Example Consider the function

f(x) =
sin2

(√
x2+x

cosx−x

)
sin
(√

x−1√
x2+1

) .

Our goal is to compute f ′(0.25). Differentiating, using the Quotient Rule
and the Chain Rule, we obtain

f ′(x) =
2 sin

(√
x2+x

cosx−x

)
cos
(√

x2+x
cosx−x

) [
2x+1

2
√
x2+1(cosx−x)

+
√
x2+1(sinx+1)
(cosx−x)2

]
sin
(√

x−1√
x2+1

) −

sin
(√

x2+x
cosx−x

)
cos
(√

x−1√
x2+1

) [
1

2
√
x
√
x2+1

− x(
√
x−1)

(x2+1)3/2

]
sin2

(√
x−1√
x2+1

) .

Evaluating this monstrous function at x = 0.25 yields f ′(0.25) = −9.066698770.
An alternative approach is to use a centered difference approximation,

f ′(x) ≈ f(x+ h)− f(x− h)

2h
.

Using this formula with x = 0.25 and h = 0.005, we obtain the approxima-
tion

f ′(0.25) ≈ f(0.255)− f(0.245)

0.01
= −9.067464295,

48 CHAPTER 2. POLYNOMIAL INTERPOLATION

which has absolute error 7.7× 10−4. While this complicated function must
be evaluated twice to obtain this approximation, that is still much less work
than using differentiation rules to compute f ′(x), and then evaluating f ′(x),
which is much more complicated than f(x). 2

While Taylor’s Theorem can be used to derive formulas with higher-
order accuracy simply by evaluating f(x) at more points, this process can
be tedious. An alternative approach is to compute the derivative of the
interpolating polynomial that fits f(x) at these points. Specifically, suppose
we want to compute the derivative at a point x0 using the data

(x−j , y−j), . . . , (x−1, y−1), (x0, y0), (x1, y1), . . . , (xk, yk),

where j and k are known nonnegative integers, x−j < x−j+1 < · · · < xk−1 <
xk, and yi = f(xi) for i = −j, . . . , k. Then, a finite difference formula
for f ′(x0) can be obtained by analytically computing the derivatives of the
Lagrange polynomials {Ln,i(x)}ki=−j for these points, where n = j + k + 1,
and the values of these derivatives at x0 are the proper weights for the
function values y−j , . . . , yk. If f(x) is n+ 1 times continuously differentiable
on [x−j , xk], then we obtain an approximation of the form

f ′(x0) =

k∑
i=−j

yiL′n,i(x0) +
f (n+1)(ξ)

(n+ 1)!

k∏
i=−j,i6=0

(x0 − xi),

where ξ ∈ [x−j , xk].
Among the best-known finite difference formulas that can be derived

using this approach is the second-order-accurate three-point formula

f ′(x0) =
−3f(x0) + 4f(x0 + h)− f(x0 + 2h)

2h
+
f ′′′(ξ)

3
h2, ξ ∈ [x0, x0 +2h],

which is useful when there is no information available about f(x) for x < x0.
If there is no information available about f(x) for x > x0, then we can
replace h by −h in the above formula to obtain a second-order-accurate
three-point formula that uses the values of f(x) at x0, x0 − h and x0 − 2h.

Another formula is the five-point formula

f ′(x0) =
f(x0 − 2h)− 8f(x0 − h) + 8f(x0 + h)− f(x0 + 2h)

12h
+
f (5)(ξ)

30
h4, ξ ∈ [x0−2h, x0+2h],

which is fourth-order accurate. The reason it is called a five-point formula,
even though it uses the value of f(x) at four points, is that it is derived from

2.4. DIFFERENTIATION 49

the Lagrange polynomials for the five points x0 − 2h, x0 − h, x0, x0 + h, and
x0 + 2h. However, f(x0) is not used in the formula because L′4,0(x0) = 0,
where L4,0(x) is the Lagrange polynomial that is equal to one at x0 and zero
at the other four points.

If we do not have any information about f(x) for x < x0, then we can
use the following five-point formula that actually uses the values of f(x) at
five points,

f ′(x0) =
−25f(x0) + 48f(x0 + h)− 36f(x0 + 2h) + 16f(x0 + 3h)− 3f(x0 + 4h)

12h
+
f (5)(ξ)

5
h4,

where ξ ∈ [x0, x0 +4h]. As before, we can replace h by −h to obtain a similar
formula that approximates f ′(x0) using the values of f(x) at x0, x0−h, x0−
2h, x0 − 3h, and x0 − 4h.

The strategy of differentiating Lagrange polynomials to approximate
derivatives can be used to approximate higher-order derivatives. For exam-
ple, the second derivative can be approximated using a centered difference
formula,

f ′′(x0) ≈ f(x0 + h)− 2f(x0) + f(x0 − h)

h2
,

which is second-order accurate.

Example We will construct a formula for approximating f ′(x) at a given
point x0 by interpolating f(x) at the points x0, x0 + h, and x0 + 2h using a
second-degree polynomial p2(x), and then approximating f ′(x0) by p′2(x0).
Since p2(x) should be a good approximation of f(x) near x0, especially when
h is small, its derivative should be a good approximation to f ′(x) near this
point.

Using Lagrange interpolation, we obtain

p2(x) = f(x0)L2,0(x) + f(x0 + h)L2,1(x) + f(x0 + 2h)L2,2(x),

where {L2,j(x)}2j=0 are the Lagrange polynomials for the points x0, x1 =
x0 + h and x2 = x0 + 2h. Recall that these polynomials satisfy

L2,j(xk) = δjk =

{
1 if j = k
0 otherwise

.

Using the formula for the Lagrange polynomials,

L2,j(x) =
2∏

i=0,i 6=j

(x− xi)
(xj − xi)

,

50 CHAPTER 2. POLYNOMIAL INTERPOLATION

we obtain

L2,0(x) =
(x− (x0 + h))(x− (x0 + 2h))

(x0 − (x0 + h))(x0 − (x0 + 2h))

=
x2 − (2x0 + 3h)x+ (x0 + h)(x0 + 2h)

2h2
,

L2,1(x) =
(x− x0)(x− (x0 + 2h))

(x0 + h− x0)(x0 + h− (x0 + 2h))

=
x2 − (2x0 + 2h)x+ x0(x0 + 2h)

−h2
,

L2,2(x) =
(x− x0)(x− (x0 + h))

(x0 + 2h− x0)(x0 + 2h− (x0 + h))

=
x2 − (2x0 + h)x+ x0(x0 + h)

2h2
.

It follows that

L′2,0(x) =
2x− (2x0 + 3h)

2h2

L′2,1(x) = −2x− (2x0 + 2h)

h2

L′2,2(x) =
2x− (2x0 + h)

2h2

We conclude that f ′(x0) ≈ p′2(x0), where

p′2(x0) = f(x0)L′2,0(x0) + f(x0 + h)L′2,0(x0) + f(x0 + 2h)L′2,0(x0)

≈ f(x0)
−3

2h
+ f(x0 + h)

2

h
+ f(x0 + 2h)

−1

2h

≈ 3f(x0) + 4f(x0 + h)− f(x0 + 2h)

2h
.

Using Taylor’s Theorem to write f(x0 +h) and f(x0 +2h) in terms of Taylor
polynomials centered at x0, it can be shown that the error in this approxi-
mation is O(h2), and that this formula is exact when f(x) is a polynomial
of degree 2 or less. 2

In a practical implementation of finite difference formulas, it is essential
to note that roundoff error in evaluating f(x) is bounded independently of
the spacing h between points at which f(x) is evaluated. It follows that
the roundoff error in the approximation of f ′(x) actually increases as h
decreases, because the errors incurred by evaluating f(x) are divided by h.

2.4. DIFFERENTIATION 51

Therefore, one must choose h sufficiently small so that the finite difference
formula can produce an accurate approximation, and sufficiently large so
that this approximation is not too contaminated by roundoff error.

52 CHAPTER 2. POLYNOMIAL INTERPOLATION

Chapter 3

Numerical Integration

3.1 Integration

Numerous applications call for the computation of the integral of some func-
tion f : R→ R over an interval [a, b],

I(f) =

∫ b

a
f(x) dx.

In some cases, I(f) can be computed by applying the Fundamental Theorem
of Calculus and computing

I(f) = F (b)− F (a),

where F (x) is an antiderivative of f . Unfortunately, this is not practical if
an antiderivative of f is not available. In such cases, numerical techniques
must be employed instead.

3.2 Well-Posedness

The integral I(f) is defined using sequences of Riemann sums

Rn =

n∑
i=1

f(ξi)(xi+1 − xi), xi ≤ ξi ≤ xi+1,

where a = x1 < x2 < · · · < xn = b. If any such sequence {Rn}∞n=1 converges
to the same finite value R as n→∞, then f is said to be Riemann integrable
on [a, b], and I(f) = R. A function is Riemann integrable if and only if it is

53

54 CHAPTER 3. NUMERICAL INTEGRATION

bounded and continuous except on a set of measure zero. For such functions,
the problem of computing I(f) has a unique solution, by the definition of
I(f).

To determine the sensitivity of I(f), we define the∞-norm of a function
f(x) by

‖f‖∞ = max
x∈[a,b]

|f(x)|

and let f̂ be a perturbation of f that is also Riemann integrable. Then the
condition number of the problem of computing I(f) can be approximated
by

|I(f̂)− I(f)|/|I(f)|
‖f̂ − f‖∞/‖f‖∞

=
|I(f̂ − f)|/|I(f)|
‖f̂ − f‖∞/‖f‖∞

≤ I(|f̂ − f |)/|I(f)|
‖f̂ − f‖∞/‖f‖∞

≤ (b− a)‖f̂ − f‖∞/|I(f)|
‖f̂ − f‖∞/‖f‖∞

≤ (b− a)
‖f‖∞
|I(f)|

,

from which it follows that the problem is fairly well-conditioned in most
cases, since, if I(f) is small, we should then use the absolute condition num-
ber, which is bounded by (b− a). Similarly, perturbations of the endpoints
a and b do not lead to large perturbations in I(f), in most cases.

3.2.1 Newton-Cotes Quadrature

Clearly, if f is a Riemann integrable function and {Rn}∞n=1 is any sequence of
Riemann sums that converges to I(f), then any particular Riemann sum Rn
can be viewed as an approximation of I(f). However, such an approximation
is usually not practical since a large value of n may be necessary to achieve
sufficient accuracy.

Instead, we use a quadrature rule to approximate I(f). A quadrature
rule is a sum of the form

Qn(f) =

n∑
i=1

f(xi)wi,

where the points xi, i = 1, . . . , n, are called the nodes of the quadrature rule,
and the numbers wi, i = 1, . . . , n, are the weights. We say that a quadrature

3.2. WELL-POSEDNESS 55

rule is open if the nodes do not include the endpoints a and b, and closed if
they do.

The objective in designing quadrature rules is to achieve sufficient accu-
racy in approximating I(f), for any Riemann integrable function f , while
using as few nodes as possible in order to maximize efficiency. In order to
determine suitable nodes and weights, we consider the following questions:

• For what functions f is I(f) easy to compute?

• Given a general Riemann integrable function f , can I(f) be approxi-
mated by the integral of a function g for which I(g) is easy to compute?

One class of functions for which integrals are easily evaluated is the class of
polynomial functions. If we choose n nodes x1, . . . , xn, then any polynomial
pn−1(x) of degree n− 1 can be written in the form

pn−1(x) =
n∑
i=1

pn−1(xi)Ln−1,i(x),

where Ln−1,i(x) is the ith Lagrange polynomial for the points x1, . . . , xn. It
follows that

I(pn−1) =

∫ b

a
pn−1(x) dx

=

∫ b

a

n∑
i=1

pn−1(xi)Ln−1,i(x) dx

=
n∑
i=1

pn−1(xi)

(∫ b

a
Ln−1,i(x) dx

)

=
n∑
i=1

pn−1(xi)wi

= Qn(pn−1)

where

wi =

∫ b

a
Ln−1,i(x) dx, i = 1, . . . , n,

are the weights of a quadrature rule with nodes x1, . . . , xn.

Therefore, any n-point quadrature rule computes I(f) exactly when f
is a polynomial of degree less than n. For a more general function f , we
can use this quadrature rule to approximate I(f) by I(pn−1), where pn−1

56 CHAPTER 3. NUMERICAL INTEGRATION

is the polynomial that interpolates f at the points x1, . . . , xn. Quadrature
rules that use the weights defined above for given nodes x1, . . . , xn are called
interpolatory quadrature rules. We say that an interpolatory quadrature rule
has degree of accuracy n if it integrates polynomials of degree n exactly, but
is not exact for polynomials of degree n+ 1.

If the weights wi, i = 1, . . . , n, are nonnegative, then the quadrature
rule is stable, as its absolute condition number can be bounded by (b− a),
which is the same absolute condition number as the underlying integration
problem. However, if any of the weights are negative, then the condition
number can be arbitrarily large.

The family of Newton-Cotes quadrature rules consists of interpolatory
quadrature rules in which the nodes are equally spaced points within the
interval [a, b]. The most commonly used Newton-Cotes rules are

• The Midpoint Rule, which is an open rule with one node, is defined by∫ b

a
f(x) dx ≈ (b− a)f

(
a+ b

2

)
.

It is of degree one, and it is based on the principle that the area under
f(x) can be approximated by the area of a rectangle with width b− a
and height f(m), where m = (a+ b)/2 is the midpoint of the interval
[a, b].

• The Trapezoidal Rule, which is a closed rule with two nodes, is defined
by ∫ b

a
f(x) dx ≈ b− a

2
[f(a) + f(b)].

It is of degree one, and it is based on the principle that the area under
f(x) from x = a to x = b can be approximated by the area of a
trapezoid with heights f(a) and f(b) and width b− a.

• Simpson’s Rule, which is a closed rule with three nodes, is defined by∫ b

a
f(x) dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
.

It is of degree three, and it is derived by computing the integral of the
quadratic polynomial that interpolates f(x) at the points a, (a+ b)/2,
and b.

3.3. ERROR ESTIMATES 57

Example Let f(x) = x3, a = 0 and b = 1. We have∫ b

a
f(x) dx =

∫ 1

0
x3 dx =

x4

4

∣∣∣∣1
0

=
1

4
.

Approximating this integral with the Midpoint Rule yields∫ 1

0
x3 dx ≈ (1− 0)

(
0 + 1

2

)3

=
1

8
.

Using the Trapezoidal Rule, we obtain∫ 1

0
x3 dx ≈ 1− 0

2
[03 + 13] =

1

2
.

Finally, Simpson’s Rule yields∫ 1

0
x3 dx ≈ 1− 0

6

[
03 + 4

(
0 + 1

2

)3

+ 13

]
=

1

6

[
0 + 4

1

8
+ 1

]
=

1

4
.

That is, the approximation of the integral by Simpson’s Rule is actually
exact, which is expected because Simpson’s Rule is of degree three. On
the other hand, if we approximate the integral of f(x) = x4 from 0 to 1,
Simpson’s Rule yields 5/24, while the exact value is 1/5. Still, this is a
better approximation than those obtained using the Midpoint Rule (1/16)
or the Trapezoidal Rule (1/2). 2

In general, the degree of accuracy of Newton-Cotes rules can easily be
determined by expanding the integrand f(x) in a Taylor series. This tech-
nique can be used to show that n-point Newton-Cotes rules with an odd
number of nodes have degree n, which is surprising since, in general, in-
terpolatory n-point quadrature rules have degree n − 1. This extra degree
of accuracy is due to the cancellation of the high-order error terms in the
Taylor expansion used to determine the error. Such cancellation does not
occur with Newton-Cotes rules that have an even number of nodes.

3.3 Error Estimates

The error in any interpolatory quadrature rule defined on an interval [a, b],
such as a Newton-Cotes rule or a Clenshaw-Curtis rule can be obtained by
computing the integral from a to b of the error in the polynomial interpolant
on which the rule is based.

58 CHAPTER 3. NUMERICAL INTEGRATION

For the Trapezoidal Rule, which is obtained by integrating a linear poly-
nomial that interpolates the integrand f(x) at x = a and x = b, this ap-
proach to error analysis yields∫ b

a
f(x) dx− b− a

2
[f(a) + f(b)] =

∫ b

a

f ′′(ξ(x))

2
(x− a)(x− b) dx,

where ξ(x) lies in [a, b] for a ≤ x ≤ b. The function (x− a)(x− b) does not
change sign on [a, b], which allows us to apply the Weighted Mean Value
Theorem for Integrals and obtain a more useful expression for the error,∫ b

a
f(x) dx−b− a

2
[f(a)+f(b)] =

f ′′(η)

2

∫ b

a
(x−a)(x−b) dx = −f

′′(η)

12
(b−a)3,

where a ≤ η ≤ b. Because the error depends on the second derivative, it
follows that the Trapezoidal Rule is exact for any linear function.

A similar approach can be used to obtain expressions for the error in the
Midpoint Rule and Simpson’s Rule, although the process is somewhat more
complicated due to the fact that the functions (x−m), for the Midpoint Rule,
and (x−a)(x−m)(x−b), for Simpson’s Rule, where in both cases m = (a+
b)/2, change sign on [a, b], thus making the Weighted Mean Value Theorem
for Integrals impossible to apply in the same straightforward manner as it
was for the Trapezoidal Rule.

We instead use the following approach, illustrated for the Midpoint Rule.
We assume that f is twice continuously differentiable on [a, b]. First, we
make a change of variable

x =
a+ b

2
+
b− a

2
t, t ∈ [−1, 1],

to map the interval [−1, 1] to [a, b], and then define F (t) = f(x(t)). The
error in the Midpoint Rule is then given by∫ b

a
f(x) dx− (b− a)f

(
a+ b

2

)
=
b− a

2

[∫ 1

−1
F (τ) dτ − 2F (0)

]
.

We now define

G(t) =

∫ t

−t
F (τ) dτ − 2tF (0).

It is easily seen that the error in the Midpoint Rule is 1
2(b−a)G(1). We then

define
H(t) = G(t)− t3G(1).

3.4. THE RUNGE PHENOMENON REVISITED 59

Because H(0) = H(1) = 0, it follows from Rolle’s Theorem that there exists
a point ξ1 ∈ (0, 1) such that H ′(ξ1) = 0. However, from

H ′(0) = G′(0) = [F (t) + F (−t)]|t=0 − 2F (0) = 2F (0)− 2F (0) = 0,

it follows from Rolle’s Theorem that there exists a point ξ2 ∈ (0, 1) such
that H ′′(ξ2) = 0.

From

H ′′(t) = G′′(t)− 6tG(1) = F ′(t)− F ′(−t)− 6tG(1),

and the Mean Value Theorem, we obtain, for some ξ3 ∈ (−1, 1),

0 = H ′′(ξ2) = 2ξ2F
′′(ξ3)− 6ξ2G(1),

or

G(1) =
1

3
F ′′(ξ3) =

1

3

(
b− a

2

)2

f ′′(x(ξ3)).

Multiplying by (b− a)/2 yields the error in the Midpoint Rule.

The result of the analysis is that for the Midpoint Rule,∫ b

a
f(x) dx− (b− a)f

(
a+ b

2

)
=
f ′′(η)

24
(b− a)3,

and for Simpson’s Rule,∫ b

a
f(x) dx− b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
= −f

(4)(η)

90

(
b− a

2

)5

,

where, in both cases, η is some point in [a, b].

It follows that the Midpoint Rule is exact for any linear function, just
like the Trapezoidal Rule, even though it uses one less interpolation point,
because of the cancellation that results from choosing the midpoint of [a, b]
as the interpolation point. Similar cancellation causes Simpson’s Rule to be
exact for polynomials of degree three or less, even though it is obtained by
integrating a quadratic interpolant over [a, b].

3.4 The Runge Phenomenon Revisited

Unfortunately, Newton-Cotes rules are not practical when the number of
nodes is large, due to the inaccuracy of high-degree polynomial interpolation

60 CHAPTER 3. NUMERICAL INTEGRATION

using equally spaced points. Furthermore, for n ≥ 11, n-point Newton-
Cotes rules have at least one negative weight, and therefore such rules can
be ill-conditioned. This can be seen by revisiting Runge’s Example, and
attempting to approximate ∫ 5

−5

1

1 + x2
dx

using a Newton-Cotes rule. As n increases, the approximate integral does
not converge to the exact result; in fact, it increases without bound.

3.5 Composite Formulae

When using a quadrature rule to approximate I(f) on some interval [a, b],
the error is proportional to hr, where h = b − a and r is some positive
integer. Therefore, if the interval [a, b] is large, it is advisable to divide [a, b]
into smaller intervals, use a quadrature rule to compute the integral of f on
each subinterval, and add the results to approximate I(f). Such a scheme
is called a composite quadrature rule.

It can be shown that the approximate integral obtained using a com-
posite rule that divides [a, b] into n subintervals will converge to I(f) as
n→∞, provided that the maximum width of the n subintervals approaches
zero, and the quadrature rule used on each subinterval has a degree of at
least zero. It should be noted that using closed quadrature rules on each
subinterval improves efficiency, because the nodes on the endpoints of each
subinterval, except for a and b, are shared by two quadrature rules. As a
result, fewer function evaluations are necessary, compared to a composite
rule that uses open rules with the same number of nodes.

We will now state some of the most well-known composite quadrature
rules. In the following discussion, we assume that the interval [a, b] is divided
into n subintervals of equal width h = (b−a)/n, and that these subintervals
have endpoints [xi−1, xi], where xi = a+ih, for i = 0, 1, 2, . . . , n. Given such
a partition of [a, b], we can compute I(f) using the Composite Midpoint Rule∫ b

a
f(x) dx ≈ 2h[f(x1) + f(x3) + · · ·+ f(xn−1)], n is even,

the Composite Trapezoidal Rule∫ b

a
f(x) dx ≈ h

2
[f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)],

3.5. COMPOSITE FORMULAE 61

or the Composite Simpson’s Rule∫ b

a
f(x) dx ≈ h

3
[f(x0)+4f(x1)+2f(x2)+4f(x3)+· · ·+2f(xn−2)+4f(xn−1)+f(xn)],

for which n is required to be even, as in the Composite Midpoint Rule.

To obtain the error in each of these composite rules, we can sum the
errors in the corresponding basic rules over the n subintervals. For the
Composite Trapezoidal Rule, this yields

Etrap =

∫ b

a
f(x) dx− h

2

[
f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)

]

= −
n∑
i=1

f ′′(ηi)

12
(xi − xi−1)3

= −h
3

12

n∑
i=1

f ′′(ηi)

= −h
3

12
nf ′′(η)

= −f
′′(η)

12
(b− a)h2,

where, for i = 1, . . . , n, ηi belongs to [xi−1, xi], and a ≤ η ≤ b. The re-
placement of

∑h
i=1 f

′′(ηi) by nf ′′(η) is justified by the Intermediate Value
Theorem, provided that f ′′(x) is continuous on [a, b]. We see that the Com-
posite Trapezoidal Rule is second-order accurate. Furthermore, its degree of
accuracy, which is the highest degree of polynomial that is guaranteed to be
integrated exactly, is the same as for the basic Trapezoidal Rule, which is
one.

Similarly, for the Composite Midpoint Rule, we have

Emid =

∫ b

a
f(x) dx− 2h

n/2∑
i=1

f(x2i−1) =

n/2∑
i=1

f ′′(ηi)

24
(2h)3 =

f ′′(η)

6
(b− a)h2.

Although it appears that the Composite Midpoint Rule is less accurate than
the Composite Trapezoidal Rule, it should be noted that it uses about half
as many function evaluations. In other words, the Basic Midpoint Rule
is applied n/2 times, each on a subinterval of width 2h. Rewriting the
Composite Midpoint Rule in such a way that it uses n function evaluations,

62 CHAPTER 3. NUMERICAL INTEGRATION

each on a subinterval of width h, we obtain∫ b

a
f(x) dx = h

n∑
i=1

f

(
xi−1 +

h

2

)
+
f ′′(η)

24
(b− a)h2,

which reveals that the Composite Midpoint Rule is generally more accurate.
Finally, for the Composite Simpson’s Rule, we have

Esimp = −
n/2∑
i=1

f (4)(ηi)

90
h5 = −f

(4)(η)

180
(b− a)h4,

because the Basic Simpson Rule is applied n/2 times, each on a subinterval
of width 2h. We conclude that the Simpson’s Rule is fourth-order accurate.

Example We wish to approximate∫ 1

0
ex dx

using composite quadrature, to 3 decimal places. That is, the error must
be less than 10−3. This requires choosing the number of subintervals, n,
sufficiently large so that an upper bound on the error is less than 10−3.

For the Composite Trapezoidal Rule, the error is

Etrap = −f
′′(η)

12
(b− a)h2 = − eη

12n2
,

since f(x) = ex, a = 0 and b = 1, which yields h = (b − a)/n = 1/n. Since
0 ≤ η ≤ 1, and ex is increasing, the factor eη is bounded above by e1 = e.
It follows that |Etrap| < 10−3 if

e

12n2
< 10−3 ⇒ 1000e

12
< n2 ⇒ n > 15.0507.

Therefore, the error will be sufficiently small provided that we choose n ≥ 16.
On the other hand, if we use the Composite Simpson’s Rule, the error is

Esimp = −f
(4)(η)

180
(b− a)h4 = − eη

180n4

for some η in [0, 1], which is less than 10−3 in absolute value if

n >

(
1000e

180

)1/4

≈ 1.9713,

3.6. RICHARDSON EXTRAPOLATION 63

so n = 2 is sufficient. That is, we can approximate the integral to 3 decimal
places by setting h = (b− a)/n = (1− 0)/2 = 1/2 and computing∫ 1

0
ex dx ≈ h

3
[ex0 + 4ex1 + ex2] =

1/2

3
[e0 + 4e1/2 + e1] ≈ 1.71886,

whereas the exact value is approximately 1.71828. 2

3.6 Richardson Extrapolation

We have seen that the accuracy of methods for computing integrals or deriva-
tives of a function f(x) depends on the spacing between points at which f
is evaluated, and that the approximation tends to the exact value as this
spacing tends to 0.

Suppose that a uniform spacing h is used. We denote by F (h) the
approximation computed using the spacing h, from which it follows that
the exact value is given by F (0). Let p be the order of accuracy in our
approximation; that is,

F (h) = a0 + a1h
p +O(hr), r > p,

where a0 is the exact value F (0). Then, if we choose a value for h and
compute F (h) and F (h/q) for some positive integer q, then we can neglect
the O(hr) terms and solve a system of two equations for the unknowns a0

and a1, thus obtaining an approximation that is rth order accurate. If we
can describe the error in this approximation in the same way that we can
describe the error in our original approximation F (h), we can repeat this
process to obtain an approximation that is even more accurate.

This process of extrapolating from F (h) and F (h/q) to approximate
F (0) with a higher order of accuracy is called Richardson extrapolation. In
a sense, Richardson extrapolation is similar in spirit to Aitken’s ∆2 method,
as both methods use assumptions about the convergence of a sequence of
approximations to “solve” for the exact solution, resulting in a more accurate
method of computing approximations.

Example Consider the function

f(x) =
sin2

(√
x2+x

cosx−x

)
sin
(√

x−1√
x2+1

) .

64 CHAPTER 3. NUMERICAL INTEGRATION

Our goal is to compute f ′(0.25) as accurately as possible. Using a centered
difference approximation,

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2),

with x = 0.25 and h = 0.01, we obtain the approximation

f ′(0.25) ≈ f(0.26)− f(0.24)

0.02
= −9.06975297890147,

which has absolute error 3.0× 10−3, and if we use h = 0.005, we obtain the
approximation

f ′(0.25) ≈ f(0.255)− f(0.245)

0.01
= −9.06746429492149,

which has absolute error 7.7× 10−4. As expected, the error decreases by a
factor of approximately 4 when we halve the step size h, because the error
in the centered difference formula is of O(h2).

We can obtain a more accurate approximation by applying Richardson
Extrapolation to these approximations. We define the function N1(h) to be
the centered difference approximation to f ′(0.25) obtained using the step
size h. Then, with h = 0.01, we have

N1(h) = −9.06975297890147, N1(h/2) = −9.06746429492149,

and the exact value is given by N1(0) = −9.06669877124279. Because the
error in the centered difference approximation satisfies

N1(h) = N1(0) +K1h
2 +K2h

4 +K3h
6 +O(h8),

where the constants K1, K2 and K3 depend on the derivatives of f(x) at
x = 0.25, it follows that the new approximation

N2(h) = N1(h/2) +
N1(h/2)−N1(h)

22 − 1
= −9.06670140026149,

has fourth-order accuracy. Specifically, if we denote the exact value by
N2(0), we have

N2(h) = N2(0) + K̃2h
4 + K̃3h

6 +O(h8),

where the constants K̃2 and K̃3 are independent of h.

3.7. THE EULER-MACLAURIN EXPANSION 65

Now, suppose that we compute

N1(h/4) =
f(x+ h/4)− f(x− h/4)

2(h/4)
=
f(0.2525)− f(0.2475)

0.005
= −9.06689027527046,

which has an absolute error of 1.9 × 10−4, we can use extrapolation again
to obtain a second fourth-order accurate approximation,

N2(h/2) = N1(h/4) +
N1(h/4)−N1(h/2)

3
= −9.06669893538678,

which has absolute error of 1.7× 10−7. It follows from the form of the error
in N2(h) that we can use extrapolation on N2(h) and N2(h/2) to obtain a
sixth-order accurate approximation,

N3(h) = N2(h/2) +
N2(h/2)−N2(h)

24 − 1
= −9.06669877106180,

which has an absolute error of 1.8× 10−10. 2

3.7 The Euler-Maclaurin Expansion

In the previous example, it was stated, without proof, that the error in
the centered difference approximation could be expressed as a sum of terms
involving even powers of the spacing h. We would like to use Richardson
Extrapolation to enhance the accuracy of approximate integrals computed
using the Composite Trapezoidal Rule, but first we must determine the
form of the error in these approximations. We have established that the
Composite Trapezoidal Rule is second-order accurate, but if Richardson
Extrapolation is used once to eliminate the O(h2) portion of the error, we
do not know the order of what remains.

Suppose that g(t) is differentiable on (−1, 1). From integration by parts,
we have∫ 1

−1
g(t) dt = tg(t)|1−1 −

∫ 1

−1
tg′(t) dt = [g(−1) + g(1)]−

∫ 1

−1
tg′(t) dt.

The first term on the right side of the equals sign is the basic Trapezoidal
Rule approximation of the integral on the left side of the equals sign. The
second term on the right side is the error in this approximation. If g is
2k-times differentiabe on (−1, 1), and we repeatedly apply integration by

66 CHAPTER 3. NUMERICAL INTEGRATION

parts, 2k − 1 times, we obtain∫ 1

−1
g(t) dt− [g(−1) + g(1)] =

[
q2(t)g′(t)− q3(t)g′′(t) + · · ·+ q2k(t)g

(2k−1)(t)
]∣∣∣1
−1
−∫ 1

−1
q2k(t)g

(2k)(t) dt,

where the sequence of polynomials q1(t), . . . , q2k(t) satisfy

q1(t) = −t, q′r+1(t) = qr(t), r = 1, 2, . . . , 2k − 1.

If we choose the constants of integration correctly, then, because q1(t) is an
odd function, we can ensure that qr(t) is an odd function if r is odd, and
an even function if r is even. Furthermore, we can ensure that qr(−1) =
qr(1) = 0 if r is odd. This yields∫ 1

−1
g(t) dt−[g(−1)+g(1)] =

k∑
r=1

q2r(1)[g(2r−1)(1)−g(2r−1)(−1)]−
∫ 1

−1
q2k(t)g

(2k)(t) dt.

Using this expression for the error in the context of the Composite Trape-
zoidal Rule, applied to the integral of a 2k-times differentiable function f(x)
on a general interval [a, b], yields the Euler-Maclaurin Expansion∫ b

a
f(x) dx =

h

2

[
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

]
+

k∑
r=1

crh
2r[f (2r−1)(b)− f (2r−1)(a)]−

(
h

2

)2k n∑
i=1

∫ xi

xi−1

q2k(t)f
(2k)(x) dx,

where, for each i = 1, 2, . . . , n, t = −1 + 2
h(x− xi−1), and the constants

cr =
q2r(1)

22r
= − B2r

(2r)!
, r = 1, 2, . . . , k

are closely related to the Bernoulli numbers Br.
It can be seen from this expansion that the error Etrap(h) in the Compos-

ite Trapezoidal Rule, like the error in the centered difference approximation
of the derivative, has the form

Etrap(h) = K1h
2 +K2h

4 +K3h
6 + · · ·+O(h2k),

where the constants Ki are independent of h, provided that the integrand
is at least 2k times continuously differentiable. This knowledge of the error

3.8. ROMBERG INTEGRATION 67

provides guidance on how Richardson Extrapolation can be repeatedly ap-
plied to approximations obtained using the Composite Trapezoidal Rule at
different spacings in order to obtain higher-order accurate approximations.

It can also be seen from the Euler-Maclaurin Expansion that the Com-
posite Trapezoidal Rule is particularly accurate when the integrand is a
periodic function, of period b − a, as this causes the terms involving the
derivatives of the integrand at a and b to vanish. Specifically, if f(x) is
periodic with period b − a, and is at least 2k times continuously differen-
tiable, then the error in the Composite Trapezoidal Rule approximation to∫ b
a f(x) dx, with spacing h, is O(h2k), rather than O(h2). It follows that if
f(x) is infinitely differentiable, such as a finite linear combination of sines
or cosines, then the Composite Trapezoidal Rule has an exponential order of
accuracy, meaning that as h → 0, the error converges to zero more rapidly
than any power of h.

3.8 Romberg Integration

Richardson extrapolation is not only used to compute more accurate ap-
proximations of derivatives, but is also used as the foundation of a numerical
integration scheme called Romberg integration. In this scheme, the integral

I(f) =

∫ b

a
f(x) dx

is approximated using the Composite Trapezoidal Rule with step sizes hk =
(b− a)2−k, where k is a nonnegative integer. Then, for each k, Richardson
extrapolation is used k− 1 times to previously computed approximations in
order to improve the order of accuracy as much as possible.

More precisely, suppose that we compute approximations T1,1 and T2,1

to the integral, using the Composite Trapezoidal Rule with one and two
subintervals, respectively. That is,

T1,1 =
b− a

2
[f(a) + f(b)]

T2,1 =
b− a

4

[
f(a) + 2f

(
a+ b

2

)
+ f(b)

]
.

Suppose that f has continuous derivatives of all orders on [a, b]. Then, the
Composite Trapezoidal Rule, for a general number of subintervals n, satisfies∫ b

a
f(x) dx =

h

2

f(a) + 2

n−1∑
j=1

f(xj) + f(b)

+

∞∑
i=1

Kih
2i,

68 CHAPTER 3. NUMERICAL INTEGRATION

where h = (b − a)/n, xj = a + jh, and the constants {Ki}∞i=1 depend only
on the derivatives of f . It follows that we can use Richardson Extrapolation
to compute an approximation with a higher order of accuracy. If we denote
the exact value of the integral by I(f) then we have

T1,1 = I(f) +K1h
2 +O(h4)

T2,1 = I(f) +K1(h/2)2 +O(h4)

Neglecting the O(h4) terms, we have a system of equations that we can solve
for K1 and I(f). The value of I(f), which we denote by T2,2, is an improved
approximation given by

T2,2 = T2,1 +
T2,1 − T1,1

3
.

It follows from the representation of the error in the Composite Trapezoidal
Rule that I(f) = T2,2 +O(h4).

Suppose that we compute another approximation T3,1 using the Com-
posite Trapezoidal Rule with 4 subintervals. Then, as before, we can use
Richardson Extrapolation with T2,1 and T3,1 to obtain a new approximation
T3,2 that is fourth-order accurate. Now, however, we have two approxima-
tions, T2,2 and T3,2, that satisfy

T2,2 = I(f) + K̃2h
4 +O(h6)

T3,2 = I(f) + K̃2(h/2)4 +O(h6)

for some constant K̃2. It follows that we can apply Richardson Extrapolation
to these approximations to obtain a new approximation T3,3 that is sixth-
order accurate. We can continue this process to obtain as high an order of
accuracy as we wish. We now describe the entire algorithm.

Algorithm (Romberg Integration) Given a positive integer J , an interval
[a, b] and a function f(x), the following algorithm computes an approxima-

tion to I(f) =
∫ b
a f(x) dx that is accurate to order 2J .

h = b− a
for j = 1, 2, . . . , J do

Tj,1 = h
2

[
f(a) + 2

∑2j−1−1
i=1 f(a+ ih) + f(b)

]
(Composite Trapezoidal Rule)

for k = 2, 3, . . . , j do

Tj,k = Tj,k−1 +
Tj,k−1−Tj−1,k−1

4k−1−1
(Richardson Extrapolation)

end
h = h/2

end

3.8. ROMBERG INTEGRATION 69

It should be noted that in a practical implementation, Tj,1 can be computed
more efficiently by using Tj−1,1, because Tj−1,1 already includes more than
half of the function values used to compute Tj,1, and they are weighted
correctly relative to one another. It follows that for j > 1, if we split the
summation in the algorithm into two summations containing odd- and even-
numbered terms, respectively, we obtain

Tj,1 =
h

2

f(a) + 2
2j−2∑
i=1

f(a+ (2i− 1)h) + 2
2j−2−1∑
i=1

f(a+ 2ih) + f(b)


=

h

2

f(a) + 2

2j−2−1∑
i=1

f(a+ 2ih) + f(b)

+
h

2

2

2j−2∑
i=1

f(a+ (2i− 1)h)


=

1

2
Tj−1,1 + h

2j−2∑
i=1

f(a+ (2i− 1)h).

Example We will use Romberg integration to obtain a sixth-order accurate
approximation to ∫ 1

0
e−x

2
dx,

an integral that cannot be computed using the Fundamental Theorem of
Calculus. We begin by using the Trapezoidal Rule, or, equivalently, the
Composite Trapezoidal Rule

∫ b

a
f(x) dx ≈ h

2

f(a) +

n−1∑
j=1

f(xj) + f(b)

 , h =
b− a
n

, xj = a+ jh,

with n = 1 subintervals. Since h = (b− a)/n = (1− 0)/1 = 1, we have

R1,1 =
1

2
[f(0) + f(1)] = 0.68393972058572,

which has an absolute error of 6.3× 10−2.

If we bisect the interval [0, 1] into two subintervals of equal width, and
approximate the area under e−x

2
using two trapezoids, then we are applying

the Composite Trapezoidal Rule with n = 2 and h = (1−0)/2 = 1/2, which
yields

R2,1 =
0.5

2
[f(0) + 2f(0.5) + f(1)] = 0.73137025182856,

70 CHAPTER 3. NUMERICAL INTEGRATION

which has an absolute error of 1.5× 10−2. As expected, the error is reduced
by a factor of 4 when the step size is halved, since the error in the Composite
Trapezoidal Rule is of O(h2).

Now, we can use Richardson Extrapolation to obtain a more accurate
approximation,

R2,2 = R2,1 +
R2,1 −R1,1

3
= 0.74718042890951,

which has an absolute error of 3.6×10−4. Because the error in the Composite
Trapezoidal Rule satisfies∫ b

a
f(x) dx =

h

2

f(a) +
n−1∑
j=1

f(xj) + f(b)

+K1h
2 +K2h

4 +K3h
6 +O(h8),

where the constants K1, K2 and K3 depend on the derivatives of f(x) on
[a, b] and are independent of h, we can conclude that R2,1 has fourth-order
accuracy.

We can obtain a second approximation of fourth-order accuracy by using
the Composite Trapezoidal Rule with n = 4 to obtain a third approximation
of second-order accuracy. We set h = (1− 0)/4 = 1/4, and then compute

R3,1 =
0.25

2
[f(0) + 2[f(0.25) + f(0.5) + f(0.75)] + f(1)] = 0.74298409780038,

which has an absolute error of 3.8 × 10−3. Now, we can apply Richardson
Extrapolation to R2,1 and R3,1 to obtain

R3,2 = R3,1 +
R3,1 −R2,1

3
= 0.74685537979099,

which has an absolute error of 3.1× 10−5. This significant decrease in error
from R2,2 is to be expected, since both R2,2 and R3,2 have fourth-order
accuracy, and R3,2 is computed using half the step size of R2,2.

It follows from the error term in the Composite Trapezoidal Rule, and
the formula for Richardson Extrapolation, that

R2,2 =

∫ 1

0
e−x

2
dx+K̃2h

4+O(h6), R2,2 =

∫ 1

0
e−x

2
dx+K̃2

(
h

2

)4

+O(h6).

Therefore, we can use Richardson Extrapolation with these two approxima-
tions to obtain a new approximation

R3,3 = R3,2 +
R3,2 −R2,2

24 − 1
= 0.74683370984975,

3.8. ROMBERG INTEGRATION 71

which has an absolute error of 9.6× 10−6. Because R3,3 is a linear combina-
tion of R3,2 and R2,2 in which the terms of order h4 cancel, we can conclude
that R3,3 is of sixth-order accuracy. 2

72 CHAPTER 3. NUMERICAL INTEGRATION

Chapter 4

Polynomial Approximation
in the ∞-norm

4.1 Normed Linear Spaces

Previously we have considered the problem of polynomial interpolation, in
which a function f(x) is approximated by a polynomial pn(x) that agrees
with f(x) at n+ 1 distinct points, based on the assumption that pn(x) will
be, in some sense, a good approximation of f(x) at other points. As we
have seen, however, this assumption is not always valid, and in fact, such
an approximation can be quite poor, as demonstrated by Runge’s example.

Therefore, we consider an alternative approach to approximation of a
function f(x) on an interval [a, b] by a polynomial, in which the polynomial
is not required to agree with f at any specific points, but rather approximate
f well in an “overall” sense, by not deviating much from f at any point
in [a, b]. This requires that we define an appropriate notion of “distance”
between functions that is, intuitively, consistent with our understanding of
distance between numbers or points in space.

To that end, let V be a vector space over the field of real numbers R. A
norm on V is a function ‖ · ‖ : V → R that has the following properties:

1. ‖f‖ ≥ 0 for all f ∈ V, and ‖f‖ = 0 if and only if f is the zero vector
of V.

2. ‖cf‖ = |c|‖f‖ for any vector f ∈ V and any scalar c ∈ R.

3. ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ V.

73

74CHAPTER 4. POLYNOMIAL APPROXIMATION IN THE ∞-NORM

The last property is known as the triangle inequality. A vector space V,
together with a norm ‖ · ‖, is called a normed vector space or normed linear
space.

Example The space C[a, b] of functions that are continuous on the interval
[a, b] is a normed vector space with the norm

‖f‖∞ = max
a≤x≤b

|f(x)|,

known as the ∞-norm or maximum norm. 2

Example The space C[a, b] can be equipped with a different norm, such as

‖f‖2 =

(∫ b

a
|f(x)|2w(x) dx

)1/2

,

where the weight function w(x) is positive and integrable on (a, b). It is
allowed to be singular at the endpoints, as will be seen in certain examples.
This norm is called the 2-norm or weighted 2-norm. 2

The 2-norm and ∞-norm are related as follows:

‖f‖2 ≤W‖f‖∞, W = ‖1‖2.

However, unlike the ∞-norm and 2-norm defined for the vector space Rn,
these norms are not equivalent in the sense that a function that has a small
2-norm necessarily has a small ∞-norm. In fact, given any ε > 0, no matter
how small, and any M > 0, no matter how large, there exists a function
f ∈ C[a, b] such that

‖f‖2 < ε, ‖f‖∞ > M.

4.2 Best Approximation in the ∞-norm

We now consider the problem of approximating a function f ∈ C[a, b] by
a polynomial p such that ‖f − p‖∞ is small. Such an approximation does
exist; in fact, for any ε > 0, no matter how small, there exists a polynomial
p such that

‖f − p‖∞ ≤ ε.
This classical result can be proved by considering the interval [0, 1] and using
the approximation

pn(x) =

n∑
k=0

pnk(x)f(k/n), x ∈ [0, 1],

4.2. BEST APPROXIMATION IN THE ∞-NORM 75

where the polynomials

pnk(x) =

(
n
k

)
xk(1− x)n−k

are known as the Bernstein polynomials. It can be shown that for any
given error tolerance ε, there exists a degree n, dependent on ε, such that
‖f − pn‖∞ ≤ ε.

We now fix the degree n and consider the problem of approximating
f ∈ C[a, b] by a polynomial pn ∈ Pn, where Pn is the space of polynomials
on [a, b] of degree at most n, such that ‖f − pn‖∞ is minimized. In fact, it
can be shown that ‖f − pn‖∞, as a function of the n+ 1 coefficients of pn,
does have a minimum on Rn+1 that can be attained, as it is a continuous
function of the coefficients, and there exists a compact, nonempty subset of
Rn+1 such that ‖f−pn‖ ≤ ‖f‖∞+1 for any polynomial pn whose coefficients
lie in this subset. Therefore, this subset must contain a minimum.

A polynomial pn ∈ Pn that minimizes ‖f−pn‖∞, the maximum absolute
value of f(x) − pn(x) on [a, b], is called the minimax polynomial. It is, in
the ∞-norm sense, the best approximation of f on [a, b] by a polynomial of
degree n. This polynomial, as we will see later, is in fact unique.

Example Let f ∈ C[a, b]. Then f has a minimum at a point ξ ∈ [a, b], and
a maximum at η ∈ [a, b]. Then the minimax polynomial of f of degree 0 is
the constant function

p0(x) =
1

2
[f(ξ) + f(η)].

2

We note that the error |f(x) − p0(x)| is maximized at two points, at
x = ξ and x = η. We also note that at x = ξ,

f(x)− p0(x) = f(ξ)− 1

2
[f(ξ) + f(η)] =

1

2
[f(ξ)− f(η)] < 0,

while at x = η,

f(x)− p0(x) = f(η)− 1

2
[f(ξ) + f(η)] =

1

2
[f(η)− f(ξ)] > 0.

Not only are the errors at these points of opposite sign; they are also equal
in magnitude to the error on the entire interval, ‖f − p0‖∞.

A similar result holds for higher-degree approximations. The Oscillation
Theorem states that if pn ∈ Pn is the minimax polynomial of degree n for

76CHAPTER 4. POLYNOMIAL APPROXIMATION IN THE ∞-NORM

f ∈ C[a, b], then there exist n+ 2 points a ≤ x0 < x1 < · · · < xn+1 ≤ b such
that

|f(xi)− pn(xi)| = ‖f − pn‖∞, i = 0, 1, . . . , n+ 1,

and

f(xi)− pn(xi) = −(f(xi+1)− pn(xi+1)), i = 0, 1, . . . , n.

These points are called the critical points of f on [a, b].

This result can be used to prove the uniqueness of the minimax poly-
nomial. It can also be used to compute it. It follows from the Oscillation
Theorem that if f ∈ C[a, b] is continuously differentiable on (a, b), and
if f ′ is monotonic on (a, b), then the minimax polynomial of degree one,
p1(x) = c0 + c1x, can be obtained by first noting that because f ′ does not
change sign on [a, b], f −p1 must assume its maximum and minimum values
at x = a, x = b, and x = d, where d ∈ (a, b).

Because p1 is a minimax polynomial, it follows that

f(a)− (c0 + c1a) = A,

f(d)− (c0 + c1d) = −A,

f(b)− (c0 + c1b) = A.

It follows from the first and third equations that

c1 =
f(b)− f(a)

b− a
.

That is, the graph of p1(x) is parallel to the secant line passing through
(a, f(a)) and (b, f(b)).

From the first and second equations, we obtain

c0 =
1

2
[f(a) + f(d)− c1(a+ d)],

where d is the point at which the slope of the tangent line is equal to c1, the
existence of which is guaranteed by the Mean Value Theorem. This point
is also unique, because f ′ is assumed to be monotonic. We conclude that
p1 is the linear function whose graph is a line that is parallel to the secant
line and the tangent line at d, both of which have slope c1, and is halfway
between these lines.

4.3. CHEBYSHEV POLYNOMIALS 77

4.3 Chebyshev Polynomials

Previously we have learned how to compute minimax polynomials for certain
special cases, but in general this is quite difficult. One minimax problem
that can be solved is the problem of computing the minimax polynomial of
a function f(x) that is itself a polynomial, where the approximation must
have lower degree. Another related problem is that of finding a polynomial
approximation that is at least “near” the minimax polynomial in some sense,
when it is not practical to compute the minimax polynomial itself.

A class of polynomials that is helpful for these problems is the sequence
of Chebyshev polynomials, defined by

Tk(x) = cos(k cos−1 x), −1 ≤ x ≤ 1.

From this definition, we obtain

T0(x) = 1, T1(x) = x.

Additional polynomials can be obtained using the trigonometric identities

cos((k + 1)θ) = cos kθ cos θ − sin kθ sin θ,

cos((k − 1)θ) = cos kθ cos θ + sin kθ sin θ.

Adding these identities, and setting θ = cos−1 x, yields

Tk+1(x) + Tk−1(x) = 2xTk(x),

from which we obtain a three-term recurrence relation

Tk+1(x) = 2xTk(x)− Tk−1(x).

It can easily be seen from this relation, and the first two Chebyshev poly-
nomials, that Tk(x) is in fact a polynomial for all integers k ≥ 0.

The Chebyshev polynomials have the following properties of interest:

1. The leading coefficient of Tk(x) is 2n−1.

2. Tk(x) is an even function of k is even, and an odd function if k is odd.

3. The zeros of Tk(x), for k ≥ 1, are

xj = cos
(2j − 1)π

2k
, j = 1, 2, . . . , k.

78CHAPTER 4. POLYNOMIAL APPROXIMATION IN THE ∞-NORM

4. The extrema of Tk(x) on [−1, 1] are

x̃j = cos
jπ

k
, j = 0, 1, . . . , k,

and the corresponding extremal values are ±1.

5. |Tk(x)| ≤ 1 on [−1, 1] for all k ≥ 0.

Now, consider the problem of finding the minimax polynomial of degree
n for f(x) = xn+1 on [−1, 1]. If we define

pn(x) = xn+1 − 2−nTn+1(x),

then, because the leading coefficient of Tn+1(x) is 2n, pn(x) is a polynomial
of degere n. Furthermore, because

xn+1 − pn(x) = 2−nTn+1(x),

it follows that xn+1 − pn(x) attains its maxima and minima at the n + 2
points that are the extrema of Tn+1(x) on [−1, 1], and the corresponding
extreme values alternate in sign. Therefore, by the Oscillation Theorem,
pn(x) is the nth-degree minimax polynomial for f(x) on [−1, 1].

A consequence of this result is that if we denote by P1
n the set of all

monic polynomials of degree n (that is, all polynomials of degree n with
leading coefficient 1), then

min
r∈P1

n+1

‖r‖∞ = min
q∈Pn

‖xn+1−q‖ = ‖xn+1−(xn+1−2−nTn+1(x))‖ = ‖2−nTn+1(x)‖.

That is, 2−nTn+1(x) is the monic polynomial of degree n+ 1 with smallest
∞-norm on [−1, 1].

4.4 Interpolation

Let f(x) be a function that is (n + 1) times continuously differentiable on
[a, b]. If we approximate f(x) by a nth-degree polynomial pn(x) that in-
terpolates f(x) at the n + 1 roots of the Chebyshev polynomial Tn+1(x),
mapped from [−1, 1] to [a, b],

ξj =
1

2
(b− a) cos

(2j + 1)π

2n+ 2
+

1

2
(a+ b),

4.4. INTERPOLATION 79

then the error in this approximation is

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

(
b− a

2

)n+1

2−nTn+1(t(x)),

where

t(x) =
2x− a− b
b− a

is the linear map from [a, b] to [−1, 1]. This is because

n∏
j=0

(x− ξj) =

(
b− a

2

)n+1 n∏
j=0

(t(x)− τj) =

(
b− a

2

)n+1

2−nTn+1(t(x)),

where τj is the jth root of Tn+1(t). We conclude that

|f(x)− pn(x)| ≤ (b− a)n+1

22n+1(n+ 1)!
max
ξ∈[a,b]

|f (n+1)(ξ)|.

Because the interpolation error exhibits (n+1) sign changes on [a, b], the
Chebyshev interpolant is called a near-minimax polynomial. In other words,
it is an approximating polynomial for which the error, in the∞-norm sense,
is not minimized, but is still small. Furthermore, the Chebyshev interpolant
is readily computed, and as such it is often used as a viable alternative to
the minimax polynomial.

80CHAPTER 4. POLYNOMIAL APPROXIMATION IN THE ∞-NORM

Chapter 5

Polynomial Approximation
in the 2-norm

5.1 Best Approximation in the 2-norm

Suppose that we wish to obtain a function fn(x) that is a linear combination
of given functions {φj(x)}nj=0, and best fits a function f(x) at a discrete set
of data points {(xi, f(xi))}mi=1 in a least-squares sense. That is, we wish to
find constants {cj}nj=0 such that

m∑
i=1

[fn(xi)− f(xi)]
2 =

m∑
i=1

 n∑
j=0

cjφj(xi)− f(xi)

2

is minimized. This can be accomplished by solving a system of n+ 1 linear
equations for the {cj}, known as the normal equations.

Now, suppose we have a continuous set of data. That is, we have a
function f(x) defined on an interval [a, b], and we wish to approximate it
as closely as possible, in some sense, by a function fn(x) that is a linear
combination of given functions {φj(x)}nj=0. If we choose m equally spaced
points {xi}mi=1 in [a, b], and let m → ∞, we obtain the continuous least-
squares problem of finding the function

fn(x) =
n∑
j=0

cjφj(x)

81

82 CHAPTER 5. POLYNOMIAL APPROXIMATION IN THE 2-NORM

that minimizes

E(c0, c1, . . . , cn) =

∫ b

a
[fn(x)− f(x)]2 dx =

∫ b

a

 n∑
j=0

cjφj(x)− f(x)

2

dx.

To obtain the coefficients {cj}nj=0, we can proceed as in the discrete case.
We compute the partial derivatives of E(c0, c1, . . . , cn) with respect to each
ck and obtain

∂E

∂ck
=

∫ b

a
φk(x)

 n∑
j=0

cjφj(x)− f(x)

 dx,
and requiring that each partial derivative be equal to zero yields the normal
equations

n∑
j=0

[∫ b

a
φk(x)φj(x) dx

]
cj =

∫ b

a
φk(x)f(x) dx, k = 0, 1, . . . , n.

We can then solve this system of equations to obtain the coefficients
{cj}nj=0. This system can be solved as long as the functions {φj(x)}nj=0 are
linearly independent. That is, the condition

n∑
j=0

cjφj(x) ≡ 0, x ∈ [a, b],

is only true if c0 = c1 = · · · = cn = 0. In particular, this is the case if, for
j = 0, 1, . . . , n, φj(x) is a polynomial of degree j. This can be proved using
a simple inductive argument.

Example We approximate f(x) = ex on the interval [0, 5] by a fourth-degree
polynomial

f4(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4.

The normal equations have the form

n∑
j=0

aijcj = bi, i = 0, 1, . . . , 4,

or, in matrix-vector form, Ac = b, where

aij =

∫ 5

0
xixj dx =

∫ 5

0
xi+j dx =

5i+j+1

i+ j + 1
, i, j = 0, 1, . . . , 4,

5.1. BEST APPROXIMATION IN THE 2-NORM 83

bi =

∫ 5

0
xiex dx, i = 0, 1, . . . , 4.

Integration by parts yields the relation

bi = 5ie5 − ibi−1, b0 = e5 − 1.

Solving this system of equations yields the polynomial

f4(x) = 2.3002− 6.226x+ 9.5487x2 − 3.86x3 + 0.6704x4.

As Figure 5.1 shows, this polynomial is barely distinguishable from ex on
[0, 5].

Figure 5.1: Graphs of f(x) = ex (red dashed curve) and 4th-degree con-
tinuous least-squares polynomial approximation f4(x) on [0, 5] (blue solid
curve)

However, it should be noted that the matrix A is closely related to the
n× n Hilbert matrix Hn, which has entries

[Hn]ij =
1

i+ j − 1
, 1 ≤ i, j ≤ n.

This matrix is famous for being highly ill-conditioned, meaning that solu-
tions to systems of linear equations involving this matrix that are computed

84 CHAPTER 5. POLYNOMIAL APPROXIMATION IN THE 2-NORM

using floating-point arithmetic are highly sensitive to roundoff error. In fact,
the matrix A in this example has a condition number of 1.56 × 107, which
means that a change of size ε in the right-hand side vector b, with entries
bi, can cause a change of size 1.56ε× 107 in the solution c. 2

5.2 Inner Product Spaces

As the preceding example shows, it is important to choose the functions
{φj(x)}nj=0 wisely, so that the resulting system of normal equations is not
unduly sensitive to round-off errors. An even better choice is one for which
this system can be solved analytically, with relatively few computations. An
ideal choice of functions is one for which the task of computing fn+1(x) can
reuse the computations needed to compute fn(x).

To that end, recall that two m-vectors u = 〈u1, u2, . . . , um〉 and v =
〈v1, v2, . . . , vm〉 are orthogonal if

u · v =
m∑
i=1

uivi = 0,

where u · v is the dot product, or inner product, of u and v.

By viewing functions defined on an interval [a, b] as infinitely long vec-
tors, we can generalize the inner product, and the concept of orthogonality,
to functions. To that end, we define the inner product of two real-valued
functions f(x) and g(x) defined on the interval [a, b] by

〈f, g〉 =

∫ b

a
f(x)g(x) dx.

Then, we say f and g are orthogonal with respect to this inner product if
〈f, g〉 = 0.

In general, an inner product on a vector space V over R, be it continuous
or discrete, has the following properties:

1. 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉 for all f, g, h ∈ V

2. 〈cf, g〉 = c〈f, g〉 for all c ∈ R and all f ∈ V

3. 〈f, g〉 = 〈g, f〉 for all f, g ∈ V

4. 〈f, f〉 ≥ 0 for all f ∈ V, and 〈f, f〉 = 0 if and only if f = 0.

5.2. INNER PRODUCT SPACES 85

This inner product can be used to define the norm of a function, which
generalizes the concept of the magnitude of a vector to functions, and there-
fore provides a measure of the “magnitude” of a function. Recall that the
magnitude of a vector v, denoted by ‖v‖, can be defined by

‖v‖ = (v · v)1/2.

Along similar lines, we define the 2-norm of a function f(x) defined on [a, b]
by

‖f‖2 = (〈f, f〉)1/2 =

(∫ b

a
[f(x)]2 dx

)1/2

.

As we will see, it can be verified that this function does in fact satisfy the
properties required of a norm. The continuous least-squares problem can
then be described as the problem of finding

fn(x) =

n∑
j=0

cjφj(x)

such that

‖fn − f‖2 =

(∫ b

a
[fn(x)− f(x)]2 dx

)1/2

is minimized. This minimization can be performed over C[a, b], the space of
functions that are continuous on [a, b], but it is not necessary for a function
f(x) to be continuous for ‖f‖2 to be defined. Rather, we consider the space
L2(a, b), the space of real-valued functions such that |f(x)|2 is integrable
over (a, b).

One very important property that ‖·‖2 has is that it satisfies the Cauchy-
Schwarz inequality

|〈f, g〉| ≤ ‖f‖2‖g‖2, f, g ∈ V.

This can be proven by noting that for any scalar c ∈ R,

c2‖f‖22 + 2c〈f, g〉+ ‖g‖22 = ‖cf + g‖22 ≥ 0.

The left side is a quadratic polynomial in c. In order for this polynomial to
not have any negative values, it must either have complex roots or a double
real root. This is the case if the discrimant satisfies

4〈f, g〉2 − 4‖f‖22‖g‖22 ≤ 0,

86 CHAPTER 5. POLYNOMIAL APPROXIMATION IN THE 2-NORM

from which the Cauchy-Schwarz inequality immediately follows. By setting
c = 1 and applying this inequality, we immediately obtain the triangle-
inequality property of norms.

Suppose that we can construct a set of functions {φj(x)}nj=0 that is
orthogonal with respect to the inner product of functions on [a, b]. That is,

〈φk, φj〉 =

∫ b

a
φk(x)φj(x) dx =

{
0 k 6= j
αk > 0 k = j

.

Then, the normal equations simplify to a trivial system[∫ b

a
[φk(x)]2 dx

]
ck =

∫ b

a
φk(x)f(x) dx, k = 0, 1, . . . , n,

or, in terms of norms and inner products,

‖φk‖22ck = 〈φk, f〉, k = 0, 1, . . . , n.

It follows that the coefficients {cj}nj=0 of the least-squares approximation
fn(x) are simply

ck =
〈φk, f〉
‖φk‖22

, k = 0, 1, . . . , n.

If the constants {αk}nk=0 above satisfy αk = 1 for k = 0, 1, . . . , n, then we
say that the orthogonal set of functions {φj(x)}nj=0 is orthonormal. In that
case, the solution to the continuous least-squares problem is simply given
by

ck = 〈φk, f〉, k = 0, 1, . . . , n.

Next, we will learn how sets of orthogonal polynomials can be computed.

5.3 Orthogonal Polynomials

Previously, we learned that the problem of finding the polynomial fn(x), of
degree n, that best approximates a function f(x) on an interval [a, b] in the
least squares sense, i.e., that minimizes

‖fn − f‖2 =

(∫ b

a
[fn(x)− f(x)]2 dx

)1/2

,

is easy to solve if we represent fn(x) as a linear combination of orthogonal
polynomials,

fn(x) =
n∑
j=0

cjpj(x).

5.3. ORTHOGONAL POLYNOMIALS 87

Each polynomial pj(x) is of degree j, and the set of polynomials p0(x), p1(x), . . . , pn(x)
are orthogonal with respect to the inner product

〈f, g〉 =

∫ b

a
f(x)g(x) dx.

That is,

〈pk, pj〉 =

∫ b

a
pk(x)pj(x) dx = 0, k 6= j.

Given this sequence of orthogonal polynomials, the coefficients cj in the
linear combination used to compute fn(x) are given by

cj =
〈pj , f〉
〈pj , pj〉

, cj = 0, 1, . . . , n.

Now, we focus on the task of finding such a sequence of orthogonal polyno-
mials.

Recall the process known as Gram-Schmidt orthogonalization for obtain-
ing a set of orthogonal vectors p1,p2, . . . ,pn from a set of linearly indepen-
dent vectors a1,a2, . . . ,an:

p1 = a1

p2 = a2 −
p1 · a2

p1 · p1
p1

...

pn = an −
n−1∑
j=0

pj · an
pj · pj

pj .

By normalizing each vector pj , we obtain a unit vector

qj =
1

|pj |
pj ,

and a set of orthonormal vectors {qj}nj=1, in that they are orthogonal (qk ·
qj = 0 for k 6= j), and unit vectors (qj · qj = 1).

We can use a similar process to compute a set of orthogonal polynomials.
For simplicitly, we will require that all polynomials in the set be monic; that
is, their leading (highest-degree) coefficient must be equal 1. We then define
p0(x) = 1. Then, because p1(x) is supposed to be of degree 1, it must have
the form p1(x) = x − α1 for some constant α1. To ensure that p1(x) is
orthogonal to p0(x), we compute their inner product, and obtain

0 = 〈p0, p1〉 = 〈1, x− α1〉,

88 CHAPTER 5. POLYNOMIAL APPROXIMATION IN THE 2-NORM

so we must have

α1 =
〈1, x〉
〈1, 1〉

.

For j > 1, we start by setting pj(x) = xpj−1(x), since pj should be
of degree one greater than that of pj−1, and this satisfies the requirement
that pj be monic. Then, we need to subtract polynomials of lower degree
to ensure that pj is orthogonal to pi, for i < j. To that end, we apply
Gram-Schmidt orthogonalization and obtain

pj(x) = xpj−1(x)−
j−1∑
i=0

〈pi, xpj−1〉
〈pi, pi〉

pi(x).

However, by the definition of the inner product, 〈pi, xpj−1〉 = 〈xpi, pj−1〉.
Furthermore, because xpi is of degree i + 1, and pj−1 is orthogonal to all
polynomials of degree less than j, it follows that 〈pi, xpj−1〉 = 0 whenever
i < j − 1.

We have shown that sequences of orthogonal polynomials satisfy a three-
term recurrence relation

pj(x) = (x− αj)pj−1(x)− β2
j−1pj−2(x), j > 1,

where the recursion coefficients αj and β2
j−1 are defined to be

αj =
〈pj−1, xpj−1〉
〈pj−1, pj−1〉

, j > 1,

β2
j =

〈pj−1, xpj〉
〈pj−1, pj−1〉

=
〈xpj−1, pj〉
〈pj−1, pj−1〉

=
〈pj , pj〉
〈pj−1, pj−1〉

=
‖pj‖22
‖pj−1‖22

, j ≥ 1.

Note that 〈xpj−1, pj〉 = 〈pj , pj〉 because xpj−1 differs from pj by a polyno-
mial of degree at most j − 1, which is orthogonal to pj . The recurrence
relation is also valid for j = 1, provided that we define pj−1(x) ≡ 0, and α1

is defined as above. That is,

p1(x) = (x− α1)p0(x), α1 =
〈p0, xp0〉
〈p0, p0〉

.

If we also define the recursion coefficient β0 by

β2
0 = 〈p0, p0〉,

and then define

qj(x) =
pj(x)

β0β1 · · ·βj
,

5.3. ORTHOGONAL POLYNOMIALS 89

then the polynomials q0, q1, . . . , qn are also orthogonal, and

〈qj , qj〉 =
〈pj , pj〉

β2
0β

2
1 · · ·β2

j

= 〈pj , pj〉
〈pj−1, pj−1〉
〈pj , pj〉

· · · 〈p0, p0〉
〈p1, p1〉

1

〈p0, p0〉
= 1.

That is, these polynomials are orthonormal.
If we consider the inner product

〈f, g〉 =

∫ 1

−1
f(x)g(x) dx,

then a sequence of orthogonal polynomials, with respect to this inner prod-
uct, can be defined as follows:

L0(x) = 1,

L1(x) = x,

Lj+1(x) =
2j + 1

j + 1
xLj(x)− j

j + 1
Lj−1(x), j = 1, 2, . . .

These are known as the Legendre polynomials. One of their most important
applications is in the construction of Gaussian quadrature rules. Specifi-
cally, the roots of Ln(x), for n ≥ 1, are the nodes of a Gaussian quadrature
rule for the interval [−1, 1]. However, they can also be used to easily com-
pute continuous least-squares polynomial approximations, as the following
example shows.

Example We will use Legendre polynomials to approximate f(x) = cosx
on [−π/2, π/2] by a quadratic polynomial. First, we note that the first three
Legendre polynomials, which are the ones of degree 0, 1 and 2, are

L0(x) = 1, L1(x) = x, L2(x) =
1

2
(3x2 − 1).

However, it is not practical to use these polynomials directly to approximate
f(x), because they are orthogonal with respect to the inner product defined
on the interval [−1, 1], and we wish to approximate f(x) on [−π/2, π/2].

To obtain orthogonal polynomials on [−π/2, π/2], we replace x by 2t/π,
where t belongs to [−π/2, π/2], in the Legendre polynomials, which yields

L̃0(t) = 1, L̃1(t) =
2t

π
, L̃2(t) =

1

2

(
12

π2
t2 − 1

)
.

Then, we can express our quadratic approximation f2(x) of f(x) by the
linear combination

f2(x) = c0L̃0(x) + c1L̃1(x) + c2L̃2(x),

90 CHAPTER 5. POLYNOMIAL APPROXIMATION IN THE 2-NORM

where

cj =
〈f, L̃j〉
〈L̃j , L̃j〉

, j = 0, 1, 2.

Computing these inner products yields

〈f, L̃0〉 =

∫ π/2

−π/2
cos t dt

= 2,

〈f, L̃1〉 =

∫ π/2

−π/2

2t

π
cos t dt

= 0,

〈f, L̃2〉 =

∫ π/2

−π/2

1

2

(
12

π2
t2 − 1

)
cos t dt

=
2

π2
(π2 − 12),

〈L̃0, L̃0〉 =

∫ π/2

−π/2
1 dt

= π,

〈L̃1, L̃1〉 =

∫ π/2

−π/2

(
2t

π

)2

dt

=
8π

3
,

〈L̃2, L̃2〉 =

∫ π/2

−π/2

[
1

2

(
12

π2
t2 − 1

)]2

dt

=
π

5
.

It follows that

c0 =
2

π
, c1 = 0, c2 =

2

π2

5

π
(π2 − 12) =

10

π3
(π2 − 12),

and therefore

f2(x) =
2

π
+

5

π3
(π2 − 12)

(
12

π2
x2 − 1

)
≈ 0.98016− 0.4177x2.

This approximation is shown in Figure 5.2. 2

It is possible to compute sequences of orthogonal polynomials with re-
spect to other inner products. A generalization of the inner product that

5.3. ORTHOGONAL POLYNOMIALS 91

Figure 5.2: Graph of cosx (solid blue curve) and its continuous least-squares
quadratic approximation (red dashed curve) on [−π/2, π/2]

we have been using is defined by

〈f, g〉 =

∫ b

a
f(x)g(x)w(x) dx,

where w(x) is a weight function. To be a weight function, it is required that
w(x) ≥ 0 on (a, b), and that w(x) 6= 0 on any subinterval of (a, b). So far,
we have only considered the case of w(x) ≡ 1.

Another weight function of interest is

w(x) =
1√

1− x2
, −1 < x < 1.

A sequence of polynomials that is orthogonal with respect to this weight
function, and the associated inner product

〈f, g〉 =

∫ 1

−1
f(x)g(x)

1√
1− x2

dx

92 CHAPTER 5. POLYNOMIAL APPROXIMATION IN THE 2-NORM

is the sequence of Chebyshev polynomials

C0(x) = 1,

C1(x) = x,

Cj+1(x) = 2xCj(x)− Cj−1(x), j = 1, 2, . . .

which can also be defined by

Cj(x) = cos(j cos−1 x), −1 ≤ x ≤ 1.

It is interesting to note that if we let x = cos θ, then

〈f, Cj〉 =

∫ 1

−1
f(x) cos(j cos−1 x)

1√
1− x2

dx

=

∫ π

0
f(cos θ) cos jθ dθ.

In later lectures, we will investigate continuous and discrete least-squares
approximation of functions by linear combinations of trigonometric poly-
nomials such as cos jθ or sin jθ, which will reveal one of the most useful
applications of Chebyshev polynomials.

Previously, we established that if f ∈ L2(a, b), and fn(x) is a polynomial
of degree n such that

fn(x) =
n∑
j=0

cjqj(x),

where the polynomials q0(x), q1(x), . . . , qn(x) are orthonormal, in the sense
that

〈qj , qk〉 =

∫ b

a
qj(x)qk(x)w(x) dx = δjk, j, k = 0, 1, . . . , n,

and the constants cj are defined by

cj = 〈f, qj〉, j = 0, 1, . . . , n,

then the 2-norm approximation error

‖f − p‖2 =

(∫ b

a
|f(x)− p(x)|2w(x) dx

)1/2

, p ∈ Pn,

is minimized by fn.

5.3. ORTHOGONAL POLYNOMIALS 93

It follows that if p ∈ Pn, then

〈f − fn, p〉 = 〈f, p〉 − 〈fn, p〉

=

〈
f,

n∑
k=0

〈p, qk〉qk

〉
−

〈
n∑
j=0

〈f, qj〉qj ,
n∑
k=0

〈p, qk〉qk

〉

=
n∑
k=0

〈p, qk〉〈f, qk〉 −
n∑
j=0

n∑
k=0

〈f, qj〉〈p, qk〉〈qj , qk〉

=
n∑
k=0

〈p, qk〉〈f, qk〉 −
n∑
k=0

〈f, qk〉〈p, qk〉

= 0.

That is, the error in the approximation of f by fn is orthogonal to any
polynomial in Pn.

Now, we prove the converse: that if fn ∈ Pn satisfies

〈f − fn, p〉 = 0, p ∈ Pn,

then ‖f − fn‖2 is minimized over Pn. First, we note that if p ∈ Pn, then
p− fn ∈ Pn as well, so

0 = 〈f−fn, p−fn〉 = 〈f−fn, p−fn+f−f〉 = 〈f−fn, f−fn〉+〈f−fn, p−f〉,

or, by the Cauchy-Schwarz inequality,

‖f − fn‖22 = 〈f − fn, f − p〉 ≤ ‖f − fn‖2‖f − p‖2.

Clearly, if f = fn, then ‖f − fn‖2 = 0 is minimized, because a norm must
be nonnegative. Otherwise, we have

‖f − fn‖2 ≤ ‖f − p‖2.

We conclude that fn is the closest polynomial in Pn to f in the 2-norm
sense.

Finally, we prove one property of orthogonal polynomials that will prove
useful in our upcoming discussion of the role of orthogonal polynomials in
numerical integration. Let ϕj(x) be a polynomial of degree j ≥ 1 that
is orthogonal to all polynomials of lower degree, with respect to the inner
product

〈f, g〉 =

∫ b

a
f(x)g(x)w(x) dx,

94 CHAPTER 5. POLYNOMIAL APPROXIMATION IN THE 2-NORM

and let the points ξ1, ξ2, . . . , ξk be the points in (a, b) at which ϕj(x) changes
sign. This set of points cannot be empty, because ϕj , being a polynomial of
degree at least one, is orthogonal a constant function, which means∫ b

a
ϕj(x)w(x) dx = 0.

Because w(x) is a weight function, it does not change sign. Therefore, in
order for the integral to be zero, ϕj(x) must change sign at least once in
(a, b).

If we define

πk(x) = (x− ξ1)(x− ξ2) · · · (x− ξk),

then ϕj(x)πk(x) does not change sign on (a, b), because πk changes sign at
exactly the same points in (a, b) as ϕj . Because both polynomials are also
nonzero on (a, b), we must have

〈ϕj , πk〉 =

∫ b

a
ϕj(x)πk(x)w(x) dx 6= 0.

If k < j, then we have a contradiction, because ϕj is orthogonal to any
polynomial of lesser degree. Therefore, k ≥ j. However, if k > j, we also
have a contradiction, because a polynomial of degree j cannot change sign
more than j times on the entire real number line, let alone an interval. We
conclude that k = j, which implies that all of the roots of ϕj are real and
distinct, and lie in (a, b).

5.4 Comparisons

Let fn ∈ Pn be the best approximation of f ∈ L2(a, b) in the 2-norm sense,
and let ξ1, ξ2, . . . , ξk be the points in (a, b) at which the error f −fn changes
sign. Then, if we define πk as before, we have

〈f − fn, πk〉 6= 0.

However, 〈f − fn, p〉 = 0 for any polynomial p of degree n or less. It follows
that πk must have degree at least n + 1, so the error must change sign at
least n+ 1 times in (a, b). It follows that the best 2-norm approximation is
also a near-minimax approximation of f . That is, the error in the ∞-norm
sense is nearly minimized.

5.4. COMPARISONS 95

One particularly useful property of the 2-norm approximation is that it
is easy to obtain an approximation of higher degree. Let fn be the best
nth-degree approximation of f ∈ L2(a, b), and suppose that we wish to
obtain fn+1, the best approximation of degree n + 1. Given a sequence of
orthonormal polynomials q0, q1, . . . , qn+1, we have

fn(x) =
n∑
j=0

cjqj(x), cj = 〈f, qj〉, j = 0, 1, . . . , n,

and

fn+1(x) =
n+1∑
j=0

cjqj(x), cj = 〈f, qj〉, j = 0, 1, . . . , n+ 1.

It follows that

fn+1(x) = fn(x) + cn+1qn+1(x), cn+1 = 〈f, qn+1.

That is, the nth-degree approximation can be reused. On the other hand,
the nth-degree minimiax approximation, or the nth-degree Lagrange inter-
polating polynomial, cannot be used to efficiently obtain the corresponding
approximation of degree n+ 1. However, it should be noted that if Newton
interpolation is used instead, such an update is feasible.

96 CHAPTER 5. POLYNOMIAL APPROXIMATION IN THE 2-NORM

Chapter 6

Numerical Integration - II

6.1 Construction of Gauss Quadrature Rules

Previously, we learned that a Newton-Cotes quadrature rule with n nodes
has degree at most n. Therefore, it is natural to ask whether it is possible to
select the nodes and weights of an n-point quadrature rule so that the rule
has degree greater than n. Gaussian quadrature rules have the surprising
property that they can be used to integrate polynomials of degree 2n − 1
exactly using only n nodes.

Gaussian quadrature rules can be constructed using a technique known
as moment matching, or direct construction. For any nonnegative integer k,
the kth moment is defined to be

µk =

∫ b

a
xk dx.

For given n, our goal is to select weights and nodes so that the first 2n
moments are computed exactly; i.e.,

µk =

n−1∑
i=0

wix
k
i , k = 0, 1, . . . , 2n− 1.

Since we have 2n free parameters, it is reasonable to think that appropriate
nodes and weights can be found. Unfortunately, this system of equations is
nonlinear, so it can be quite difficult to solve.

Suppose g(x) is a polynomial of degree 2n− 1. For convenience, we will
write g ∈ P2n−1, where, for any natural number k, Pk denotes the space
of polynomials of degree at most k. We shall show that there exist weights

97

98 CHAPTER 6. NUMERICAL INTEGRATION - II

{wi}n−1
i=0 and nodes {xi}n−1

i=0 such that∫ b

a
g(x) dx =

n−1∑
i=0

wig(xi).

Furthermore, for more general functions, G(x),∫ b

a
G(x) dx =

n−1∑
i=0

wiG(xi) + E[G]

where

1. xi are real, distinct, and a < xi < b for i = 0, 1, . . . , n− 1.

2. The weights {wi} satisfy wi > 0 for i = 0, 1, . . . , n− 1.

3. The error E[G] satisfies E[G] = G(2n)(ξ)
(2n)!

∫ b
a

∏n−1
i=0 (x− xi)2 dx.

Notice that this method is exact for polynomials of degree 2n− 1 since the
error functional E[G] depends on the (2n)th derivative of G.

To prove this, we shall construct an orthonormal family of polynomials
{qi(x)}ni=0 so that ∫ b

a
qr(x)qs(x) dx =

{
0 r 6= s,
1 r = s.

This can be accomplished using the fact that such a family of polynomials
satisfies a three-term recurrence relation

βjqj(x) = (x−αj)qj−1(x)−βj−1qj−2(x), q0(x) = (b−a)−1/2, q−1(x) = 0,

where

αj =

∫ b

a
xqj−1(x)2 dx, β2

j =

∫ b

a
xqj(x)qj−1(x) dx, j ≥ 1, β0 = 1.

We choose the nodes {xi} to be the roots of the nth-degree polynomial
in this family, which are real, distinct and lie within (a, b), as proved earlier.
Next, we construct the interpolant of degree n− 1, denoted pn−1(x), of g(x)
through the nodes:

pn−1(x) =
n−1∑
i=0

g(xi)Ln−1,i(x),

6.1. CONSTRUCTION OF GAUSS QUADRATURE RULES 99

where, for i = 0, . . . , n− 1, Ln−1,i(x) is the ith Lagrange polynomial for the
points x0, . . . , xn−1. We shall now look at the interpolation error function

e(x) = g(x)− pn−1(x).

Clearly, since g ∈ P2n−1, e ∈ P2n−1. Since e(x) has roots at each of the
roots of qn(x), we can factor e so that

e(x) = qn(x)r(x),

where r ∈ Pn−1. It follows from the fact that qn(x) is orthogonal to any
polynomial in Pn−1 that the integral of g can then be written as

I(g) =

∫ b

a
pn−1(x) dx+

∫ b

a
qn(x)r(x) dx

=

∫ b

a
pn−1(x) dx

=

∫ b

a

n−1∑
i=0

g(xi)Ln−1,i(x) dx

=
n−1∑
i=0

g(xi)

∫ b

a
Ln−1,i(x) dx

=
n−1∑
i=0

g(xi)wi

where

wi =

∫ b

a
Ln−1,i(x) dx, i = 0, 1, . . . , n− 1.

For a more general function G(x), the error functional E[G] can be obtained
from the expression for the interpolation error presented earlier.

Example We will use Gaussian quadrature to approximate the integral∫ 1

0
e−x

2
dx.

The particular Gaussian quadrature rule that we will use consists of 5 nodes
x0, x1, x2, x3 and x4, and 5 weights w0, w1, w2, w3 and w4. To determine the
proper nodes and weights, we use the fact that the nodes and weights of a
5-point Gaussian rule for integrating over the interval [−1, 1] are given by

100 CHAPTER 6. NUMERICAL INTEGRATION - II

i Nodes r5,i Weights c5,i

0 0.9061798459 0.2369268850
1 0.5384693101 0.4786286705
2 0.0000000000 0.5688888889
3 −0.5384693101 0.4786286705
4 −0.9061798459 0.2369268850

To obtain the corresponding nodes and weights for integrating over [0, 1],
we can use the fact that in general,∫ b

a
f(x) dx =

∫ 1

−1
f

(
b− a

2
t+

a+ b

2

)
b− a

2
dt,

as can be shown using the change of variable x = [(b − a)/2]t + (a + b)/2
that maps [a, b] into [−1, 1]. We then have∫ b

a
f(x) dx =

∫ 1

−1
f

(
b− a

2
t+

a+ b

2

)
b− a

2
dt

≈
4∑
i=0

f

(
b− a

2
r5,i +

a+ b

2

)
b− a

2
c5,i

≈
4∑
i=0

f(xi)wi,

where

xi =
b− a

2
r5,i +

a+ b

2
, wi =

b− a
2

c5,i, i = 0, . . . , 4.

In this example, a = 0 and b = 1, so the nodes and weights for a 5-point
Gaussian quadrature rule for integrating over [0, 1] are given by

xi =
1

2
r5,i +

1

2
, wi =

1

2
c5,i, i = 0, . . . , 4,

which yields

i Nodes xi Weights wi
0 0.95308992295 0.11846344250
1 0.76923465505 0.23931433525
2 0.50000000000 0.28444444444
3 0.23076534495 0.23931433525
4 0.04691007705 0.11846344250

6.2. ERROR ESTIMATION FOR GAUSS QUADRATURE 101

It follows that∫ 1

0
e−x

2
dx ≈

4∑
i=0

e−x
2
iwi

≈ 0.11846344250e−0.953089922952
+ 0.23931433525e−0.769234655052

+

0.28444444444e−0.52
+ 0.23931433525e−0.230765344952

+

0.11846344250e−0.046910077052

≈ 0.74682412673352.

Since the exact value is 0.74682413281243, the absolute error is −6.08×10−9,
which is remarkably accurate considering that only fives nodes are used. 2

The high degree of accuracy of Gaussian quadrature rules make them
the most commonly used rules in practice. However, they are not without
their drawbacks:

• They are not progressive, so the nodes must be recomputed whenever
additional degrees of accuracy are desired. An alternative is to use
Gauss-Kronrod rules. A (2n + 1)-point Gauss-Kronrod rule uses the
nodes of the n-point Gaussian rule. For this reason, practical quadra-
ture procedures use both the Gaussian rule and the corresponding
Gauss-Kronrod rule to estimate accuracy.

• Because the nodes are the roots of a polynomial, they must be com-
puted using traditional root-finding methods, which are not always
accurate. Errors in the computed nodes lead to lost degrees of accu-
racy in the approximate integral. In practice, however, this does not
normally cause significant difficulty.

6.2 Error Estimation for Gauss Quadrature

We have learned how to approximate

I[G] =

∫ b

a
G(x) dx

using a Gaussian quadrature rule

Gn[G] =

n−1∑
i=0

G(xi)wi

102 CHAPTER 6. NUMERICAL INTEGRATION - II

that is exact whenever G(x) ∈ P2n−1; that is, G is a polynomial of degree
at 2n− 1 or less.

It is easy to show that the weights wi are positive. Since the interpolation
basis functions Ln−1,i belong to Pn−1, it follows that L2

n−1,i ∈ P2n−2, and
therefore

0 <

∫ b

a
L2
n−1,i(x) dx =

n−1∑
j=0

wjL2
n−1,i(xj) = wi.

Note that we have thus obtained an alternative formula for the weights. This
formula also arises from an alternative approach to constructing Gaussian
quadrature rules, from which a representation of the error can easily be
obtained.

We construct the Hermite interpolating polynomial G2n−1(x) of G(x),
using the Gaussian quadrature nodes as interpolation points, that satisfies
the 2n conditions

G2n−1(xi) = G(xi), G′2n−1(xi) = G′(xi), i = 0, 1, . . . , n− 1.

This interpolant has the form

G2n−1(x) =

n−1∑
i=0

G(xi)Hi(x) +

n−1∑
i=0

G′(xi)Ki(x),

where, as in our previous discussion of Hermite interpolation,

Hi(xj) = δij , H ′i(xj) = 0, Ki(xj) = 0, K ′i(xj) = δij , i, j = 0, 1, . . . , n−1.

Then, we have∫ b

a
G2n−1(x) dx =

n−1∑
i=0

G(xi)

∫ b

a
Hi(x) dx+

n−1∑
i=0

G′(xi)

∫ b

a
Ki(x) dx.

We recall that

Hi(x) = Ln−1,i(x)2[1−2L′n−1,i(xi)(x−xi)], Ki(x) = Ln−1,i(x)2(x−xi), i = 0, 1, . . . , n−1,

and for convenience, we define

πn(x) = (x− x0)(x− x1) · · · (x− xn−1),

and note that

Ln−1,i(x) =
πn(x)

(x− xi)π′n(xi)
.

6.2. ERROR ESTIMATION FOR GAUSS QUADRATURE 103

We then have∫ b

a
Hi(x) dx =

∫ b

a
Ln−1,i(x)2 dx− 2L′n−1,i(xi)

∫ b

a
Ln−1,i(x)2(x− xi) dx

=

∫ b

a
Ln−1,i(x)2 dx−

2L′n−1,i(xi)

π′n(xi)

∫ b

a
Ln−1,i(x)πn(x) dx

=

∫ b

a
Ln−1,i(x)2 dx,

as the second term vanishes because Ln−1,i(x) is of degree n− 1, and πn(x),
a polynomial of degree n, is orthogonal to all polynomials of lesser degree.

Similarly,∫ b

a
Ki(x) dx =

∫ b

a
Ln−1,i(x)2(x−xi) dx =

1

π′n(xi)

∫ b

a
Ln−1,i(x)πn(x) dx = 0.

We conclude that ∫ b

a
G2n−1(x) dx =

n−1∑
i=0

G(xi)wi,

where, as before,

wi =

∫ b

a
Ln−1,i(x)2 dx =

∫ b

a
Ln−1,i(x) dx.

The equivalence of these formulas for the weights can be seen from the fact
that the difference Ln−1,i(x)2−Ln−1,i(x) is a polynomial of degree 2n−2 that
is divisible by πn(x), because it vanishes at all of the nodes. The quotient, a
polynomial of degree n− 2, is orthogonal to πn(x). Therefore, the integrals
of Ln−1,i(x)2 and Ln−1,i(x) must be equal.

We now use the error in the Hermite interpolating polynomial to obtain

E[G] =

∫ b

a
G(x) dx−

n−1∑
i=0

G(xi)wi

=

∫ b

a
[G(x)−G2n−1(x)] dx

=

∫ b

a

G(2n)(ξ(x))

(2n)!
πn(x)2 dx

=
G(2n)(ξ)

(2n)!

∫ b

a
πn(x)2 dx,

104 CHAPTER 6. NUMERICAL INTEGRATION - II

where ξ ∈ (a, b). The last step is obtained using the Weighted Mean Value
Theorem for Integrals, which applies because πn(x)2 does not change sign.

In addition to this error formula, we can easily obtain qualitative bounds
on the error. For instance, if we know that the even derivatives of g are
positive, then we know that the quadrature rule yields a lower bound for
I(g). Similarly, if the even derivatives of g are negative, then the quadrature
rule gives an upper bound.

Now, we show that if f ∈ C[a, b], that the n-node Gaussian quadrature
approximation of I[f] converges to I[f] as n→∞. That is,

lim
n→∞

Gn[f] = I[f].

First, we recall that by the Weierstrass Theorem, for any ε0 > 0, there
exists a polynomial p(x) such that ‖f − p‖∞ ≤ ε0. We let N denote the
degree of this polynomial, and from this point on refer to this approximating
polynomial as pN (x).

We now have

I[f]− Gn[f] = I[f]−
∫ b

a
pN (x) dx+∫ b

a
pN (x) dx− Gn[pN] +

Gn[pN]− Gn[f].

For the first two terms, we have∣∣∣∣I[f]−
∫ b

a
pN (x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a
[f(x)− pN (x)] dx

∣∣∣∣ ≤ ∫ b

a
|f(x)−pN (x)| dx ≤ ε0W,

where

W =

∫ b

a
dx = b− a.

Next, we have ∫ b

a
pN (x) dx− Gn[pN] = 0,

if n is chosen so that n ≥ (N + 1)/2, since an n-node Gaussian rule is exact
for all polynomials of degree 2n− 1.

Finally, we have

|Gn[pN]− Gn[f]| =

∣∣∣∣∣
n−1∑
i=0

[pN (xi)− f(xi)]wi

∣∣∣∣∣ ≤
n−1∑
i=0

|pN (xi)−f(xi)||wi| ≤ ε0
n−1∑
i=0

|wi| ≤ ε0W,

6.3. COMPOSITE GAUSS FORMULAE 105

because all of the weights are positive, and therefore their sum is equal to
the integral of the function f(x) ≡ 1 over [a, b].

It follows that
|I[f]− Gn[f]| ≤ 2ε0W,

and therefore if we choose ε0 = ε/(2W), where ε > 0 is arbitrary, we obtain

|I[f]− Gn[f]| ≤ ε

for n sufficiently large. We conclude that Gn[f] converges to I[f] in the limit
as n→∞.

It is important to note that such a result does not apply to Newton-Cotes
quadrature rules, because they can have negative weights. This means that
the sum of the absolute value of the weights is not necessarily bounded, as is
the case for Gaussian rules. We also note that all of the above error analysis
and convergence analysis applies when a nonnegative weight function w(x)
is included in the integral.

6.3 Composite Gauss Formulae

Just as the Trapezoidal, Midpoint and Simpson’s Rules can be applied on
subintervals of [a, b] to obtain composite rules, Gaussian rules can also be
used to construct composite rules. We assume that the integrand f(x) is
2n-times continuously differentiable on (a, b). Let [a, b] be divided into m
subintervals of width h = (b−a)/m with endpoints [xi−1, xi], i = 1, 2, . . . ,m,
where xi = a + ih, and let ξj and wj , j = 0, 1, . . . , n − 1, be the Gaussian
quadrature nodes and weights, respectively, for [−1, 1]. Then, the composite
Gaussian quadrature rule can be defined by∫ b

a
f(x) dx =

h

2

m∑
i=1

n−1∑
j=0

f

(
xi−1 +

h

2
(ξj + 1)

)
wj + Em,n,

where Em,n is the error in the approximate integral.
A formula for this error can be obtained by summing the error on each

subinterval, which yields

Em,n =
m∑
i=1

f (2n)(ηi)

(2n)!

∫ xi

xi−1

n−1∏
j=0

(
x− xi−1 −

h

2
(ξj + 1)

)2

dx

=
h2n+1

22n+1

m∑
i=1

f (2n)(ηi)

(2n)!

∫ 1

−1
πn(t)2 dt

106 CHAPTER 6. NUMERICAL INTEGRATION - II

=
(b− a)2n+1

m2n22n+1

f (2n)(η)

(2n)!

∫ 1

−1
πn(t)2 dt,

where η ∈ (a, b) and πn(t) = (t− ξ0)(t− ξ1) · · · (t− ξn−1).
When n = 1, the only Gaussian quadrature node on [−1, 1] is located

at the midpoint, 0. It follows that the composite 1-node Gaussian rule is
actually the composite Midpoint Rule, which, as previously shown, has error

Em,1 =
(b− a)3

m223

f ′′(η)

2

∫ 1

−1
t2 dt =

(b− a)h2

24
f ′′(η).

6.4 Radau and Lobatto Quadrature

Often, variations of Gaussian quadrature rules are used in which one or
more nodes are prescribed. For example, Gauss-Radau rules are rules in
which either of the endpoints of the interval [a, b] are chosen to be a node,
and n additional nodes are determined by a procedure similar to that used
in Gaussian quadrature, resulting in a rule of degree 2n. In Gauss-Lobatto
rules, both endpoints of [a, b] are nodes, with n additional nodes chosen in
order to obtain a rule of degree 2n+1. It should be noted that Gauss-Lobatto
rules are closed, whereas Gaussian rules are open.

Chapter 7

Piecewise Polynomial
Approximation

7.1 Linear Interpolating Splines

We have seen that high-degree polynomial interpolation can be problematic.
However, if the fitting function is only required to have a few continuous
derivatives, then one can construct a piecewise polynomial to fit the data.
We now precisely define what we mean by a piecewise polynomial.

Definition (Piecewise polynomial) Let [a, b] be an interval that is divided
into subintervals [xi, xi+1], where i = 0, . . . , n − 1, x0 = a and xn = b. A
piecewise polynomial is a function p(x) defined on [a, b] by

p(x) = pi(x), xi−1 ≤ x ≤ xi, i = 1, 2, . . . , n,

where, for i = 1, 2, . . . , n, each function pi(x) is a polynomial defined on
[xi−1, xi]. The degree of p(x) is the maximum degree of each polynomial
pi(x), for i = 1, 2, . . . , n.

It is essential to note that by this definition, a piecewise polynomial defined
on [a, b] is equal to some polynomial on each subinterval [xi−1, xi] of [a, b], for
i = 1, 2, . . . , n, but a different polynomial may be used for each subinterval.

We first consider one of the simplest types of piecewise polynomials, a
piecewise linear polynomial. Let f ∈ C[a, b]. Given the points x0, x1, . . . , xn
defined as above, the spline, linear sL(x) that interpolates f at these points
is defined by

sL(x) = f(xi−1)
x− xi
xi−1 − xi

+f(xi)
x− xi−1

xi − xi−1
, x ∈ [xi−1, xi], i = 1, 2, . . . , n.

107

108 CHAPTER 7. PIECEWISE POLYNOMIAL APPROXIMATION

The points x0, x1, . . . , xn are the knots of the spline.
Before we study the accuracy of linear splines, we introduce some termi-

nology and notation. First, we say that a function f is absolutely continouous
on [a, b] if its derivative is finite almost everywhere in [a, b] (meaning that it
is not finite on at most a subset of [a, b] that has measure zero), is integrable
on [a, b], and satisfies∫ x

a
f ′(s) dx = f(x)− f(a), a ≤ x ≤ b.

Any continuously differentiable function is absolutely continuous, but the
converse is not necessarily true.

Example For example, f(x) = |x| is absolutely continuous on any interval of
the form [−a, a], but it is not continuously differentiable on such an interval.
2

Next, we define the Sobolev spaces Hk(a, b) as follows. The spaceH1(a, b)
is the set of all absolutely continuous functions on [a, b] whose derivatives
belong to L2(a, b). Then, for k > 1, Hk(a, b) is the subset of Hk−1(a, b)
consisting of functions whose (k−1)st derivatives are absolutely continuous,
and whose kth derivatives belong to L2(a, b). If we denote by Ck[a, b] the set
of all functions defined on [a, b] that are k times continuously differentiable,
then Ck[a, b] is a proper subset of Hk(a, b). For example, any linear spline
belongs to H1(a, b), but does not generally belong to C1[a, b].

Example The function f(x) = x3/4 belongs to H1(0, 1) because f ′(x) =
3
4x
−1/4 is integrable on [0, 1], and also square-integrable on [0, 1], since∫ 1

0
|f ′(x)|2 dx =

∫ 1

0

9

16
x−1/2 =

9

8
x1/2

∣∣∣∣1
0

=
9

8
.

However, f /∈ C1[a, b], because f ′(x) is singular at x = 0. 2

Now, if f ∈ C2[a, b], then by the error in Lagrange interpolation, on each
subinterval [xi−1, xi], for i = 1, 2, . . . , n, we have

f(x)− sL(x) =
f ′′(ξ)

2
(x− xi−1)(x− xi).

If we let hi = xi − xi−1, then the function (x − xi−1)(x − xi) achieves its
maximum absolute value at x = (xi−1 + xi)/2, with a maximum value of
h2
i /4. If we define h = max1≤i≤n hi, then we have

‖f − sL‖∞ ≤
1

8
h2‖f ′′‖∞,

7.2. BASIS FUNCTIONS FOR LINEAR SPLINES 109

where ‖ · ‖∞ denotes the ∞-norm over [a, b].
One of the most useful properties of the linear spline sL(x) is that among

all functions in H1(a, b) that interpolate f(x) at the knots x0, x1, . . . , xn, it
is the “flattest”. That is, for any function v ∈ H1(a, b) that interpolates f
at the knots,

‖s′L‖2 ≤ ‖v′‖2.

To prove this, we first write

‖v′‖22 = ‖v′ − s′L‖22 + 2〈v′ − s′L, s′L〉+ ‖s′L‖22.

Then, applying integration by parts, we obtain

〈v′ − s′L, s′L〉 =

∫ b

a
[v′(x)− s′L(x)]s′L(x) dx

=
n∑
i=1

∫ xi

xi−1

[v′(x)− s′L(x)]s′L(x) dx

=
n∑
i=1

{
[v(x)− sL(x)]s′L(x)

∣∣xi
xi−1
−
∫ xi

xi−1

[v(x)− sL(x)]s′′L(x) dx

}
.

However, sL is a linear function on each subinterval [xi−1, xi], so s′′L(x) ≡ 0
on each subinterval. Furthermore, because both v(x) and sL(x) interpolate
f(x) at the knots, the bounday terms vanish, and therefore 〈v′−s′L, s′L〉 = 0,
which establishes the result.

7.2 Basis Functions for Linear Splines

Lagrange interpolation allows the unique polynomial pn(x) of degree n that
interpolates f(x) at the knots x0, x1, . . . , xn to be expressed in the convenient
form

pn(x) =

n∑
i=0

f(xi)Ln,i(x).

A similar form can be obtained for the linear spline sL(x) using linear basis
splines, which are piecewise linear functions that are equal to one at one of
the knots, and equal to zero at all other knots.

These functions, known as hat functions due to the shapes of their
graphs, are defined as follows:

ϕ0(x) =

{
(x1 − x)/h1 x0 ≤ x < x1,
0 x1 ≤ x ≤ xn

,

110 CHAPTER 7. PIECEWISE POLYNOMIAL APPROXIMATION

ϕi(x) =


0 x0 ≤ x < xi−1,
(x− xi−1)/hi xi−1 ≤ x < xi,
(xi+1 − x)/hi+1 xi ≤ x < xi+1,
0 xi+1 ≤ x ≤ xn

, i = 1, 2, . . . , n− 1,

ϕn(x) =

{
0 x0 ≤ x < xn−1,
(x− xn−1)/hn xn−1 ≤ x ≤ xn

.

Then, the linear spline can be expressed as

sL(x) =
n∑
i=0

f(xi)ϕi(x).

7.3 Cubic Splines

Typically, piecewise polynomials are used to fit smooth functions, and there-
fore are required to have a certain number of continuous derivatives. This
requirement imposes additional constraints on the piecewise polynomial, and
therefore the degree of the polynomials used on each subinterval must be
chosen sufficiently high to ensure that these constraints can be satisfied.

7.3.1 Cubic Spline Interpolation

A spline is a piecewise polynomial of degree k that has k − 1 continuous
derivatives. The most commonly used spline is a cubic spline, which we now
define.

Definition (Cubic Spline) Let f(x) be function defined on an interval [a, b],
and let x0, x1, . . . , xn be n+ 1 distinct points in [a, b], where a = x0 < x1 <
· · · < xn = b. A cubic spline, or cubic spline interpolant, is a piecewise
polynomial s(x) that satisifes the following conditions:

1. On each interval [xi−1, xi], for i = 1, . . . , n, s(x) = si(x), where si(x)
is a cubic polynomial.

2. s(xi) = f(xi) for i = 0, 1, . . . , n.

3. s(x) is twice continuously differentiable on (a, b).

4. Either of the following boundary conditions are satisfied:

(a) s′′(a) = s′′(b) = 0, which is called free or natural boundary
conditions, and

7.3. CUBIC SPLINES 111

(b) s′(a) = f ′(a) and s′(b) = f ′(b), which is called clamped bound-
ary conditions.

If s(x) satisfies free boundary conditions, we say that s(x) is a natural
spline. The points x0, x1, . . . , xn are called the nodes of s(x).

Clamped boundary conditions are often preferable because they use more
information about f(x), which yields a spline that better approximates f(x)
on [a, b]. However, if information about f ′(x) is not available, then free
boundary conditions must be used instead.

7.3.2 Constructing Cubic Splines

Suppose that we wish to construct a cubic spline interpolant s(x) that fits the
given data (x0, y0), (x1, y1), . . . , (xn, yn), where a = x0 < x1 < · · · < xn = b,
and yi = f(xi), for some known function f(x) defined on [a, b]. From the
preceding discussion, this spline is a piecewise polynomial of the form

s(x) = si(x) = di(x−xi−1)3+ci(x−xi−1)2+bi(x−xi−1)+ai, i = 1, 2, . . . , n, xi−1 ≤ x ≤ xi.

That is, the value of s(x) is obtained by evaluating a different cubic poly-
nomial for each subinterval [xi−1, xi], for i = 1, 2, . . . , n.

We now use the definition of a cubic spline to construct a system of
equations that must be satisfied by the coefficients ai, bi, ci and di for i =
1, 2, . . . , n. We can then compute these coefficients by solving the system.
Because s(x) must fit the given data, we have

ai = yi−1, i = 1, 2, . . . , n.

If we define hi = xi − xi−1, for i = 1, 2, . . . , n, and define an+1 = yn, then
the requirement that s(x) is continuous at the interior nodes implies that
we must have si(xi) = si+1(xi) for i = 1, 2, . . . , n− 1. Furthermore, because
s(x) must fit the given data, we must also have s(xn) = sn(xn) = yn. These
conditions lead to the constraints

dih
3
i + cih

2
i + bihi + ai = ai+1, i = 1, 2, . . . , n.

To ensure that s(x) has a continuous first derivative at the interior nodes,
we require that s′i(xi) = s′i+1(xi) for i = 1, 2 . . . , n − 1, which imposes the
constraints

3dih
2
i + 2cihi + bi = bi+1, i = 1, 2, . . . , n− 1.

112 CHAPTER 7. PIECEWISE POLYNOMIAL APPROXIMATION

Similarly, to enforce continuity of the second derivative at the interior nodes,
we require that s′′i (xi) = s′′i+1(xi) for i = 1, 2, . . . , n − 1, which leads to the
constraints

3dihi + ci = ci+1, i = 1, 2, . . . , n− 1.

There are 4n coefficients to determine, since there are n cubic polyno-
mials, with 4 coefficients each. However, we have only prescribed 4n − 2
constraints, so we must specify 2 more in order to determine a unique solu-
tion. If we use free boundary conditions, then these constraints are

c1 = 0,

3dnhn + cn = 0.

On the other hand, if we use clamped boundary conditions, then our addi-
tional constraints are

b1 = z0,

3dnh
2
n + 2cnhn + bn = zn,

where zi = f ′(xi) for i = 0, 1, . . . , n.
Having determined our constraints that must be satisfied by s(x), we

can set up a system of linear equations Ax = b based on these constraints,
and then solve this system to determine the coefficients ai, bi, ci, di for i =
1, 2 . . . , n. In the case of free boundary conditions, A is an (n+ 1)× (n+ 1)
matrix is defined by

A =



1 0 0 · · · · · · 0

h1 2(h1 + h2) h2
. . .

...

0 h2 2(h2 + h3) h3
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . hn−1 2(hn−1 + hn) hn

0 · · · · · · 0 0 1


and the (n+ 1)-vectors x and b are

x =


c1

c2
...

cn+1

 , b =


0

3
h2

(a3 − a2)− 3
h1

(a2 − a1)
...

3
hn

(an+1 − an)− 3
hn−1

(an − an−1)

0

 ,

7.3. CUBIC SPLINES 113

where cn+1 = s′′(xn)/2.
In the case of clamped boundary conditions, we have

A =



2h1 h1 0 · · · · · · 0

h1 2(h1 + h2) h2
. . .

...

0 h2 2(h2 + h3) h3
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . hn−1 2(hn−1 + hn) hn

0 · · · · · · 0 hn 2hn


and

x =


c1

c2
...

cn+1

 , b =



3
h1

(a2 − a1)− 3z0
3
h2

(a3 − a2)− 3
h1

(a2 − a1)
...

3
hn

(an+1 − an)− 3
hn−1

(an − an−1)

3zn − 3
hn

(an+1 − an)

 .

Once the coefficients c1, c2, . . . , cn+1 have been determined, the remain-
ing coefficients can be computed as follows:

1. The coefficients a1, a2, . . . , an+1 have already been defined by the re-
lations ai = yi−1, for i = 0, 1, . . . , n+ 1.

2. The coefficients b1, b2, . . . , bn are given by

bi =
1

hi
(ai+1 − ai)−

hi
3

(2ci + ci+1), i = 1, 2, . . . , n.

3. The coefficients d1, d2, . . . , dn can be obtained using the constraints

3dihi + ci = ci+1, i = 1, 2, . . . , n.

Example We will construct a cubic spline interpolant for the following data
on the interval [0, 2].

j xj yj
0 0 3
1 1/2 −4
2 1 5
3 3/2 −6
4 2 7

114 CHAPTER 7. PIECEWISE POLYNOMIAL APPROXIMATION

The spline, s(x), will consist of four pieces {sj(x)}4j=1, each of which is a
cubic polynomial of the form

sj(x) = aj + bj(x− xj−1) + cj(x− xj−1)2 + dj(x− xj−1)3, j = 1, 2, 3, 4.

We will impose free, or natural, boundary conditions on this spline, so it will
satisfy the conditions s′′(0) = s′′(2) = 0, in addition to the “essential” con-
ditions imposed on a spline: it must fit the given data and have continuous
first and second derivatives on the interval [0, 2].

These conditions lead to the following system of equations that must
be solved for the coefficients c1, c2, c3, c4, and c5, where cj = s′′(xj−1)/2 for
j = 1, 2, . . . , 5. We define h = (2 − 0)/4 = 1/2 to be the spacing between
the interpolation points.

c1 = 0
h

3
(c1 + 4c2 + c3) =

y2 − 2y1 + y0

h
h

3
(c2 + 4c3 + c4) =

y3 − 2y2 + y1

h
h

3
(c3 + 4c4 + c5) =

y4 − 2y3 + y2

h
c5 = 0.

Substituting h = 1/2 and the values of yj , and also taking into account
the boundary conditions, we obtain

1

6
(4c2 + c3) = 32

1

6
(c2 + 4c3 + c4) = −40

1

6
(c3 + 4c4) = 48

This system has the solutions

c1 = 516/7, c2 = −720/7, c3 = 684/7.

Using the relation aj+1 = yj , for j = 0, 1, 2, 3, and the formula

bj =
aj+1 − aj

h
− h

3
(2cj + cj+1), j = 1, 2, 3, 4,

we obtain

b1 = −184/7, b2 = 74/7, b3 = −4, b4 = −46/7.

7.3. CUBIC SPLINES 115

Finally, using the formula

dj =
cj+1 − cj

3h
, j = 1, 2, 3, 4,

we obtain

d1 = 344/7, d2 = −824/7, d3 = 936/7, d4 = −456/7.

We conclude that the spline s(x) that fits the given data, has two con-
tinuous derivatives on [0, 2], and satisfies natural boundary conditions is

s(x) =


344
7 x3 − 184

7 x2 + 3 if x ∈ [0, 0.5]
−824

7 (x− 1/2)3 + 516
7 (x− 1/2)2 + 74

7 (x− 1/2)− 4 if x ∈ [0.5, 1]
936
7 (x− 1)3 − 720

7 (x− 1)2 − 4(x− 1) + 5 if x ∈ [1, 1.5]
−456

7 (x− 3/2)3 + 684
7 (x− 3/2)2 − 46

7 (x− 3/2)− 6 if x ∈ [1.5, 2]

.

The graph of the spline is shown in Figure 7.1. 2

7.3.3 Well-Posedness and Accuracy

For both boundary conditions, the system Ax = b has a unique solution,
which leads to the following results.

Theorem Let x0, x1, . . . , xn be n + 1 distinct points in the interval [a, b],
where a = x0 < x1 < · · · < xn = b, and let f(x) be a function defined
on [a, b]. Then f has a unique cubic spline interpolant s(x) that is defined
on the nodes x0, x1, . . . , xn that satisfies the natural boundary conditions
s′′(a) = s′′(b) = 0.

Theorem Let x0, x1, . . . , xn be n + 1 distinct points in the interval [a, b],
where a = x0 < x1 < · · · < xn = b, and let f(x) be a function defined
on [a, b] that is differentiable at a and b. Then f has a unique cubic spline
interpolant s(x) that is defined on the nodes x0, x1, . . . , xn that satisfies the
clamped boundary conditions s′(a) = f ′(a) and s′(b) = f ′(b).

Just as the linear spline is the “flattest” interpolant, in an average sense,
the natural cubic spline with the least “average curvature”. Specifically, if
s2(x) is the natural cubic spline for f ∈ C[a, b] on [a, b] with knots a = x0 <
x1 < · · · < xn = b, and v ∈ H2(a, b) is any interpolant of f with these knots,
then

‖s′′2‖2 ≤ ‖v′′‖2.

This can be proved in the same way as the corresponding result for the linear
spline.

116 CHAPTER 7. PIECEWISE POLYNOMIAL APPROXIMATION

Figure 7.1: Cubic spline that passing through the points (0, 3), (1/2,−4),
(1, 5), (2,−6), and (3, 7).

7.4. HERMITE CUBIC SPLINES 117

It is this property of the natural cubic spline, called the smoothest in-
terpolation property, from which splines were named. A spline is a flexible
curve-drawing aid that is designed to produce a curve y = v(x), x ∈ [a, b],
through prescribed points in such a way that the strain energy

E(v) =

∫ b

a

|v′′(x)|2

(1 + |v′(x)|2)3
dx

is minimized over all functions that pass through the same points, which is
the case if the curvature is small on [a, b].

7.4 Hermite Cubic Splines

We have seen that it is possible to construct a piecewise cubic polynomial
that interpolates a function f(x) at knots a = x0 < x1 < · · · < xn = b,
that belongs to C2[a, b]. Now, suppose that we also know the values of f ′(x)
at the knots. We wish to construct a piecewise cubic polynomial s(x) that
agrees with f(x), and whose derivative agrees with f ′(x) at the knots. This
piecewise polynomial is called a Hermite cubic spline.

Because s(x) is cubic on each subinterval [xi−1, xi] for i = 1, 2, . . . , n,
there are 4n coefficients, and therefore 4n degrees of freedom, that can be
used to satisfy any criteria that are imposed on s(x). Requiring that s(x)
interpolates f(x) at the knots, and that s′(x) interpolates f ′(x) at the knots,
imposes 2n+2 constraints on the coefficients. We can then use the remaining
2n− 2 degrees of freedom to require that s(x) belong to C1[a, b]; that is, it
is continuously differentiable on [a, b].

The following result provides insight into the accuracy with which a
Hermite cubic spline interpolant s(x) approximates a function f(x).

Theorem Let f be four times continuously differentiable on [a, b], and as-
sume that ‖f (4)‖∞ = M . Let s(x) be the unique Hermite cubic spline inter-
polant of f(x) on the nodes x0, x1, . . . , xn, where a = x0 < x1 < · · · < xn <
b. Then

‖f(x)− s(x)‖∞ ≤
5M

384
max

1≤i≤n
h4
i ,

where hi = xi − xi−1.

This can be proved in the same way as the error bound for the linear
spline, except that the error formula for Hermite interpolation is used instead
of the error formula for Lagrange interpolation.

118 CHAPTER 7. PIECEWISE POLYNOMIAL APPROXIMATION

7.5 Basis Functions for Cubic Splines

An alternative method of computing splines to fit given data involves con-
structing a basis for the vector space of splines defined on the interval [a, b],
and then solving a system of linear equations for the coefficients of the de-
sired spline in this basis. The basis functions are known as B-splines, where
the letter B is due to the fact that these splines form a basis, and the fact
that they tend to have bell-shaped graphs.

One advantage of using B-splines is that the system of linear equations
that must be solved for the coefficients of a spline in the basis is banded,
and therefore can be solved very efficiently. Furthermore, because each B-
spline has compact support, it follows that a change in the data value yi
only causes the coefficients of a few B-splines to be changed, whereas in
cubic spline interpolation, such a change forces all of the coefficients of each
polynomial si(x) to be recomputed.

To define a B-spline of degree n, we first introduce the following notation:

x+ =

{
x x ≥ 0
0 x < 0

.

We say that x+ is the positive part of x. Then, we define a spline of degree
n, centered at 0, by

S(n)(x) =
n+1∑
k=0

(−1)k
(
n+ 1
k

)
(x− kh)n+.

To see that this is in fact a spline of degree n, we first note that on each
interval of the form [ih, (i + 1)h], for any integer i, S(n)(x) is a linear com-
bination of at most n + 2 polynomials of degree n. Furthermore, it can be
determined directly each function of the form (x−kh)n+ has n−1 continuous
derivatives.

However, S(n)(x) is only practically useful if it is only nonzero on a finite
interval. To that end, we note that for x < 0, S(n)(x) = 0, because x−kh < 0
for k ≥ 0. For x ≥ kh, we have

S(n)(x) =

n+1∑
k=0

(−1)k
(
n+ 1
k

)
(x− kh)n.

It follows that

S(n)(x) =
n+1∑
k=0

(−1)k
(
n+ 1
k

)
(x− kh)n

7.5. BASIS FUNCTIONS FOR CUBIC SPLINES 119

=

n+1∑
k=0

(−1)k
(
n+ 1
k

) n∑
j=0

(
n
j

)
xj(−kh)n−j

=
n∑
j=0

(−h)n−j
(
n
j

)[n+1∑
k=0

(−1)k
(
n+ 1
k

)
kn−j

]
xj

= 0,

since the quantity in square brackets, by the theory of finite differences,
vanishes. This is closely related to the fact that the (n+ 1)-st derivative of
a polynomial of degree n or less is equal to zero.

By scaling and shifting S(n)(x), we obtain basis functions that are equal
to 1 at one of the knots, and 0 at all other knots, so that a spline can be
expressed in a similar form as the Lagrange interpolating polynomial: a
linear combination of basis functions, where the constants are the values of
f(x) at the interpolation points.

120 CHAPTER 7. PIECEWISE POLYNOMIAL APPROXIMATION

Chapter 8

Initial Value Problems for
ODEs

8.1 Theory of Initial-Value Problems

Consider the initial value problem

y′ = f(t, y), t0 ≤ t ≤ T, (8.1)

y(t0) = y0 (8.2)

We would like to have an understanding of when this problem can be solved,
and whether any solution that can be obtained is unique. The following
notion of continuity is helpful for this purpose.

Definition A function f(t, y) satisfies a Lipschitz condition in y on D ⊂ R2

if

|f(t, y2)− f(t, y1)| ≤ L|y2 − y1|, (t, y1), (t, y2) ∈ D,

for some constant L > 0, which is called a Lipschitz constant for f .

If, in addition, ∂f/∂y exists on D, we can also conclude that |∂f/∂y| ≤ L
on D.

When solving a problem numerically, it is not sufficient to know that
a unique solution exists. If a small change in the problem data can cause
a substantial change in the solution, then the problem is ill-conditioned,
and a numerical solution is therefore unreliable, because it could be unduly
influenced by roundoff error. The following definition characterizes problems
for which numerical solution is feasible.

121

122 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

Definition The initial value problem (8.1), (8.2) is said to be well-posed if
a unique solution y(t) exists, and depends continuously on the data y0 and
f(t, y).

We are now ready to describe a class of initial-value problems that can
be solved numerically.

Theorem (Existence-Uniqueness, Well-Posedness) Let D = [t0, T]×
R, and let f(t, y) be continuous on D. If f satisfies a Lipschitz condition on
D in y, then the initial value problem (8.1), (8.2) has a unique solution y(t)
on [t0, T]. Furthermore, the problem is well-posed.

8.2 One-Step Methods

Numerical methods for the initial-value problem (8.1), (8.2) can be devel-
oped using Taylor series. We wish to approximate the solution at times tn,
n = 1, 2, . . ., where

tn = t0 + nh,

with h being a chosen time step. Taking a Taylor expansion of the exact
solution y(t) at t = tn+1 around the center tn, we obtain

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(ξ),

where tn < ξ < tn+1.
Using the fact that y′ = f(t, y), we obtain a numerical scheme by trun-

cating the Taylor series after the second term. The result is a difference
equation

yn+1 = yn + hf(tn, yn),

where each yn, for n = 1, 2, . . ., is an approximation of y(tn). This method is
called Euler’s method, the simplest example of what is known as a one-step
method.

We now need to determine whether this method converges; that is,
whether

lim
h→0

max
0≤n≤T/h

|y(tn)− yn| = 0.

To that end, we attempt to bound the error at time tn. We begin with a
comparison of the difference equation and the Taylor expansion of the exact
solution,

yn+1 = yn + hf(tn, yn)

8.2. ONE-STEP METHODS 123

y(tn+1) = y(tn) + hf(tn, y(tn)) +
h2

2
y′′(ξ).

It follows that if we define en = y(tn)− yn, then

en+1 = en + h
∂f

∂y
(tn, ηn)en +

h2

2
y′′(ξ).

Therefore,

|en+1| ≤ (1 + hL)|en|+
h2M

2
, (8.3)

where

|y′′(t)| ≤M, t0 ≤ t ≤ T,

and L is the Lipschitz constant for f in y on [t0, T]× R.

Applying the relationship (8.3) repeatedly yields

|en| ≤ (1 + hL)n|e0|+
h2M

2

n−1∑
i=0

(1 + hL)i

≤ h2M

2

(1 + hL)n − 1

(1 + hL)− 1

≤ h2M

2

[ehL]n − 1

hL

≤ hM

2L
[eL(tn−t0) − 1].

We conclude that for t0 ≤ tn ≤ T,

|y(tn)− yn| ≤
hM

2L
[eL(tn−t0) − 1] ≤ hM

2L
[eL(T−t0) − 1].

That is, as h→ 0, the solution obtained using Euler’s method converges to
the exact solution, and the convergence is O(h); that is, first-order.

This convergence analysis, however, assumes exact arithmetic. To prop-
erly account for roundoff error, we note that the approximate solution values
ỹn, n = 0, 1, 2, . . ., satisfy the modified difference equation

ỹn+1 = ỹn + hf(tn, ỹn) + δn+1, ỹ0 = y0 + δ0,

where, for n = 0, 1, 2, . . ., |δn| ≤ δ, which is O(u), where u is the the machine
precision (i.e., unit roundoff). Note that even the initial value ỹ0 has an error
term, which arises from representation of y0 in the floating-point system.

124 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

Repeating the convergence analysis yields the error bound

|y(tn)− ỹn| ≤
1

L

(
hM

2
+
δ

h

)
[eL(tn−t0) − 1] + δeL(tn−t0).

We see that as h→ 0, the error actually increases, but an optimal value for
h can be chosen to minimize this error and also keep it sufficiently small,
provided that δ is sufficiently small.

We conclude our discussion of Euler’s method with an example of how
the previous convergence analyses can be used to select a suitable time step
h.

Example Consider the IVP

y′ = −y, 0 < t < 10, y(0) = 1.

We know that the exact solution is y(t) = e−t. Euler’s method applied to
this problem yields the difference equation

yn+1 = yn − hyn = (1− h)yn, y0 = 1.

We wish to select h so that the error at time T = 10 is less than 0.001. To
that end, we use the error bound

|y(tn)− yn| ≤
hM

2L
[eL(tn−t0) − 1],

with M = 1, since y′′(t) = e−t, which satisfies 0 < y′′(t) < 1 on [0, 10], and
L = 1, since f(t, y) = −y satisfies |∂f/∂y| = |−1| ≡ 1. Substituting tn = 10
and t0 = 0 yields

|y(10)− yn| ≤
h

2
[e10 − 1] ≈ 1101.27h.

Ensuring that the error at this time is less than 10−3 requires choosing
h < 9.08× 10−8. However, the bound on the error at t = 10 is quite crude.
Applying Euler’s method with this time step yields a solution whose error
at t = 10 is 2× 10−11.

Now, suppose that we include roundoff error in our error analysis. The
optimal time step is

h =

√
2δ

M
,

where δ is a bound on the roundoff error during any time step. We use
δ = 2u, where u is the unit roundoff, because each time step performs only

8.3. CONSISTENCY AND CONVERGENCE 125

two floating-point operations. Even if 1 − h is computed once, in advance,
its error still propagates to the multiplication with yn. In a typical double-
precision floating-point number system, u ≈ 1.1× 10−16. It follows that the
optimal time step is

h =

√
2δ

M
=

√
2(1.1× 10−16)

1
≈ 1.5× 10−8.

With this value of h, we find that the error at t = 10 is approximately
3.55 × 10−12. This is even more accurate than with the previous choice of
time step, which makes sense, because the new value of h is smaller. 2

8.3 Consistency and Convergence

We have learned that the numerical solution obtained from Euler’s method,

yn+1 = yn + hf(tn, yn), tn = t0 + nh,

converges to the exact solution y(t) of the initial value problem

y′ = f(t, y), y(t0) = y0,

as h→ 0.
We now analyze the convergence of a general one-step method of the

form
yn+1 = yn + hΦ(tn, yn, h),

for some continuous function Φ(t, y, h). We define the local truncation error
of this one-step method by

Tn(h) =
y(tn+1)− y(tn)

h
− Φ(tn, y(tn), h).

That is, the local truncation error is the result of substituting the exact
solution into the approximation of the ODE by the numerical method.

As h→ 0 and n→∞, in such a way that t0 +nh = t ∈ [t0, T], we obtain

Tn(h)→ y′(t)− Φ(t, y(t), 0).

We therefore say that the one-step method is consistent if

Φ(t, y, 0) = f(t, y).

A consistent one-step method is one that converges to the ODE as h→ 0.

126 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

We then say that a one-step method is stable if Φ(t, y, h) is Lipschitz
continuous in y. That is,

|Φ(t, u, h)− Φ(t, v, h)| ≤ LΦ|u− v|, t ∈ [t0, T], u, v ∈ R, h ∈ [0, h0],

for some constant LΦ.

We now show that a consistent and stable one-step method is convergent.
Using the same approach and notation as in the convergence proof of Euler’s
method, and the fact that the method is stable, we obtain the following
bound for the global error en = y(tn)− yn:

|en| ≤

(
eLΦ(T−t0) − 1

LΦ

)
max

0≤m≤n−1
|Tm(h)|.

Because the method is consistent, we have

lim
h→0

max
0≤n≤T/h

|Tn(h)| = 0.

It follows that as h→ 0 and n→∞ in such a way that t0 +nh = t, we have

lim
n→∞

|en| = 0,

and therefore the method is convergent.

In the case of Euler’s method, we have

Φ(t, y, h) = f(t, y), Tn(h) =
h

2
f ′′(τ), τ ∈ (t0, T).

Therefore, there exists a constant K such that

|Tn(h)| ≤ Kh, 0 < h ≤ h0,

for some sufficiently small h0. We say that Euler’s method is first-order ac-
curate. More generally, we say that a one-step method has order of accuracy
p if, for any sufficiently smooth solution y(t), there exists constants K and
h0 such that

|Tn(h)| ≤ Khp, 0 < h ≤ h0.

We now consider an example of a higher-order accurate method.

8.4. AN IMPLICIT ONE-STEP METHOD 127

8.4 An Implicit One-Step Method

Suppose that we approximate the equation

y(tn+1) = y(tn) +

∫ tn+1

tn

y′(s) ds

by applying the Trapezoidal Rule to the integral. This yields a one-step
method

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn+1)],

known as the trapezoidal method.
It follows from the error in the Trapezoidal Rule that

Tn(h) =
y(tn+1)− y(tn)

h
−1

2
[f(tn, yn)+f(tn+1, yn+1)] = − 1

12
h2y′′′(τn), τn ∈ (tn, tn+1).

Therefore, the trapezoidal method is second-order accurate.
To show convergence, we must establish stability by finding a suitable

Lipschitz constant LΦ for the function

Φ(t, y, h) =
1

2
[f(tn, yn) + f(tn+1, yn+1)],

assuming that Lf is a Lipschitz constant for f(t, y) in y. We have

|Φ(t, u, h)− Φ(t, v, h)| =
1

2
|f(t, u) + f(t+ h, u+ hΦ(t, u, h))− f(t, v)− f(t+ h, v + hΦ(t, v, h)|

≤ Lf |u− v|+
h

2
Lf |Φ(t, u, h)− Φ(t, v, h)|.

Therefore (
1− h

2
Lf

)
|Φ(t, u, h)− Φ(t, v, h) ≤ Lf |u− v|,

and therefore

LΦ ≤
Lf

1− h
2Lf

,

provided that h
2Lf < 1. We conclude that for h sufficiently small, the

trapezoidal method is stable, and therefore convergent, with O(h2) global
error.

The trapezoidal method constrasts with Euler’s method because it is an
implicit method, due to the evaluation of f(t, y) at yn+1. It follows that

128 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

it is generally necessary to solve a nonlinear equation to obtain yn+1 from
yn. This additional computational effort is offset by the fact that implicit
methods are generally more stable than explicit methods such as Euler’s
method. Another example of an implicit method is backward Euler’s method

yn+1 = yn + hf(tn+1, yn+1).

Like Euler’s method, backward Euler’s method is first-order accurate.

8.5 Runge-Kutta Methods

We have seen that Euler’s method is first-order accurate. We would like to
use Taylor series to design methods that have a higher order of accuracy.
First, however, we must get around the fact that an analysis of the global
error, as was carried out for Euler’s method, is quite cumbersome. Instead,
we will design new methods based on the criteria that their local truncation
error, the error committed during a single time step, is higher-order in h.

Using higher-order Taylor series directly to approximate y(tn+1) is cum-
bersome, because it requires evaluating derivatives of f . Therefore, our
approach will be to use evaluations of f at carefully chosen values of its ar-
guments, t and y, in order to create an approximation that is just as accurate
as a higher-order Taylor series expansion of y(t+ h).

To find the right values of t and y at which to evaluate f , we need
to take a Taylor expansion of f evaluated at these (unknown) values, and
then match the resulting numerical scheme to a Taylor series expansion of
y(t+h) around t. To that end, we state a generalization of Taylor’s theorem
to functions of two variables.

Theorem Let f(t, y) be (n+1) times continuously differentiable on a convex
set D, and let (t0, y0) ∈ D. Then, for every (t, y) ∈ D, there exists ξ between
t0 and t, and µ between y0 and y, such that

f(t, y) = Pn(t, y) +Rn(t, y),

where Pn(t, y) is the nth Taylor polynomial of f about (t0, y0),

Pn(t, y) = f(t0, y0) +

[
(t− t0)

∂f

∂t
(t0, y0) + (y − y0)

∂f

∂y
(t0, y0)

]
+[

(t− t0)2

2

∂2f

∂t2
(t0, y0) + (t− t0)(y − y0)

∂2f

∂t∂y
(t0, y0) +

(y − y0)2

2

∂2f

∂y2
(t0, y0)

]
+

· · ·+

 1

n!

n∑
j=0

(
n
j

)
(t− t0)n−j(y − y0)j

∂nf

∂tn−j∂yj
(t0, y0)

 ,

8.5. RUNGE-KUTTA METHODS 129

and Rn(t, y) is the remainder term associated with Pn(t, y),

Rn(t, y) =
1

(n+ 1)!

n+1∑
j=0

(
n+ 1
j

)
(t− t0)n+1−j(y − y0)j

∂n+1f

∂tn+1−j∂yj
(ξ, µ).

We now illustrate our proposed approach in order to obtain a method
that is second-order accurate; that is, its local truncation error is O(h2).
This involves matching

y + hf(t, y) +
h2

2

d

dt
[f(t, y)] +

h3

6

d2

dt2
[f(ξ, y)]

to
y + ha1f(t+ α1, y + β1),

where t ≤ ξ ≤ t+h and the parameters a1, α1 and β1 are to be determined.
After simplifying by removing terms or factors that already match, we see
that we only need to match

f(t, y) +
h

2

d

dt
[f(t, y)] +

h2

6

d2

dt2
[f(t, y(t))]

with
a1f(t+ α1, y + β1),

at least up to terms of O(h), so that the local truncation error will be O(h2).
Applying the multivariable version of Taylor’s theorem to f , we obtain

a1f(t+ α1, y + β1) = a1f(t, y) + a1α1
∂f

∂t
(t, y) + a1β1

∂f

∂y
(t, y) +

α2
1

2

∂2f

∂t2
(ξ, µ) + α1β1

∂2f

∂t∂y
(ξ, µ) +

β2
1

2

∂2f

∂y2
(ξ, µ),

where ξ is between t and t+ α1 and µ is between y and y+ β1. Meanwhile,
computing the full derivatives with respect to t in the Taylor expansion of
the solution yields

f(t, y) +
h

2

∂f

∂t
(t, y) +

h

2

∂f

∂y
(t, y)f(t, y) +O(h2).

Comparing terms yields the equations

a1 = 1, a1α1 =
h

2
, a1β1 =

h

2
f(t, y),

130 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

which has the solutions

a1 = 1, α1 =
h

2
, β1 =

h

2
f(t, y).

The resulting numerical scheme is

yn+1 = yn + hf

(
tn +

h

2
, yn +

h

2
f(tn, yn)

)
.

This scheme is known as the midpoint method, or the explicit midpoint
method. Note that it evaluates f at the midpoint of the intervals [tn, tn+1]
and [yn, yn+1], where the midpoint in y is approximated using Euler’s method
with time step h/2.

The midpoint method is the simplest example of a Runge-Kutta method,
which is the name given to any of a class of time-stepping schemes that
are derived by matching multivaraiable Taylor series expansions of f(t, y)
with terms in a Taylor series expansion of y(t + h). Another often-used
Runge-Kutta method is the modified Euler method

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn + hf(tn, yn)],

which resembles the Trapezoidal Rule from numerical integration, and is
also second-order accurate.

However, the best-known Runge-Kutta method is the fourth-order Runge-
Kutta method, which uses four evaluations of f during each time step. The
method proceeds as follows:

k1 = hf(tn, yn),

k2 = hf

(
tn +

h

2
, yn +

1

2
k1

)
,

k3 = hf

(
tn +

h

2
, yn +

1

2
k2

)
,

k4 = hf (tn+1, yn + k3) ,

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4).

In a sense, this method is similar to Simpson’s Rule from numerical integra-
tion, which is also fourth-order accurate, as values of f at the midpoint in
time are given four times as much weight as values at the endpoints tn and
tn+1.

8.5. RUNGE-KUTTA METHODS 131

Example We compare Euler’s method with the fourth-order Runge-Kutta
scheme on the initial value problem

y′ = −2ty, 0 < t ≤ 1, y(0) = 1,

which has the exact solution y(t) = e−t
2
. We use a time step of h = 0.1 for

Figure 8.1: Solutions of y′ = −2ty, y(0) = 1 on [0, 1], computed using Euler’s
method and the fourth-order Runge-Kutta method

both methods. The computed solutions, and the exact solution, are shown
in Figure 8.1.

It can be seen that the fourth-order Runge-Kutta method is far more
accurate than Euler’s method, which is first-order accurate. In fact, the
solution computed using the fourth-order Runge-Kutta method is visually
indistinguishable from the exact solution. At the final time T = 1, the
relative error in the solution computed using Euler’s method is 0.038, while
the relative error in the solution computing using the fourth-order Runge-
Kutta method is 4.4× 10−6. 2

132 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

8.6 Multistep Methods

All of the numerical methods that we have developed for solving initial value
problems are one-step methods, because they only use information about the
solution at time tn to approximate the solution at time tn+1. As n increases,
that means that there are additional values of the solution, at previous times,
that could be helpful, but are unused.

Multistep methods are time-stepping methods that do use this informa-
tion. A general multistep method has the form

s∑
i=0

αiyn+1−i = h

s∑
i=0

βif(tn+1−i, yn+1−i),

where s is the number of steps in the method (s = 1 for a one-step method),
and h is the time step size, as before.

By convention, α0 = 1, so that yn+1 can be conveniently expressed in
terms of other values. If β0 = 0, the multistep method is said to be explicit,
because then yn+1 can be described using an explicit formula, whereas if β0 6=
0, the method is implicit, because then an equation, generally nonlinear,
must be solved to compute yn+1.

To ensure that the multistep method is consistent with the underlying
ODE y′ = f(t, y), for general f , it is necessary that the constants αi satisfy
the constraints

s∑
i=0

αi = 0.

This ensures that if f(t, y) ≡ 0, a constant solution is produced by the
numerical scheme, and as h → 0, the numerical method converges to the
ODE itself.

Most multistep methods fall into two broad categories:

• Adams methods: these involve the integral form of the ODE,

y(tn+1) = y(tn) +

∫ tn+1

tn

f(s, y(s)) ds.

The general idea behind Adams methods is to approximate the above
integral using polynomial interpolation of f at the points tn+1−s, tn+2−s, . . . , tn
if the method is explicit, and tn+1 as well if the method is implicit. In
all Adams methods, α0 = 1, α1 = −1, and αi = 0 for i = 2, . . . , s.

8.6. MULTISTEP METHODS 133

• Backward differentiation formulas (BDF): these methods also use poly-
nomial interpolation, but for a different purpose–to approximate the
derivative of y at tn+1. This approximation is then equated to f(tn+1, yn+1).
It follows that all methods based on BDFs are implicit, and they all
satisfy β0 = 1, with βi = 0 for i = 1, 2, . . . , s.

In our discussion, we will focus exclusively on Adams methods.

Explicit Adams methods are called Adams-Bashforth methods. To derive
an Adams-Bashforth method, we interpolate f at the points tn, tn−1, . . . , tn−s+1

with a polynomial of degree s − 1. We then integrate this polynomial ex-
actly. It follows that the constants βi, i = 1, . . . , s, are the integrals of the
corresponding Lagrange polynomials from tn to tn+1, divided by h, because
there is already a factor of h in the general multistep formula.

The local truncation error of the resulting method is O(hs). To see this,
we first note that because all of the interpolation points have a spacing of
h, and the degree of the interpolating polynomial is s− 1, the interpolation
error is O(hs). Integrating this error over an interval of width h yields an
error in yn+1 that is O(hs+1), but because the definition of local truncation
error calls for dividing both sides of the difference equation by h, the local
truncation error turns out to be O(hs).

Example We derive the three-step Adams-Bashforth method,

yn+1 = yn + h[β1f(tn, yn) + β2f(tn−1, yn−1) + β3f(tn−2, yn−2).

The constants βi, i = 1, 2, 3, are obtained by evaluating the integral from tn
to tn+1 of a polynomial p2(t) that passes through f(tn, yn), f(tn−1, yn−1),
and f(tn−2, yn−2).

Because we can write

p2(t) =
2∑
i=0

f(tn−i, yn−i)Li(t),

where Li(t) is the ith Lagrange polynomial for the interpolation points tn,
tn−1 and tn−2, and because our final method expresses yn+1 as a linear
combination of yn and values of f , it follows that the constants βi, i = 1, 2, 3,
are the integrals of the Lagrange polynomials from tn to tn+1, divided by h.

However, using a change of variable u = (tn+1 − s)/h, we can instead
interpolate at the points u = 1, 2, 3, thus simplifying the integration. If we
define p̃2(u) = p2(s) = p2(tn+1 − hu) and L̃i(u) = Li(tn+1 − hu), then we

134 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

obtain∫ tn+1

tn

f(s, y(s)) ds =

∫ tn+1

tn

p2(s) ds

= h

∫ 1

0
p̃2(u) du

= h

∫ 1

0
f(tn, yn)L̃0(u) + f(tn−1, yn−1)L̃1(u) + f(tn−2, yn−2)L̃2(u) du

= h

[
f(tn, yn)

∫ 1

0
L̃0(u) du+ f(tn−1, yn−1)

∫ 1

0
L̃1(u) du+

f(tn−2, yn−2)

∫ 1

0
L̃2(u) du

]
= h

[
f(tn, yn)

∫ 1

0

(u− 2)(u− 3)

(1− 2)(1− 3)
du+ f(tn−1, yn−1)

∫ 1

0

(u− 1)(u− 3)

(2− 1)(2− 3)
du+

f(tn−2, yn−2)

∫ 1

0

(u− 1)(u− 2)

(3− 1)(3− 2)
du

]
= h

[
23

12
f(tn, yn)− 4

3
f(tn−1, yn−1) +

5

12
f(tn−2, yn−2)

]
.

We conclude that the three-step Adams-Bashforth method is

yn+1 = yn +
h

12
[23f(tn, yn)− 16f(tn−1, yn−1) + 5f(tn−2, yn−2)].

This method is third-order accurate. 2

The same approach can be used to derive an implicit Adams method,
which is known as an Adams-Moulton method. The only difference is that
because tn+1 is an interpolation point, after the change of variable to u, the
interpolation points 0, 1, 2, . . . , s are used. Because the resulting interpolat-
ing polynomial is of degree one greater than in the explicit case, the error in
an s-step Adams-Moulton method is O(hs+1), as opposed to O(hs) for an
s-step Adams-Bashforth method.

An Adams-Moulton method can be impractical because, being implicit,
it requires an iterative method for solving nonlinear equations, such as fixed-
point iteration, and this method must be applied during every time step. An
alternative is to pair an Adams-Bashforth method with an Adams-Moulton
method to obtain an Adams-Moulton predictor-corrector method. Such a
method proceeds as follows:

• Predict: Use the Adams-Bashforth method to compute a first approx-
imation to yn+1, which we denote by ỹn+1.

8.6. MULTISTEP METHODS 135

• Evaluate: Evaluate f at this value, computing f(tn+1, ỹn+1).

• Correct: Use the Adams-Moulton method to compute yn+1, but in-
stead of solving an equation, use f(tn+1, ỹn+1) in place of f(tn+1, yn+1)
so that the Adams-Moulton method can be used as if it was an explicit
method.

• Evaluate: Evaluate f at the newly computed value of yn+1, computing
f(tn+1, yn+1), to use during the next time step.

Example We illustrate the predictor-corrector approach with the two-step
Adams-Bashforth method

yn+1 = yn +
h

2
[3f(tn, yn)− f(tn−1, yn−1)]

and the two-step Adams-Moulton method

yn+1 = yn +
h

12
[5f(tn+1, yn+1) + 8f(tn, yn)− f(tn−1, yn−1)].

First, we apply the Adams-Bashforth method, and compute

ỹn+1 = yn +
h

2
[3f(tn, yn)− f(tn−1, yn−1)].

Then, we compute f(tn+1, ỹn+1) and apply the Adams-Moulton method, to
compute

yn+1 = yn +
h

12
[5f(tn+1, ỹn+1) + 8f(tn, yn)− f(tn−1, yn−1)].

This new value of yn+1 is used when evaluating f(tn+1, yn+1) during the
next time step. 2

One drawback of multistep methods is that because they rely on values
of the solution from previous time steps, they cannot be used during the
first time steps, because not enough values are available. Therefore, it is
necessary to use a one-step method, with the same order of accuracy, to
compute enough starting values of the solution to be able to use the multistep
method. For example, to use the three-step Adams-Bashforth method, it
is necessary to first use a one-step method such as the fourth-order Runge-
Kutta method to compute y1 and y2, and then the Adams-Bashforth method
can be used to compute y3 using y2, y1 and y0.

136 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

8.7 Consistency and Zero-Stability

For multistep methods, the notion of convergence is exactly the same as
for one-step methods. However, we must define consistency and stability
slightly differently, because we must account for the fact that a multistep
method requires starting values that are computed using another method.

Therefore, we say that a multistep method is consistent if its own lo-
cal truncation error Tn(h) approaches zero as h → 0, and if the one-step
method used to compute its starting values is also consistent. We also say
that a s-step multistep method is stable, or zero-stable, if there exists a
constant K such that for any two sequences of values {yk} and {zk} pro-
duced by the method with step size h from different sets of starting values
{y0, y1, . . . , ys−1} and {z0, z1, . . . , zs−1},

|yn − zn| ≤ K max
0≤j≤s−1

|yj − zj |,

as h→ 0.
To compute the local truncation error of Adams methods, integrate the

error in the polynomial interpolation used to derive the method from tn to
tn+1. For the explicit s-step method, this yields

Tn(h) =
1

h

∫ tn+1

tn

f (s)(ξ, y(ξ))

s!
(t− tn)(t− tn−1) · · · (t− tn−s+1) dt.

Using the substitution u = (tn+1 − t)/h, and the Weighted Mean Value
Theorem for Integrals, yields

Tn(h) =
1

h

f (s)(ξ, y(ξ))

s!
hs+1(−1)s

∫ 1

0
(u− 1)(u− 2) · · · (u− s) du.

Evaluating the integral yields the constant in the error term. We also use
the fact that y′ = f(t, y) to replace f (s)(ξ, y(ξ)) with y(s+1)(ξ). Obtaining
the local truncation error for an implicit, Adams-Moulton method can be ac-
complished in the same way, except that tn+1 is also used as an interpolation
point.

For a general multistep method, we substitute the exact solution into
the method, as in one-step methods, and obtain

Tn(h) =

∑s
j=0 αjy(tn+1−j)− h

∑s
j=0 βjf(tn+1−j , y(tn+1−j))

h
∑s

j=0 βj
,

where the scaling by h
∑s

j=0 βj is designed to make this definition of local
truncation error consistent with that of one-step methods.

8.7. CONSISTENCY AND ZERO-STABILITY 137

By replacing each evaluation of y(t) by a Taylor series expansion around
tn, we find that Tn(h)→ 0 as h→ 0 only if

s∑
j=0

αj = 0,

s−1∑
j=0

(s− j)αj −
s∑
j=0

βj = 0.

In other words, we must have

ρ(1) = 0, ρ′(1) = σ(1) 6= 0,

where

ρ(z) =

s∑
j=0

αjz
s−j , σ(z) =

s∑
j=0

βjz
s−j

are the first and second characteristic polynomials, respectively, of the mul-
tistep method.

However, further analysis is required to obtain the local truncation error
of a predictor-corrector method that is obtained by combining two Adams
methods. The result of this analysis is the following theorem.

Theorem Let the solution of the initial value problem

y′ = f(t, y), t0 < t ≤ T, y(t0) = y0

be approximated by the Adams-Moulton s-step predictor-corrector method
with predictor

ỹn+1 = yn + h
s∑
i=1

β̃ifn+1−i

and corrector

yn+1 = yn + h

[
β0f(tn+1, ỹn+1) +

s∑
i=1

βifn+1−i

]
.

Then the local truncation error of the predictor-corrector method is

Sn(h) = T̃n(h) + Tn(h)β0
∂f

∂y
(tn+1, y(tn+1) + ξn+1)

where T̃n(h) and Tn(h) are the local truncation errors of the predictor and
corrector, respectively, and ξn+1 is between 0 and hTn(h). Furthermore,
there exist constant α and β such that

|y(tn)− yn| ≤
[

max
0≤i≤s−1

|y(ti)− yi|+ βS(h)

]
eα(tn−t0),

138 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

where S(h) = maxs≤n≤(T−t0)/h |Sn(h)|. It follows that the predictor-corrector
method is convergent if it is consistent.

It is interesting to note that the preceding theorem only requires consis-
tency for convergence, as opposed to both consistency and stability. This
is because such a predictor-corrector method is already guaranteed to be
stable. To see this, we examine the stability of a general s-step multistep
method of the form

s∑
i=0

αiyn+1−i = h
s∑
i=0

βif(tn+1−i, yn+1−i).

If this method is applied to the initial value problem

y′ = 0, y(t0) = y0, y0 6= 0,

for which the exact solution is y(t) = y0, then for the method to be stable,
the computed solution must remain bounded.

It follows that the computed solution satisfies the m-term recurrence
relation

s∑
i=0

αiyn+1−i = 0,

which has a solution of the form

yn =
s∑
i=0

cin
piλni ,

where the ci and pi are constants, and the λi are the roots of the character-
istic equation

α0λ
s + α1λ

s−1 + · · ·+ αs−1λ+ αs = 0.

When a root λi is distinct, pi = 0. Therefore, to ensure that the solution
does not grow exponentially, the method must satisfy the root condition:

• All roots must satisfy |λi| ≤ 1.

• If |λi| = 1 for any i, then it must be a simple root, meaning that its
multiplicity is one.

It can be shown that a multistep method is zero-stable if and only if it
satisfies the root condition. Furthermore, λ = 1 is always a root, because
in order to be consistent, a multistep method must have the property that∑s

i=0 αi = 0. If this is the only root that has absolute value 1, then we say

8.8. STIFF DIFFERENTIAL EQUATIONS 139

that the method is strongly stable, whereas if there are multiple roots that
are distinct from one another, but have absolute value 1, then the method
is said to be weakly stable.

Because all Adams methods have the property that α0 = 1, α1 = −1,
and αi = 0 for i = 2, 3, . . . , s, it follows that the roots of the characteristic
equation are all zero, except for one root that is equal to 1. Therefore, all
Adams methods are strongly stable. This explains why only consistency is
necessary to ensure convergence. In general, a consistent multistep method
is convergent if and only if it is zero-stable.

Example A multistep method that is neither an Adams method, nor a
backward differentiation formula, is an implicit 2-step method known as
Simpson’s method:

yn+1 = yn−1 +
h

3
[fn+1 + 4fn + fn−1].

Although it is only a 2-step method, it is fourth-order accurate, due to the
high degree of accuracy of Simpson’s Rule.

This method is obtained from the relation satisfied by the exact solution,

y(tn+1) = y(tn−1) +

∫ tn+1

tn−1

f(t, y(t)) dt.

Since the integral is over an interval of width 2h, it follows that the coeffi-
cients βi obtained by polynomial interpolation of f must satisfy the condition

s∑
i=0

βi = 2,

as opposed to summing to 1 for Adams methods.
For this method, we have s = 2, α0 = 1, α1 = 0 and α2 = −1, which

yields the characteristic polynomial λ2−1. This polymomial has two distinct
roots, 1 and −1, that both have absolute value 1. It follows that Simpson’s
method is only weakly stable. 2

8.8 Stiff Differential Equations

To this point, we have evaluated the accuracy of numerical methods for
initial-value problems in terms of the rate at which the error approaches
zero, when the step size h approaches zero. However, this characterization
of accuracy is not always informative, because it neglects the fact that the

140 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

local truncation error of any one-step or multistep method also depends on
higher-order derivatives of the solution. In some cases, these derivatives can
be quite large in magnitude, even when the solution itself is relatively small,
which requires that h be chosen particularly small in order to achieve even
reasonable accuracy.

This leads to the concept of a stiff differential equation. A differential
equation of the form y′ = f(t, y) is said to be stiff if its exact solution y(t)
includes a term that decays exponentially to zero as t increases, but whose
derivatives are much greater in magnitude than the term itself. An example
of such a term is e−ct, where c is a large, positive constant, because its kth
derivative is cke−ct. Because of the factor of ck, this derivative decays to zero
much more slowly than e−ct as t increases. Because the error includes a term
of this form, evaluated at a time less than t, the error can be quite large if h
is not chosen sufficiently small to offset this large derivative. Furthermore,
the larger c is, the smaller h must be to maintain accuracy.

Example Consider the initial value problem

y′ = −100y, t > 0, y(0) = 1.

The exact solution is y(t) = e−100t, which rapidly decays to zero as t in-
creases. If we solve this problem using Euler’s method, with step size
h = 0.1, then we have

yn+1 = yn − 100hyn = −9yn,

which yields the exponentially growing solution yn = (−9)n. On the other
hand, if we choose h = 10−3, we obtain the computed solution yn = (0.9)n,
which is much more accurate, and correctly captures the qualitative behavior
of the exact solution, in that it rapidly decays to zero. 2

The ODE in the preceding example is a special case of the test equation

y′ = λy, y(0) = 1, Reλ < 0.

The exact solution to this problem is y(t) = eλt. However, as λ increases in
magnitude, the problem becomes increasingly stiff. By applying a numerical
method to this problem, we can determine how small h must be, for a given
value of λ, in order to obtain a qualitatively accurate solution.

When applying a one-step method to the test equation, the computed
solution has the form

yn+1 = Q(hλ)yn,

8.8. STIFF DIFFERENTIAL EQUATIONS 141

where Q(hλ) is a polynomial in hλ if the method is explicit, and a rational
function if it is implicit. This polynomial is meant to approximate ehλ,
since the exact solution satisfies y(tn+1) = ehλy(tn). However, to obtain a
qualitatively correct solution, that decays to zero as t increases, we must
choose h so that |Q(hλ)| < 1.

Example Consider the modified Euler method

yn+1 = yn +
h

2
[f(tn, yn) + f(tn + h, yn + hf(tn, yn))].

Setting f(t, y) = λy yields the computed solution

yn+1 = yn +
h

2
[λyn + λ(yn + hλyn)] =

(
1 + hλ+

1

2
h2λ2

)
yn,

so Q(hλ) = 1 + hλ+ 1
2(hλ)2. If we assume λ is real, then in order to satisfy

|Q(hλ)| < 1, we must have −2 < hλ < 0. It follows that the larger |λ| is,
the smaller h must be. 2

The test equation can also be used to determine how to choose h for
a multistep method. The process is similar to the one used to determine
whether a multistep method is stable, except that we use f(t, y) = λy, rather
than f(t, y) ≡ 0.

Given a general multistep method of the form

s∑
i=0

αiyn+1−i = h
s∑
i=0

βifn+1−i,

we substitute fn = λyn and obtain the recurrence relation

s∑
i=0

(αi − hλβi)yn+1−i = 0.

It follows that the computed solution has the form

yn =
s∑
i=1

cin
piµni ,

where each µi is a root of the stability polynomial

Q(µ, hλ) = (α0−hλβ0)µs+(α1−hλβ1)µs−1+· · ·+(αs−1−hλβs−1)µ+(αs−hλβs).

142 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

The exponents pi range from 0 to the multiplicity of µi minus one, so if
the roots are all distinct, all pi are equal to zero. In order to ensure that the
numerical solution yn decays to zero as n increases, we must have |µi| < 1
for i = 1, 2, . . . , s. Otherwise, the solution will either converge to a nonzero
value, or grow in magnitude.

Example Consider the 3-step Adams-Bashforth method

yn+1 = yn +
h

12
[23fn − 16fn−1 + 5fn−2].

Applying this method to the test equation yields the stability polynomial

Q(µ, hλ) = µ3 +

(
−1− 23

12
hλ

)
µ2 +

4

3
hλµ− 5

12
hλ.

Let λ = −100. If we choose h = 0.1, so that λh = −10, then Q(µ, hλ) has
a root approximately equal to −18.884, so h is too large for this method.
On the other hand, if we choose h = 0.005, so that hλ = −1/2, then the
largest root of Q(µ, hλ) is approximately −0.924, so h is sufficiently small
to produce a qualitatively correct solution.

Next, we consider the 2-step Adams-Moulton method

yn+1 = yn +
h

12
[5fn+1 + 8fn − fn−1].

In this case, we have

Q(µ, hλ) =

(
1− 5

12
hλ

)
µ2 +

(
−1− 2

3
hλ

)
µ+

1

12
hλ.

Setting h = 0.05, so that hλ = −5, the largest root of Q(µ, hλ) turns out to
be approximately −0.906, so a larger step size can safely be chosen for this
method. 2

In general, larger step sizes can be chosen for implicit methods than
for explicit methods. However, the savings achieved from having to take
fewer time steps can be offset by the expense of having to solve a nonlinear
equation during every time step.

The region of absolute stability of a one-step method or a multistep
method is the region R of the complex plane such that if hλ ∈ R, then
a solution computed using h and λ will decay to zero, as desired. That is,
for a one-step method, |Q(hλ)| < 1 for hλ ∈ R, and for a multistep method,
the roots µ1, µ2, . . . , µs of Q(µ, hλ) satisfy |µi| < 1.

8.8. STIFF DIFFERENTIAL EQUATIONS 143

Because a larger region of absolute stability allows a larger step size h
to be chosen for a given value of λ, it is preferable to use a method that
has as large a region of absolute stability as possible. The ideal situation is
when a method is A-stable, which means that its region of absolute stability
contains the entire left half-plane, because then, the solution will decay to
zero regardless of the choice of h.

An example of an A-stable one-step method is the Backward Euler
method

yn+1 = yn + hf(tn+1, yn+1),

an implicit method. For this method,

Q(hλ) =
1

1− hλ
,

and since Reλ < 0, it follows that |Q(hλ)| < 1 regardless of the value of h.
The only A-stable multistep method is the implicit trapezoidal method

yn+1 = yn +
h

2
[fn+1 + fn],

because

Q(µ, hλ) =

(
1− hλ

2

)
µ+

(
−1− hλ

2

)
,

which has the root

µ =
1 + hλ

2

1− hλ
2

.

The numerator and denominator have imaginary parts of the same magni-
tude, but because Reλ > 0, the real part of the denominator has a larger
magnitude than that of the numerator, so |µ| < 1, regardless of h.

Implicit multistep methods, such as the implicit trapezoidal method,
are often used for stiff differential equations because of their larger regions
of absolute stability. Because yn+1 appears on both sides of the difference
equation for such methods, it is necessary to use an iterative method such as
Newton’s method to compute yn+1. For a general implicit multistep method,
for which β0 6= 0, Newton’s method is applied to the function

F (y) = α0y +

s∑
i=1

αiyn+1−i − hβ0f(tn+1, y)− h
s∑
i=1

βifn+1−i.

144 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

The resulting iteration is

y
(k+1)
n+1 = y

(k)
n+1 −

F (y
(k)
n+1)

F ′(y
(k)
n+1)

= y
(k)
n+1 −

α0y
(k)
n+1 +

∑s
i=1 αiyn+1−i − hβ0f(tn+1, y

(k)
n+1)− h

∑s
i=1 βifn+1−i

α0 − hβ0fy(tn+1, y
(k)
n+1)

,

with y
(0)
n+1 = yn.

8.9 Dahlquist’s Theorems

We conclue our discussion of multistep methods with some important results,
due to Germund Dahlquist, concerning the consistency, zero-stability, and
convergence of multistep methods.

Theorem (Dahlquist’s Equivalence Theorem) A consistent multistep
method with local truncation error O(hp) is convergent with global error
O(hp) if and only if it is zero-stable.

This theorem shows that local error provides an indication of global error
only for zero-stable methods.

The second theorem imposes a limit on the order of accuracy of zero-
stable methods.

Theorem (Dahlquist’s Barrier Theorem) The order of accuracy of a
zero-stable s-step method is at most s+ 1, if s is odd, or s+ 2, if s is even.

For example, because of this theorem, it can be concluded that a 6th-order
accurate three-step method cannot be zero stable, whereas a 4th-order ac-
curate, zero-stable two-step method has the highest order of accuracy that
can be achieved.

Finally, we state a result concerning absolute stability that highlights
the trade-off between explicit and implicit methods.

Theorem (Dahlquist’s Second Barrier Theorem) No explicit multi-
step method is A-stable. Furthermore, no A-stable multistep method can
have an order of accuracy greater than 2. The second-order accurate, A-
stable multistep method with the smallest asymptotic error constant is the
trapezoidal method.

In order to obtain A-stable methods with higher-order accuracy, it is
necessary to relax the condition of A-stability. Backward differentiation for-

8.10. ANALYSIS OF MULTISTEP METHODS 145

mulae (BDF), mentioned previously in our initial discussion of multistep
methods, are efficient implicit methods that are high-order accurate and
have a region of absolute stability that includes a large portion of the neg-
ative half-plane, including the entire negative real axis.

8.10 Analysis of Multistep Methods

We illustrate the concepts and results of the preceding sections through
examples in which the convergence properties of multistep methods are an-
alyzed.

Example Consider the three-step method

yn+1 = −7

2
yn + 9yn−1 −

9

2
yn−2 +

h

6
[25fn − 8fn−1 − 11fn−2],

where fn = f(tn, yn). This method is neither an Adams method, nor a back-
ward differentiation formula. It is explicit, because there is no dependence
on fn+1. Therefore, by Dahlquist’s Second Barrier Theorem, it cannot be
A-stable.

To determine its order of accuracy, we substitute the exact solution y(t)
into the method, and expand y(t) in a Taylor series arount t = tn. For a
general multistep method of the form

s∑
j=0

αjyn+1−j = h

s∑
j=0

βjfn+1−j ,

this expansion reveals that the method has order of accuracy p if and only
if all terms in the expansion of order O(hq) vanish for q ≤ p, which is the
case if the equations

s∑
j=0

αj = 0,

s−1∑
j=0

(s− j)αj −
s∑
j=0

βj = 0,

s−1∑
j=0

(s− j)2

2
αj −

s∑
j=0

(s− j)βj = 0,

...

146 CHAPTER 8. INITIAL VALUE PROBLEMS FOR ODES

s−1∑
j=0

(s− j)p

p!
αj −

s−1∑
j=0

(s− j)p−1

(p− 1)!
βj = 0,

are satisfied. From these equations, it can be determined that the above
explicit three-step method is fourth-order accurate. From Dahlquist’s First
Barrier Theorem, this is the maximum order of accuracy that can be achieved
by a zero-stable, three-step method.

To determine whether this method is zero-stable, we consider the first
characteristic polynomial of the method,

ρ(z) =
s∑
j=0

αjz
s−j = z3 +

7

2
z2 − 9z +

9

2
.

Unfortunately, this method is not zero-stable, because one of its roots, z ≈
−5.34233, lies outside of the unit circle. 2

Example We next consider an implicit three-step method,

yn+1 = yn +
h

24
[9fn+1 + 19fn − 5fn−1 + fn−2],

which is an Adams method. It can easily be seen to be implicit, because
the coefficient of fn+1 is nonzero. Checking order of accuracy as before, we
find that this method is also fourth-order accurate. It is also strongly zero-
stable, as all Adams methods are, because its first characteristic polynomial
is ρ(z) = z3 − z2, which has a double root of zero and a simple root of 1.
By the Dahlquist Equivalence Theorem, because this method is consistent
and zero-stable, it is convergent.

By Dahlquist’s First Barrier Theorem, this method cannot be A-stable,
because its order of accuracy is greater than two. To determine its region
of absolute stability, we consider its stability polynomial Q(µ, hλ) that is
the characteristic polynomial of the recurrence relation that results from
applying the method to the test equation y′ = λy with step size h. This
polynomial is obtained from the first and second characteristic polynomials
of the method as follows:

Q(µ, hλ) = ρ(µ)− hλσ(µ)

=

s∑
j=0

αjµ
s−j − hλ

s∑
j=0

βjµ
s−j

=

(
1− 3hλ

8

)
µ3 −

(
1 +

19hλ

24

)
µ2 +

5hλ

24
µ− hλ

24
.

8.10. ANALYSIS OF MULTISTEP METHODS 147

The region of absolute stability is the region in the complex plane consisting
of all values of hλ for which all of the roots of Q(µ, hλ) are less than one in
absolute value. A portion of the region of absolute stability for the above
three-step implicit Adams method is shown in Figure 8.2. It follows that for

Figure 8.2: Region of absolute stability for a three-step implicit Adams
method

the test equation y′ = λy, where λ is a negative real number, the step size h
must be chosen so that h < 4/|λ| in order to guarantee that the computed
solution decays to zero, as the exact solution does. 2

Index

2-norm, 74, 85

A-stability, 143
absolute continuity, 108
absolute stability, region of, 142
Adams method, 132
Adams-Bashforth method, 133
Adams-Moulton method, 134
Adams-Moulton predictor-corrector method,

134
antiderivative, 53

B-spline, 118
backward differentiation formula, 133
backward Euler’s method, 128
Bernoulli numbers, 66
Bernstein polynomials, 75
bisection, 28

Cauchy-Schwarz inequality, 85
characteristic equation, 138
characteristic polynomial, first, 137
characteristic polynomial, second, 137
Chebyshev polynomials, 43, 77, 92
consistency, 125
contraction, 9
convergence, cubic, 12
convergence, linear, 12
convergence, local, 13
convergence, quadratic, 12
convergence, superlinear, 12

Dahlquist’s Barrier Theorem, first, 144

Dahlquist’s Barrier Theorem, second,
144

Dahlquist’s Equivalence Theorem, 144
data fitting, 35
degenerate function, 8
degree of accuracy, 56, 61
difference equation, 122
difference, backward, 46
difference, centered, 46
difference, forward, 46
double root, 8

Euler’s method, 122
Euler’s method, modified, 130
Euler-Maclaurin Expansion, 66
explicit method, 128

finite difference, 46
fixed point, 8
fixed point, stable, 14
fixed point, unstable, 14
fixed-point iteration, 8

global error, 126
Gram-Schmidt orthogonalization, 87

hat function, 109
Hermite polynomial, 44
Hilbert matrix, 83

implicit method, 127
inner product, 84
intermediate value theorem, 7

148

INDEX 149

interpolating polynomial, 35
interpolation, 35
interpolation point, 35
inverse function theorem, 8

Kronecker delta, 44

Lagrange interpolation, 36
Lagrange polynomial, 36
least-squares problem, continuous, 81
Legendre polynomials, 89
linear independence, 82
Lipschitz condition, 9, 121
Lipschitz constant, 9, 121
local truncation error, 125

maximum norm, 74
midpoint method, explicit, 130
Midpoint Rule, 56
Midpoint Rule, Composite, 60
minimax polynomial, 75
moment matching, 97
monomial basis, 36
multistep method, 132

Neville’s Method, 39
Newton interpolation, 40
Newton’s method, 18
Newton-Cotes quadrature, 56
norm, 73, 85
norm, equivalent, 74
normal equations, 81, 82
normed vector space, 74

one-step method, 122
order of accuracy, 126
orthogonal polynomials, 86
orthogonality, 84
orthonormal set, 86
Oscillation Theorem, 75
osculatory interpolation, 44

polynomial, monic, 78
polynomial, near-minimax, 79, 94
polynomial, piecewise, 107
polynomial, trigonometric, 92

quadrature rule, 54
quadrature rule, closed, 55
quadrature rule, composite, 60
quadrature rule, Gaussian, 97
quadrature rule, interpolatory, 56
quadrature rule, open, 55
quadrature, Gauss-Kronrod, 101
quadrature, Gauss-Lobatto, 106
quadrature, Gauss-Radau, 106

recurrence relation, three-term, 77
recursion coefficients, 88
Regula Falsi, method of, 31
relaxation, 17
Richardson extrapolation, 63
Riemann integrable, 53
Riemann sum, 53
Romberg integration, 67
root condition, 138
root, simple, 138
Runge’s Example, 60
Runge’s example, 42
Runge-Kutta method, 130
Runge-Kutta method, fourth-order,

130

safeguarded methods, 30
secant line, 25
secant method, 25
Simpson’s method, 139
Simpson’s Rule, 56
Simpson’s Rule, Composite, 61
Sobolev space, 108
spline, 110
spline, basis, 109
spline, cubic, 110

150 INDEX

spline, Hermite cubic, 117
square-integrable function, 108
stability, 126
stability polynomial, 141, 146
stability, strong, 139
stability, weak, 139
stiff differential equation, 140

test equation, 140
trapezoidal method, 127
Trapezoidal Rule, 56
Trapezoidal Rule, Composite, 60
triangle inequality, 74

Vandermonde matrix, 36

weight function, 74, 91
well-posed problem, 122

zero-stability, 136

	Solution of Equations by Iteration
	Nonlinear Equations
	Existence and Uniqueness
	Sensitivity

	Simple Iteration
	Iterative Solution of Equations
	Relaxation
	Newton's Method
	The Secant Method
	The Bisection Method
	Safeguarded Methods

	Polynomial Interpolation
	Lagrange Interpolation
	Convergence
	Hermite Interpolation
	Differentiation
	Finite Difference Approximations

	Numerical Integration
	Integration
	Well-Posedness
	Newton-Cotes Quadrature

	Error Estimates
	The Runge Phenomenon Revisited
	Composite Formulae
	Richardson Extrapolation
	The Euler-Maclaurin Expansion
	Romberg Integration

	Polynomial Approximation in the -norm
	Normed Linear Spaces
	Best Approximation in the -norm
	Chebyshev Polynomials
	Interpolation

	Polynomial Approximation in the 2-norm
	Best Approximation in the 2-norm
	Inner Product Spaces
	Orthogonal Polynomials
	Comparisons

	Numerical Integration - II
	Construction of Gauss Quadrature Rules
	Error Estimation for Gauss Quadrature
	Composite Gauss Formulae
	Radau and Lobatto Quadrature

	Piecewise Polynomial Approximation
	Linear Interpolating Splines
	Basis Functions for Linear Splines
	Cubic Splines
	Cubic Spline Interpolation
	Constructing Cubic Splines
	Well-Posedness and Accuracy

	Hermite Cubic Splines
	Basis Functions for Cubic Splines

	Initial Value Problems for ODEs
	Theory of Initial-Value Problems
	One-Step Methods
	Consistency and Convergence
	An Implicit One-Step Method
	Runge-Kutta Methods
	Multistep Methods
	Consistency and Zero-Stability
	Stiff Differential Equations
	Dahlquist's Theorems
	Analysis of Multistep Methods

	Index

