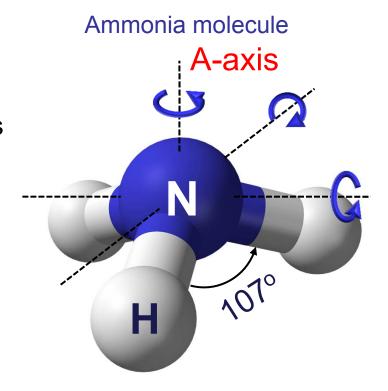
Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

Lecture 4: Polyatomic Spectra

- 1. From diatomic to polyatomic
- 2. Classification of polyatomic molecules
- Rotational spectra of polyatomic molecules
- 4. Vibrational bands, vibrational spectra



1. From diatomic to polyatomic

Rotation – Diatomics

Recall: For diatomic molecules

Energy:
$$F(J), cm^{-1} = BJ(J+1) - DJ^{2}(J+1)^{2}$$

Centrifugal distortion constant

Rotational constant:
$$B, cm^{-1} = \frac{h}{8\pi^2 Ic}$$

Selection Rule:
$$J' = J'' + 1 \rightarrow \Delta J = +1$$

Line position:
$$\bar{v}_{J''+1\leftarrow J''} = 2B(J''+1)-4D(J''+1)^3$$

Notes:

1.
$$D_{v}$$
 is small, i.e., $D/B = 4(B/\overline{v}_{vib})^{2} << 1$

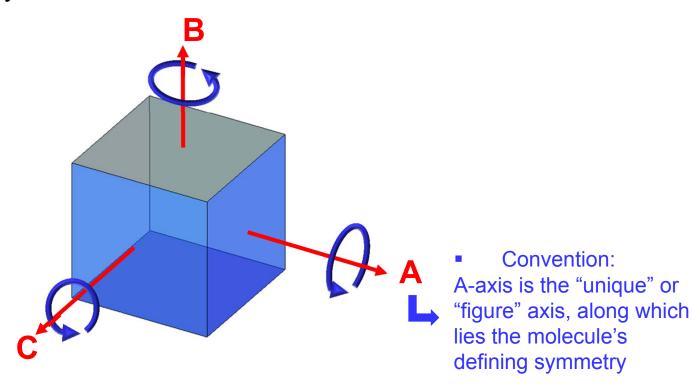
2. E.g., for NO,
$$\left(\frac{D}{B}\right)_{NO} = 4\left(\frac{B}{\omega_e}\right)^2 \approx 4\left(\frac{1.7}{1900}\right)^2 \approx 3 \times 10^{-6}$$

$$\rightarrow$$
 Even @ J=60, $D/B \cdot J^2 \sim 0.01$

What about polyatomics (≥3 atoms)?

1. From diatomic to polyatomic

3D-body rotation



- 3 principal axes (orthogonal): A, B, C
- 3 principal moments of inertia: I_A, I_B, I_C
- Molecules are classified in terms of the relative values of I_A, I_B, I_C

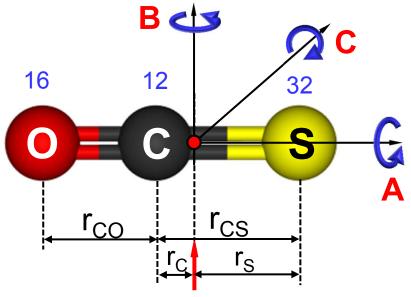
Types of molecules

Туре	Linear Molecules	Symmetric Tops	Spherical Tops	Asymmetric Rotors
Relative magnitudes of I _{A,B,C}	I _B =I _C ; I _A ≈0*	I _B =I _C ≠I _A I _A ≠0	I _A =I _B =I _C	I _A ≠I _B ≠I _C
Examples	CO ₂ C ₂ H ₂ Acetylene OCS Carbon oxysulfid		CH ₄	H ₂ O NO ₂
	Relative	ely simple	No dipole moment	

^{*}Actually finite, but quantized momentum means it is in lowest state of rotation

Linear molecules

E.g., Carbon oxy-sulfide (OCS)



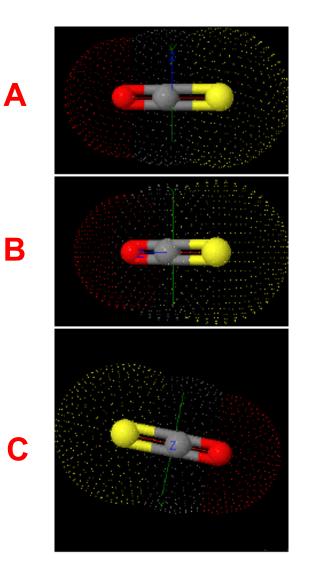
Center of mass

$$r_{CO} = 1.165 \text{Å}$$

 $r_{CS} = 1.558 \text{Å}$

$$I_{B} = I_{C}; I_{A} \approx 0$$

$$B, cm^{-1} = \frac{h}{8\pi^{2}I_{B}c}$$



Symmetric tops

$I_B = I_C \neq I_A$; $I_A \neq 0$

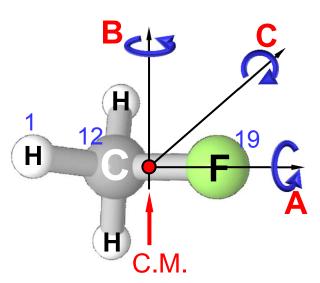
$$A, cm^{-1} = \frac{h}{8\pi^2 I_A c}$$

$$B, cm^{-1} = \frac{h}{8\pi^2 I_B c}$$

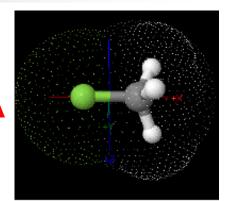
$$C, cm^{-1} = \frac{h}{8\pi^2 I_C c}$$

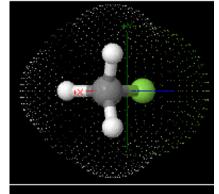
Prolate

 $I_A < I_B = I_C$, A > B = CE.g., CH_3F

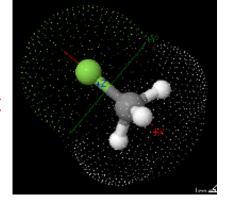


Tripod-like (tetrahedral bonding)





B



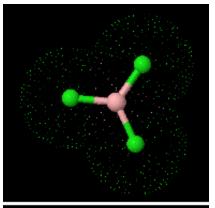
Symmetric tops

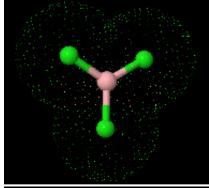
Oblate

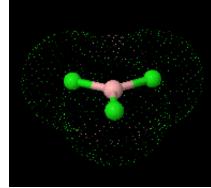
 $I_A > I_B = I_C$, A < B = C

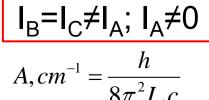
E.g., BCl₃ (Planar)

B



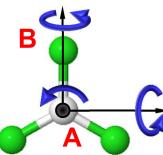


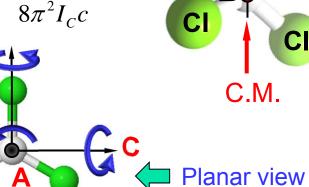




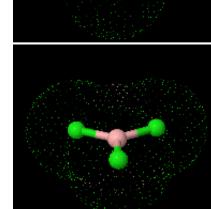
$$B, cm^{-1} = \frac{h}{8\pi^2 I_B c}$$

$$C, cm^{-1} = \frac{h}{8\pi^2 I_C c}$$





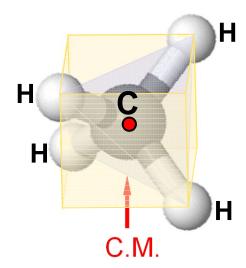
35.5 B



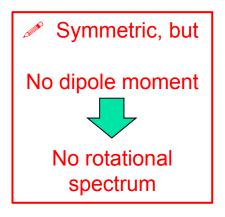
Spherical tops

$$I_A = I_B = I_C$$

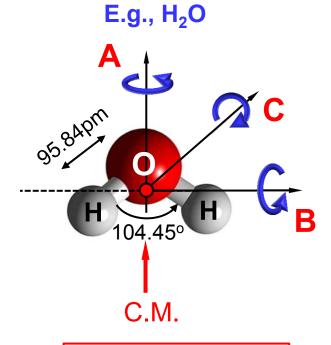
E.g., CH₄ (methane)



Cube w/ C at center and H at diagonal corners



Asymmetric rotors



Complex and not addressed here

- Linear molecules (I_B=I_C; I_A≈0)
 - Examples

Symmetric, no dipole moment

Must be asymmetric to have electric dipole moment (isotopic substitution doesn't change this as bond lengths remain fixed)

Energies and line positions

Can treat like diatomic (1 value of I) → same spectrum

$$F(J) = BJ(J+1) - DJ^{2}(J+1)^{2}$$

$$\overline{V}(J) = 2B(J+1) - 4D(J+1)^{3}$$

$$\uparrow \qquad \uparrow$$
Rotational Centrifugal const. distortion const.

Note: Larger I, smaller B
(& line spacing)
than diatomics

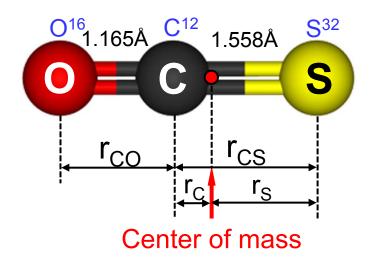
(" is suppressed, i.e. J=J")

- Linear molecules (I_B=I_C; I_A≈0)
 - Bond lengths

N atoms N-1 bond lengths to be found

- Abs./Emis. spectra → B → 1 value of I_B
- Use N-1 isotopes → N-1 values of I_B

Example: OCS (carbon oxy-sulfide)



Use 2 isotopes for 2 equations:

$$I_{^{16}O^{12}C^{32}S} = \mathcal{F}(masses, r_{CO}, r_{CS})$$
 $I_{^{18}O^{12}C^{32}S} = \mathcal{F}(masses, r_{CO}, r_{CS})$

Solve for r_{CO} , r_{CS}

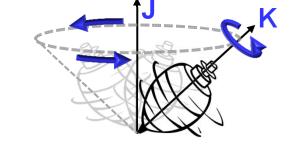
- Symmetric tops (I_B=I_C≠I_A; I_A≠0)
 - 2 main directions of rotation → 2 quantum numbers
 - **J** (total angular momentum): 0, 1, 2, ...
 - **K** (angular momentum about A): J, J-1, ..., 1, 0, -1, ... -J
 - + & allowed, w/o change in energy

⇒ 2J+1 possibilities of K for each J

Quantized angular momentum

As before:
$$I_A^2 \omega_A^2 + I_B^2 \omega_B^2 + I_C^2 \omega_C^2 = J(J+1)\hbar^2$$

Plus new: $I_A^2 \omega_A^2 = K^2 \hbar^2$



Energy levels

$$E_{J,K} = \frac{1}{2} \sum_{i} I_{i} \omega_{i}^{2}$$

$$F(J,K) = BJ(J+1) + (A-B)K^2$$

Note degeneracy, i.e., independent of sign of K

- Symmetric tops $(I_B = I_C \neq I_A; I_A \neq 0)$
 - Q.M. Selection rules

■
$$\Delta J = +1$$
 Remember that $\Delta J = J' - J''$

 $\Delta K = 0$

No dipole moment for rotation about A-axis No change in K will occur with abs./emis.

Line positions

$$\bar{v}_{J.K} = F(J+1,K) - F(J,K) = 2BJ(J+1) [cm^{-1}]$$

Note: Independent of K for a rigid rotor Same as rigid diatomic! K-dependence introduced for non-rigid rotation

- Symmetric tops (I_B=I_C≠I_A; I_A≠0)
 - Non-rigid rotation

Effect of extending bond lengths (w/ changes in K)

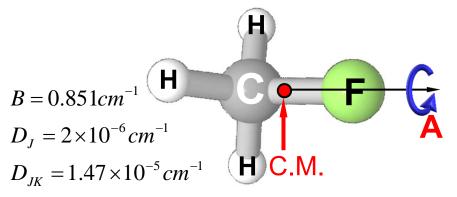
Change energies of rotation

Centrifugal distortion const. D_J, D_K, D_{JK}

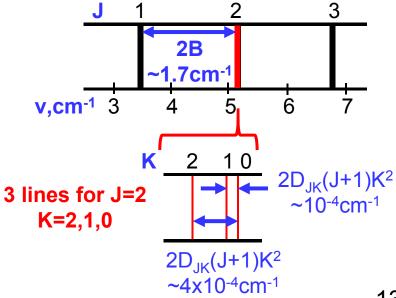
$$F(J,K) = BJ(J+1) + (A-B)K^{2} - D_{J}J^{2}(J+1)^{2}$$
$$-D_{JK}J(J+1)K^{2} - D_{K}K^{4}$$
$$-\frac{1}{V_{J,K}} = 2(J+1)[B-2D_{J}(J+1)^{2} - D_{JK}K^{2}] [cm^{-1}]$$

Note: Each J has 2J+1 components, but only J+1 frequencies

E.g., CH₃F, Methyl Fluoride



If J≈20, J²≈400, 2DJ²≈1.6x10⁻³, 2DJ²/B≈.2%



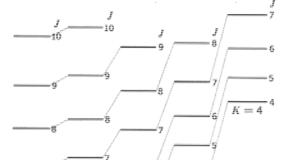
Symmetric tops $(I_B=I_C\neq I_A; I_A\neq 0) \rightarrow \text{gets complex fast!}$

Prolate

$$I_A < I_B = I_C$$
, $A > B = C$

$$F(J,K) = BJ(J+1) + (A-B)K^{2} \qquad F(J,K) = BJ(J+1) + (A-B)H$$

$$A - B = \frac{h}{8\pi^{2}c} \left(\frac{1}{I_{A}} - \frac{1}{I_{B}}\right) > 0 \qquad A - B = \frac{h}{8\pi^{2}c} \left(\frac{1}{I_{A}} - \frac{1}{I_{B}}\right) < 0$$



Example energy levels

Oblate

$$I_A > I_B = I_C$$
, $A < B = C$

$$F(J,K) = BJ(J+1) + (A-B)K^{2}$$

$$A - B = \frac{h}{8\pi^2 c} \left(\frac{1}{I_A} - \frac{1}{I_B} \right) < 0$$

$$\frac{1}{K-2} = \frac{1}{1} \frac{2}{K=1} = \frac{3}{1} \frac{3}{K=2} = \frac{3}{1} \frac{3}{K=3} = \frac{3}{1} \frac{3}{K=3} = \frac{3}{1} \frac{3}{1} = \frac{3}{1} = \frac{3}{1} \frac{3}{1} = \frac{3}{1} = \frac{3}{1} \frac{3}{1} = \frac{3}{1$$

Rotational partition function

Linear	Symmetric top	Spherical top	Asymmetric rotor	
B=C; I _A ≈0	B=C≠A; I _A ≠0	A=B=C	A≠B≠C	
$Q_{rot} = \frac{kT}{\sigma h c B}$	$Q_{rot} = \frac{1}{\sigma} \sqrt{\frac{\pi}{AB^2} \left(\frac{kT}{hc}\right)^3}$	$Q_{rot} = \frac{1}{\sigma} \sqrt{\frac{\pi}{B^3} \left(\frac{kT}{hc}\right)^3}$	$Q_{rot} = \frac{1}{\sigma} \sqrt{\frac{\pi}{ABC} \left(\frac{kT}{hc}\right)^3}$	

$$A, cm^{-1} = \frac{h}{8\pi^2 I_A c}$$

$$B,cm^{-1} = \frac{h}{8\pi^2 I_B c}$$

$$C, cm^{-1} = \frac{h}{8\pi^2 I_C c}$$

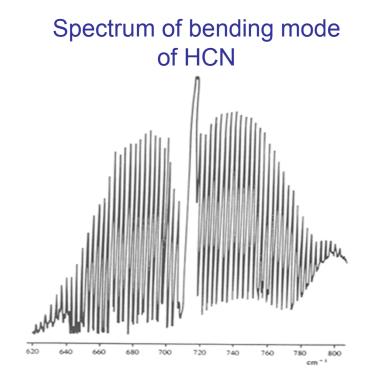
σ – molecule-dependent symmetry factor

Molecule	σ	Molecule Type
CO ₂	2	Linear
NH ₃	3	Symmetric Top
CH ₄	12	Spherical Top
H ₂ O	2	Asymmetric Rotor

- Linear (diatomic & polyatomic) and symmetric top molecules give similar (equal spacing) spectra at rigid rotor level
- High resolution needed to detect corrections / splittings
- Spectra → microscopic parameters (r_e, angles)
- Isotopes useful for spectral studies

4. Vibrational Bands, Rovibrational Spectra

- 1. Number of vibrational modes
- 2. Types of bands
 - Parallel and perpendicular
 - Fundamental, overtones, combination and difference bands
- 3. Relative strengths
- Rovibrational spectra of polyatomic molecules
 - Linear molecules
 - Symmetric tops



4.1. Number of vibrational modes

N-atom molecule

3N dynamical coordinates needed to specify instantaneous <u>location</u> and orientation

Total: 3N

Center of Mass: 3 coordinates (3 translational modes)

Rotation: Linear molecules Nonlinear molecules

2 angular coordinates3 angular coordinates

(rot. modes)

(rot. modes)

Vibration: Linear molecules Nonlinear molecules

3N-5 vibrational coordinates **3N-6** angular coordinates

(vib. modes) (vib. modes)

- Numbering (identification) convention of vibrational modes
 - Symmetry
 - Decreasing energy

	[cm ⁻¹]
Symmetric Declining frequency	 V₁ Highest-frequency <u>symmetric</u> vibrational mode V₂ 2nd highest symmetric mode
	ν_i Lowest-frequency <u>symmetric</u> mode
Asymmetric Declining frequency	$ \begin{array}{c} \nu_{i+1} \\ \nu_{i+2} \end{array} $ Highest-frequency <u>asymmetric</u> vibrational mode $ \begin{array}{c} \nu_{i+2} \\ \end{array} $ and highest symmetric mode

Exception: the perpendicular vibration for linear XY_2 and XYZ molecules is always called v_2

Parallel and perpendicular modes

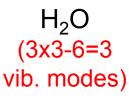
Examples:

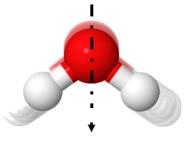
Parallel (||)

Dipole changes are || to the main axis of symmetry

Perpendicular (⊥)

Dipole changes are 1 to the main axis of symmetry

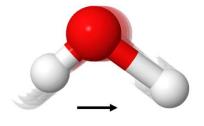




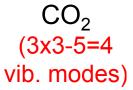


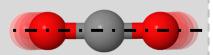
 $v_1 = 3652 \text{cm}^{-1}$

Symmetric stretch Symmetric bending $v_2 = 1595 \text{ cm}^{-1}$

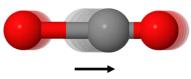


Asymmetric stretch $v_3 = 3756 \text{ cm}^{-1}$

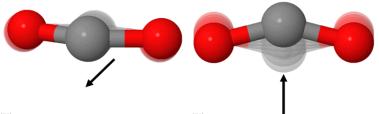




No dipole moment Not IR-active! Symmetric stretch $v_1 = 1330 \text{ cm}^{-1}$



Asymmetric stretch $v_3 = 2349 \text{ cm}^{-1}$



Symmetric bending (2 degenerate) $\nu_2 = 667 \text{ cm}^{-1}$

Parallel and perpendicular modes

Symmetric molecules: vibrational modes are <u>either</u> IR-active <u>or</u> Raman-active (Chapter 6)

Vibrational modes of CO₂

Mode	Frequency [cm ⁻¹]	Туре	Description	IR	Raman
ν_1	1388		Symmetric stretch	Not active	Active
v_2	667	Т	Symmetric bend (Degenerate)	Strong	Not active
v_3	2349		Asymmetric stretch	Very strong	Not active

Vibrational modes of HCN

Mode	Frequency [cm ⁻¹]	Туре	Description	IR	Raman
v_1	3310		Symmetric stretch	Strong	Weak
ν_2	715	Т	Symmetric bend (Degenerate)	Very strong	Weak
v_3	2097		Asymmetric stretch	Weak	Strong

Terminology for different types of vibrational bands

<u>Fundamental Bands</u>: v_i , the ith vibrational mode; $\Delta v = v' - v'' = 1$ for the ith mode

1st Overtone: $2v_i$; $\Delta v = v' - v'' = 2$ for the ith mode

2nd Overtone: $3v_i$; $\Delta v = v' - v'' = 3$ for the ith mode

Combination bands: Changes in multiple quantum numbers, e.g.,

 v_1+v_2 ; $\Delta v_1=\Delta v_2=1$, i.e., v_1 and v_2 both increase by 1 for

absorption or decrease by 1 for emission

 $2v_1 + v_2$; $\Delta v_1 = 2$ and $\Delta v_2 = 1$

<u>Difference bands</u>: Quantum number changes with mixed sign

 v_1 - v_2 ; $v_{1,\text{final}}$ - $v_{1,\text{initial}}$ = ± 1 and $v_{2,\text{final}}$ - $v_{2,\text{initial}}$ = ∓ 1 , i.e., a

unit increase in v_1 is accompanied by a unit

decrease in v_2 , and vice-versa.

Vibrational partition function

$$Q_{vib} = \prod_{i}^{\text{modes}} \left[1 - \exp\left(-\frac{hc\,\omega_{e,i}}{kT}\right) \right]^{-g_i}$$

E.g.,
$$NH_3$$
: 3N-6 = 6 vib. modes

E.g.,
$$\underline{\text{NH}}_{\underline{3}}$$
: 3N-6 = 6 vib. modes
$$Q_{vib} = \left[1 - \exp\left(-\frac{hc\omega_{e,1}}{kT}\right)\right]^{-1} \left[1 - \exp\left(-\frac{hc\omega_{e,2}}{kT}\right)\right]^{-1} \left[1 - \exp\left(-\frac{hc\omega_{e,3}}{kT}\right)\right]^{-2} \left[1 - \exp\left(-\frac{hc\omega_{e,4}}{kT}\right)\right]^{-2}$$

Vibration	Frequency [cm ⁻¹]	Type	Description
ν_1	3337	ll l	Symmetric stretch
ν_2	950	ll l	Symmetric bend
ν_3	3444	Т	Asymmetric stretch (Degenerate)
ν_4	1627	Т	Asymmetric bend (Degenerate)

4.3. Relative strength

- In general
 - Fundamental bands are much stronger than combination, difference, and overtone bands
- Fairly harmonic molecules
 - E.g., CO
 - Relative strength between fundamental and overtones ~ 10²
 - Closely SHO, overtone bands are *nearly* forbidden (low transition probabilities)
- Highly anharmonic molecules
 - E.g., NH₃
 - Relative strength between fundamental and overtones ≤ 10
 - Overtone bands are less forbidden

Exception – Fermi resonance:

Accidental degeneracies (i.e., near resonances) can strengthen weak processes. Two vib. Modes strongly coupled by radiative and collisional exchanges.

E.g., $2\nu_2$ CO₂ (@ 1334cm⁻¹) $\approx \nu_{1, CO2}$

Linear polyatomic molecules

(limit consideration to fundamental transitions)

Energy:
$$T(v_i, J) = G(v_i) + F(J)$$

Case I: Parallel bands (symmetric and asymmetric stretch)

Selection Rule: $\Delta v_i = 1$

$$\Delta J = \pm 1$$

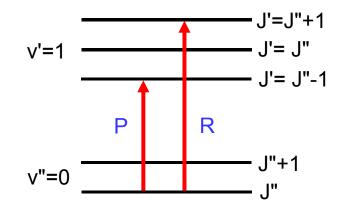
(*R* and *P* branches)

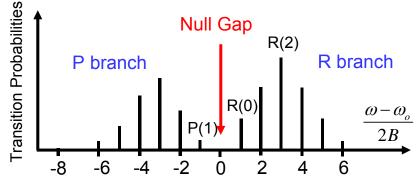
$$\Delta \mathbf{v}_{j} = 0, j \neq i$$

Absorption Spectrum: P & R branches only

Example:
$$HCN(\nu_1, \nu_3)$$

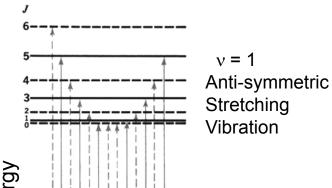
 \nearrow Note: No ν_1 parallel band for CO₂

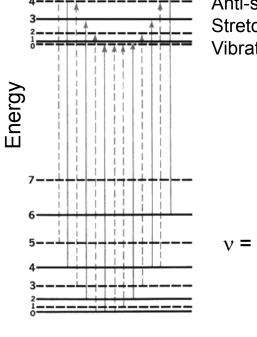


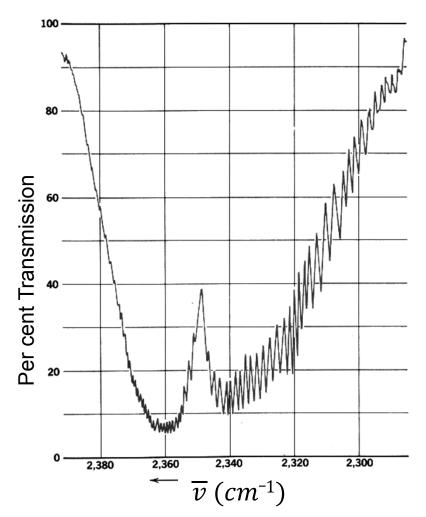


Linear polyatomic molecules

Case I: Parallel band







Example-2: A parallel band of the linear molecule CO₂

Linear polyatomic molecules
 (limit consideration to fundamental transitions)

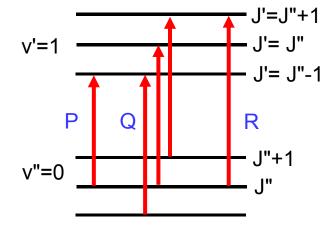
Energy:
$$T(v_i, J) = G(v_i) + F(J)$$

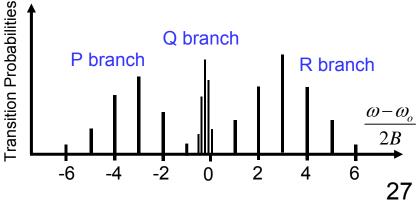
Case II: Perpendicular bands

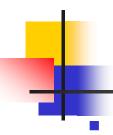
Selection Rule:
$$\Delta v_i = 1$$

$$\Delta J = \pm 1,0$$
 (R,P and Q branches)
$$\Delta v_j = 0, j \neq i$$

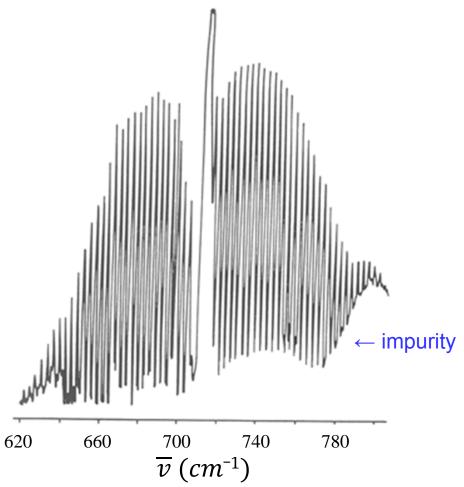
- 1. If B'=B", all Q branch lines occur at the same frequency
- 2. If B' \neq B", $Q(J") = \omega_0 + (B'-B")J"(J"+1)$ Q branch "degrades" to lower frequencies (i.e., to the "red" in wavelength)







- Linear polyatomic molecules
 - Case II: Perpendicular bands



Example:

Spectrum of the bending mode of HCN, showing the PQR structure

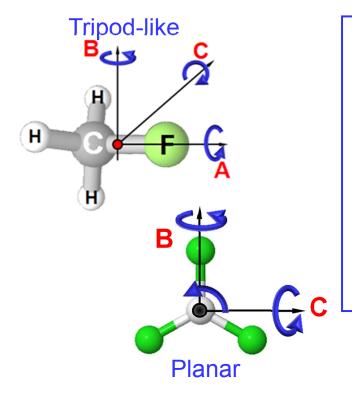
Symmetric top molecules (e.g., CH₃F, BCl₃)

Recall: K – quantum number for angular momentum around axis A

Energy:
$$T(v_i, J, K) = G(v_i) + F(J, K)$$

= $(v_i + 1/2)\omega_e^i - \omega_e^i x_e^i (v_i + 1/2)^2 + BJ(J+1) + (A-B)K^2$

Case I: Parallel bands

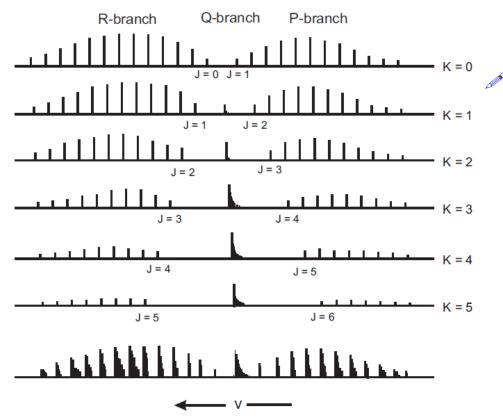


Selection Rule:
$$\Delta v_i = 1$$

 $\Delta J = \pm 1,0 (P,Q,R \text{ branches})$
 $\Delta K = 0$

- 1. 2J+1 values of K (K=J, J-1, ..., 0, ..., -J)
- 2. Intensity of Q branch is a function of (I_A/I_B)
- 3. As $(I_A/I_B) \rightarrow 0$ symmetric top \rightarrow linear molecule strength of Q branch $\rightarrow 0$

- Symmetric top molecules (e.g., CH₃F, BCl₃)
 - Case I: Parallel bands

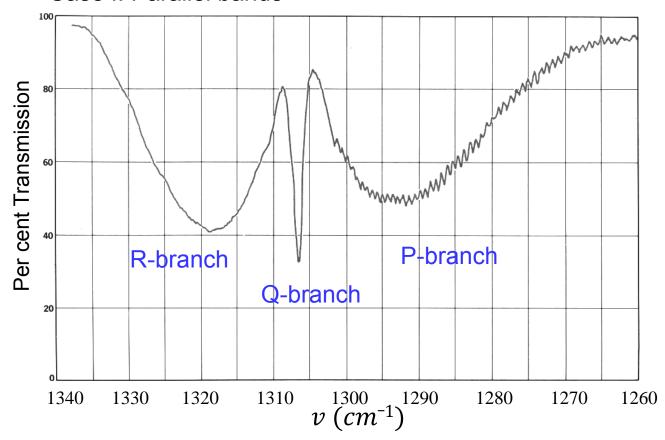


Resolved components of a parallel band showing contributions from each of the K levels of the v=0 state

Note:

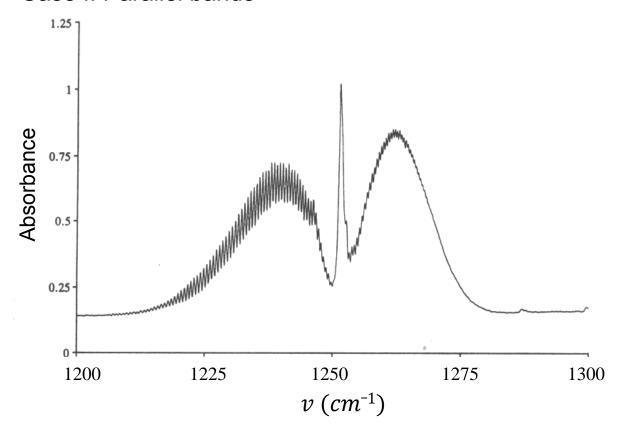
- Splitting in P and R branch due to a difference in (A-B) in upper and lower vib. levels
- 2. Splitting in Q branch due to difference in B in upper and lower vib. levels
- 3. For K=0, spectrum reduces to that of linear molecules, no Q branch
- 4. K cannot exceed J

- Symmetric top molecules
 - Case I: Parallel bands



Example-1: A parallel absorption band of the symmetric top molecule CH₃Br. The P branch is partly resolved, while only the contours of the R and Q branches is obtained

- Symmetric top molecules
 - Case I: Parallel bands



Example-2: The parallel stretching vibration, centered at 1251 cm⁻¹, of the symmetric top molecule CH₃I, showing the typical PQR contour.

- Symmetric top molecules (e.g., CH₃F, BCl₃)
 - Case II: Perpendicular bands

Selection Rule:
$$\Delta v_i = 1$$

 $\Delta J = \pm 1,0 (P,Q,R \text{ branches})$
 $\Delta K = \pm 1$

R Branch:
$$\Delta J = +1, \Delta K = \pm 1$$

 $v_R = \omega_o + 2B(J+1) + (A-B)(1 \pm 2K)$

P Branch:
$$\Delta J = -1, \Delta K = \pm 1$$

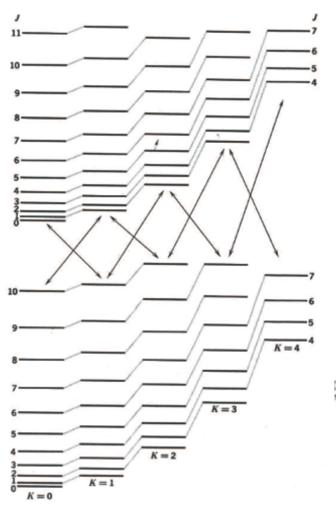
 $v_P = \omega_o - 2BJ + (A - B)(1 \pm 2K)$

Q Branch:
$$\Delta J = 0, \Delta K = \pm 1$$

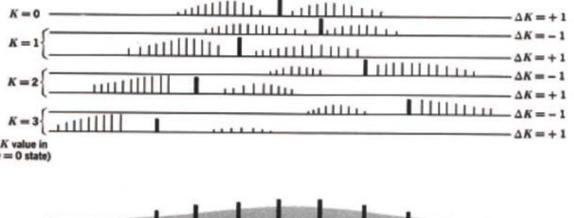
 $v_Q = \omega_o + (A - B)(1 \pm 2K)$

Note: Two sets of R, P and Q branches for each lower state value of K

- Symmetric top molecules (e.g., CH₃F, BCl₃)
 - Case II: Perpendicular bands



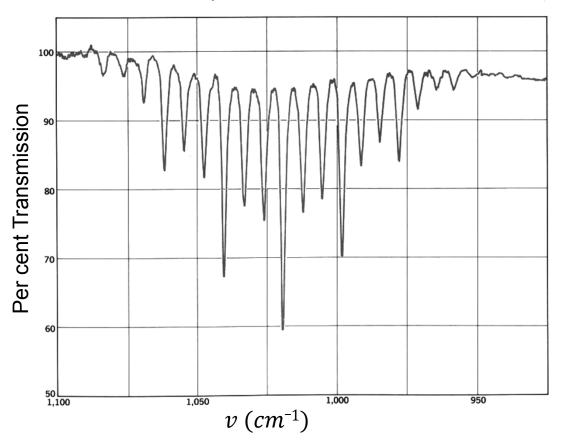
- Energy levels of a symmetric top molecule showing transitions that are allowed for a perpendicular band
- Resulting spectrum, components of a perpendicular band showing the contributions from each K levels of the v=0 state



 v_0

 $\leftarrow v$

- Symmetric top molecules
 - Case II: Perpendicular bands



Note: Spacing of the Q branch lines in a perpendicular band can be identified with 2(A-B), and hence are observable if A-B is large enough

Example: The Q-branch of a perpendicular band, for the symmetric top molecule CH₃Cl

Next: Quantitative Emission/Absorption

- Spectral Absorptivity
- Eqn. of Radiative Transfer
- Einstein Coefficients/Theory
- Radiative Lifetime, Line Strength