Newton Divided Differences and Nested Multiplication

The following algorithm overwrites given initial values $c_0 = y_0, \ldots, c_n = y_n$ with their Newton divided differences at distinct x_0, \ldots, x_n . The final c_0, \ldots, c_n are the coefficients of the interpolating polynomial $p_n(x)$ in Newton form, i.e.,

$$p_n(x) = c_0 + c_1(x - x_1) + \ldots + c_n(x - x_0) \ldots (x - x_n).$$

NEWTON DIVIDED DIFFERENCES:

Given initial $c_0=y_0,\,\ldots,\,c_n=y_n$ and distinct $x_0,\,\ldots,\,x_n,$ For $k=1,\,\ldots,\,n$ For $j=n,\,\ldots,\,k$ Update $c_j\leftarrow(c_j-c_{j-1})/(x_j-x_{j-k}).$

The following algorithm evaluates the interpolating polynomial in Newton form at a point x, given the Newton divided differences c_0, \ldots, c_n at distinct x_0, \ldots, x_n .

NESTED MULTIPLICATION:

Given the coefficients c_0, \ldots, c_n and distinct x_0, \ldots, x_n ,

Set $pval = c_n$.

For k = n - 1, ..., 0

Update $pval \leftarrow c_k + (x - x_k) \cdot pval$.