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ABSTRACT

This is a survey of work on the algebraic theory of the power operator on pseudovarieties
of semigroups and monoids. Besides exploring connections with other operators, vari-
ous problems and partial solutions are presented. Recent generalizations of the power
operator, particularly the one resulting from looking only at group-pointlike subsets of
finite monoids, are also considered.

1. Introduction

For any algebraic structure S, one may define on the power set Z(S) a similar algebraic
structure by letting the result of applying an operation to a bunch of subsets of S be the set
of all operation values which can be obtained by replacing each set by one of its elements.
The question that is then naturally raised concerns which properties are preserved in this
construction. In the context of Universal Algebra, this question has been considered by
looking at equational properties or, equivalently, by defining the power operator on varieties
and looking for fixed points. The answer turns out to be rather simple (cf. [26, 55]): the
equational properties which are preserved are precisely those in which both sides of the
equation have no repeated variables and involve the same variables; moreover, the power
operator on varieties is an idempotent.

Now, if we are only interested in finite algebras, Birkhoff’s variety theory is no longer
appropriate. In the context of semigroup theory and its applications, the convenient cor-
responding notion is that of a pseudovariety [29] and the appropriate defining axioms are
known as pseudoidentities [52, 11]. Moreover, the reason why pseudovarieties were first
considered was that they naturally came up in the applications involving syntactical char-
acterizations of classes of rational languages. Eilenberg [28] provided an abstract framework
for such applications in the form of a one-to-one correspondence between the so-called va-
rieties of languages and pseudovarieties of semigroups. In turn, operators on varieties of
languages therefore correspond to operators on pseudovarieties of semigroups. The moti-
vation for the first studies of the power operator on pseudovarieties came precisely from its
discovery as the pseudovariety operator associated with some natural operators on varieties
of languages [43].
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The situation for the power operator on pseudovarieties turns out to be much more
complicated than its variety version. Here, the operator is not an idempotent, although its
iteration stops in 3 steps. While the fixed points have been characterized, the pseudoiden-
tities defining them are not as simple as in the variety case and the image of the power
operator remains largely unknown. Also, some specific calculations involving the power
operator have turned out to relate very closely to other crucial problems in the theory of
finite semigroups.

This paper is a survey of the work done since the early 1980°s on the power operator.
It explores some of the connections with other operators on pseudovarieties and contains
many open problems. Some generalizations of the power operator suggested by Ash’s work
[21] are also considered.

The reader is assumed to have a basic background in finite semigroup theory, say as
presented in [46]. For more comprehensive treatments of the theory, see [28, 11].

2. Examples

We consider in this section some elementary examples leading nevertheless to some
important observations. We denote by Z2(S) (respectively 2'(S)) the semigroup of all
(respectively nonempty) subsets of a semigroup S.

2.1. Aperiodic Brandt semigroups

Let M,, denote the multiplicative semigroup of all n X n matrices with entries in the
Boolean ring {0, 1}. Such matrices may be viewed as binary relations on an n-element set so
that matrix multiplication corresponds to usual relation composition. In particular, every
finite semigroup with n elements embeds in M, .

Let B,, be the subsemigroup of M,, consisting of all matrices with, at most, one nonzero
entry. When m < n, by completing an m x m matrix to an n x n matrix by adding rows and
columns of zeros, we see that B,, embeds in B,,. On the other hand, the Kronecker product
defines an onto homomorphism B, x B, — Bp,. Finally, the mapping W'(Bn) — M,
sending a nonempty set X of matrices to the sum of the elements of X (i.e., the matrix
having an entry 1 precisely at those entries where some element of X has value 1) is an
onto homomorphism.

So, if we say that a semigroup S divides a semigroup T (written S < T') if S is a
homomorphic image of a subsemigroup of T', and we write S for the direct product of n
copies of S, we have established the following result.

Proposition 2.1. Every finite semigroup divides some ﬁl(Bén)).D

2.2. Groups

Let S be a semigroup and suppose D is one of its regular Z-classes. Let ~ be the
least equivalence relation on the set of group elements of D which identifies two elements
if they are either Z or .Z-equivalent. A block of D is a Rees quotient of the subsemigroup
of S generated by a ~-class, modulo the ideal consisting of the elements which do not lie
in D. The blocks of S are the blocks of its regular Z-classes and are therefore completely
[0]-simple semigroups.



Let G be a finite group and consider the semigroup £'(G). Then the following facts
are easily established:

the idempotents of &' (G) are the subgroups of G;

two elements A and B of 2'(@G) are #Z (respectively .£)-equivalent if and only if there
exists 2 € G such that Az = B (respectively A = B);

let H € 2'(G) be an idempotent; the # (respectively .%)-class of H is the set G/H
of its right cosets (respectively the set H\G of its left cosets); therefore the Z-class
of H is a square of side (G : Ng(H)) of 77 -classes;

the maximal subgroup of #'((G) containing the element H is
(G/H)N(H\G) ={Hz :z € Ng(H)}
and is therefore isomorphic with the quotient Ng(H)/H;

the Z-class of H may be represented as

H . Hy
Hx=xH Hz
y 'H y 'Hy .

2 'H y ‘Hz

where a * marks an idempotent; in particular, the blocks of 2'(G) are groups;

By < Z'(Q) if and only if 2'(G) has a regular P-class which is not a group, i.e.,
G has a subgroup which is not normal,

if G is a non-Abelian group, then G x G has some subgroup which is not normal.

We thus have the following result.

Proposition 2.2. For every finite non-Abelian group G, By divides 2'(G x G).[]

2.8. Completely simple semigroups

A rectangular band is a direct product of a left-zero semigroup by a right-zero semigroup.

A rectangular group is a regular semigroup whose idempotents form a rectangular band,
i.e., a direct product of a rectangular band by a group.

It is easily checked that, if S = L x R, where L is a left-zero semigroup and R is a right-
zero semigroup, then the semigroup &?'(S) is not regular but its regular elements form the
rectangular band 92'(L) x 2'(R). More generally, in the finite case, we have the following

result.



Proposition 2.3. If S = L x G x R be a finite rectangular group, where and L and R
are as above and G is a group, then the blocks of 2'(S) are (isomorphic with) rectangular
groups of the form %' (L) x Nqg(H)/H x 2'(R) where H is a subgroup of G.

Proof. Suppose A is an idempotent of Z'(S). Then, since A is a subsemigroup of S,
A contains some idempotent (e, 1, f). Let {e} x H x {f} be the maximal subgroup of A
containing (e, 1, f). Since each nonempty intersection AN{e'} x G x {f'} (¢’ € L, f' € R) is
a subgroup of A, A is a union of subgroups. Moreover, AN{e'} x Gx{f'} D {e'} x H x{f'}
and so A = L' x H x R for some L' C L and R' C R.

The %-class of L' x H x R’ consists of all subsets of S of the form L' x Hy x R" with
y € G and ) # R" C R. The #-class of such an element of &'(S) is a subgroup if and
only if y € N¢(H).

Hence each block of 7'(S) is isomorphic with a rectangular group of the form 9?'(L) x
Ng(H)/H x 2'(R).0]

For the general completely simple case, the situation is more complicated. Even if the
subgroups are Abelian, the blocks need not be completely simple. Take for instance the
Rees matrix semigroup

51260124 (1))
where G = (a,b) is a Klein four-group. Consider the following elements of 2?'(S):

T=1{(1,1,1),(1,a,1)} U{(1,1,2),(1,a,2)}
U={211),(2a1)}
V=1{(21,1),(2,a,1)} U{(21,2),(2,a2).

Then T and U are idempotents, UT =V, {(1,1,1)}V =T, and V{(1,1,1)} = U so that
the block B containing 7" also contains U by Green’s lemma. Now, we have

TU ={(1,1,1),(1,a,1),(1,b,1),(1,ab,1)}.

Hence every element of #'(S) which lies #-below TU must have either 0 or (at least) 4
elements in each #7-class. This shows that B is not simple.

3. Pseudovarieties and various operators

The examples in section 2 suggest that we consider classes of finite semigroups closed
under taking divisors and finitary direct products. Such classes are called pseudovarieties.
Throughout this paper, we use bold capital letters to denote pseudovarieties. In particular,
the letters V, W, X are generally used to denote arbitrary pseudovarieties.

For a class € of finite semigroups, denote respectively by H¢, S€, Pg, %, and V& the
classes consisting of all homomorphic images, all subsemigroups, all finitary direct products
of members of %, and the pseudovariety generated by % . So, in particular, V = HSPg,,.

Pseudovarieties admit several sorts of equational descriptions but more complicated in
general than the classical Birkhoff theorem for varieties of algebras. The most useful such



description seems to be the one given by Reiterman [52]: every pseudovariety is defined by
a set of “pseudoidentities”. Since there are several basic presentations of Reiterman’s result
(e.g., [62, 11, 18, 34]), rather than defining pseudoidentities, let us just say that pseudoiden-
tities are formal equalities between certain types of expressions generalizing semigroup terms
(i.e., words). The new expressions which are relevant in most of this paper are those which
are built from words using the w-power. The w-power u* is to be (recursively) interpreted
in a finite semigroup as giving the only idempotent power of the interpretation of u. For a
nonnegative integer k, we abbreviate u“u* by vk,

For a set X of pseudoidentities, we denote by [X] the class of all finite semigroups which
verify all pseudoidentities from 3; this class is a pseudovariety and X is said to be a basis
of pseudoidentities for it. The letter variables appearing in a pseudoidentity will usually be
chosen to be z,y, z,t,.... To make pseudoidentities more compact and hopefully easier to
read, we convention that when we write e, f, g, ... in a pseudoidentity, these letters stand for
expressions of the form z¥, .'I;‘}’, Tg,... where T, xy, Ty, ... are new variables that previously
did not intervene in the pseudoidentity. So, for instance, [ze = ex] is the pseudovariety
consisting of all finite semigroups whose idempotents are central. Another two convenient
conventions are to write v = 1 and u = 0 respectively for uy = yu = y and uy = yu = u
where g is variable that does not appear in the expression u.

By an identity we mean a pseudoidentity whose sides are both words. The set of letters
occurring in a word u is denoted by c¢(u). An identity u = v is linear if u and v are both
products of distinct variables; if further ¢(u) = ¢(v), then u = v is said to be a permutation
identity. We say that a pseudovariety V is linear if it is a union of pseudovarieties of the
form [X] where ¥ is a set of linear identities.

Denote by S the pseudovariety of all finite semigroups. For a semigroup S, let F(S) be
the set of its idempotents; for X C S, let (X) denote the subsemigroup generated by X.

For semigroups S and T', we denote by S * T a semidirect product of S by T" which is
determined by a monoid homomorphism from 7" into the monoid of endomorphisms of S
(cf. [11]).

Before introducing further examples of pseudovarieties, we proceed to define some im-
portant operators on pseudovarieties. As argued in [11], most of the contemporary theory of
finite semigroups can be viewed as being centered essentially on the study of such operators.
For pseudovarieties V and W, let

BV = {S € S : every block of S lies in V}
DV = {S € S : every regular Z-class of S is a subsemigroup which lies in V'}
EV ={SeS:(EWS)) eV}
LV ={SeS:eSeeVforallec E(S)}
LinV = ﬂ{U : V.C U, U is a linear pseudovariety}
MV = HSPﬁn{S] :S eV}
PV = HSPg {Z(S): S eV}
P'V = HSPg {2'(S) : S e V}
PdV = {S € S : all cyclic subgroups of S lie in V}
VVW = USSP, (VUW) =HS{SxT:5€V, TeW}
VW =HSPg {S*T:SeV, TecW}=HS{S+xT:5€V,TecW}



V@ W =HS{SeS: (3T € W) (3 a homomorphism ¢ : S — T)
(Ve € BE(T))ep ! € W}

Here are now a number of examples of pseudovarieties and their definitions by pseu-
doidentities. Some of the results summarized below are not trivial.

A = {finite aperiodic semigroups} = [z**!

= zw]
Ab = {finite Abelian groups} = [e = 1, zy = yz]
B = {finite bands} = [z* = 7]
BG = [(ef)* = (fe)*]
Com = {finite commutative semigroups} = [zy = yz]
CR = {finite completely regular semigroups} = [z = 2]
CS = {finite (completely) simple semigroups} = [z“1' = z, (zy)“z = 7]
D = [ze = €]
D; = {finite right-zero semigroups} = [zy = y]
DA = [(zy)* (y2)* (zy)” = (zy)*, a7 = 2]
DS = [((zy)* (yx) (xy)*)* = (xy)*]
EDS = BCS = [(e(fwe)” )" = e(fwe)* f] [11]
G = {finite groups} = [e = 1]
I = {trivial semigroups} = [z = y]
J = {finite _#-trivial semigroups} = [(zy)“z = (zy)* = y(zy)“]
K = [ex = €]
K, = {finite left-zero semigroups} = [zy = z] = BNK
LI = {finite locally trivial semigroups} = [exze = €]
MD = [exe = ze] [45]
MK = [exe = ex] [45]
MK, =[z> =z, zyz = 2y = BNR
MLI = [a¥yzza” = x¥yza?, x“yxztz? = 2¥yzxtz"] [4]
MN = [ex = ze, 2T = 2] = ZEN A [59]
MNB = [2° = z, zyzzz = zyzz] = BN MLI
N = {finite nilpotent semigroups} = [e = 0]
NB = {finite normal bands} = [2* = z, zyzz = z2y2] = B N Perm
Perm = {finite permutative semigroups} = [exyf = eyzf]
R = {finite #-trivial semigroups} = [(zy)* = (zy)“]

w41

ReG = {finite rectangular groups} = [z =z, efe=¢

RO = {finite regular orthogroups} = [z**!

=z, zyr’ze = zyzz] [44)]
SI = {finite semilattices} = [2° = z, 2y = yz]
V{B>} = V{B,} = [¢° = 2%, 2%y* = y*2°, zyaxyx = xyz] [65, 60]

ZE = [ze = ex] = G V Com [5].



4. Problems

In applications of finite semigroup theory, one is interested in obtaining algorithms to
determine whether a finite semigroup belongs to a certain pseudovariety V. More generally,
we say that a class € of finite semigroups is decidable if there is an algorithm to decide
whether a finite semigroup belongs to it.

We now list a number of questions involving operators on pseudovarieties.

Decidability. Let us call decidability question for an operator O the question as to whether,
for every decidable pseudovariety V, OV is also decidable. The basic difficulty of finite
semigroup theory is that most often, the operators on pseudovarieties are defined in
terms of generators and the decidability question for the operator V has a negative
answer. This is known to happen even under further restrictions, namely for the
operators V, *, and @) the decidability question also has a negative answer [1, 53].

For other operators, such as B, D, £, L, and Pd, it is easy to show that the decidability
question has an affirmative answer. Often, calculations involving these operators end
up giving casuistic relationships between them.

Image. Another type of problem which is of interest consists in determining the image of a
given operator. For the operators B, D, and &£, the problem of determining the image
does not seem to have been considered. For instance, given a pseudovariety V (say
by a defining set of pseudoidentities or by an algorithm to test membership in V),
determine if it is of the form V = EW for some pseudovariety W.

Equations. A generalization of the image problem consists in solving equations involving
the operators. For example, the equation X * D = L£X has attracted considerable
attention and it has played an important role in understanding semidirect products
[28, 60, 64, 11]. It remains an open question what are the idempotent pseudovarieties
with respect to the operation * (which is associative). Disproving conjectures proposed
n [11], L. Teixeira [62] has recently showed that there are uncountably many such
idempotents among the aperiodic pseudovarieties.

Irreducibility. For the binary operators V, *, and ), there is a related question which
consists in determining which pseudovarieties decompose nontrivially using these oper-
ators. The paper [38] contains a class of examples of indecomposable pseudovarieties.
See also [11] for further information on the operators V and .

Basis. Another type of problem that has received considerable attention is to determine a
basis of pseudoidentities for the result of applying an operator to pseudovarieties for
which bases are known. Formulated as such, this does not appear to be relevant to
obtain decidability applications. However, the main result in [19] is of this type and
has led to substantial decidability applications.

Finite basis. Assuming that the operands have finite bases of pseudoidentities, we ask
whether applying one of the operators the resulting pseudovariety also has a finite
basis. For most operators the answer is negative.



Computable finite basis. This is similar to the preceding problem but it is assumed that
the bases for the operands only involve expressions which can be effectively computed,
and this further requirement is also sought for the result of applying the operators.

Preservation of V/N. An affirmative answer for this kind of question can be extremely
useful, shedding new light on the lattice of pseudovarieties [22]. For the operators
considered here, an affirmative answer in both cases does not seem very likely.

Number of iterates. For a unary operator O, we ask how many different operators can
be obtained by repeatedly composing O with itself. This measures on one hand how
far the operator is from being an idempotent, and on the other hand, the potential
for the operator to yield a nontrivial decomposition theory. From this point of view,
the unary operators & and &' are particularly interesting.

Although this paper is devoted mostly to the power operators, since there are so many
relationships among the operators of section 3, it is worthwhile considering these questions
for them. Some of the questions are somewhat meaningless or trivial for some of the
operators. We gather a summary of results in Table 1 where

e a blank entry means that the author is unware of any material in the literature which
is directly relevant;

e a question mark in an entry means that the problem has, at least implicitly, been
considered in the literature;

e a Y/N entry means, respectively, that the answer for the question in the line containing
it for the operator in the column containing it is affirmative/negative;

e references in the heading for a row or column apply to the whole of it;

e in general, the indicated references either directly justify the entry or contain related
material;

e in the presence of a Y/N and the absence of references, the answer is elementary;

e in the “Image” row, (V) in an entry means that there is a natural bijection between
the image of the operator in the corresponding column and the lattice of subpseu-
dovarieties of V.

5. A review of partial results

We now concentrate on the power operators and review the main results concerning
them. Earlier surveys on the power operator can be found in [47, 7, 11].

Since we are concerned here only with the semigroup theoretic aspects of the operator,
we will not go into details on the relationships with some natural operators on classes of
rational languages which actually provided the initial motivation for the study of the power
operators. We refer the reader to [11, Section 11.2] for an introduction to this facet and for
further references.



B D & L Lin [11] | M [11] | P [11] | P’ [11] | Pd [11]
Decidability Y Y Y Y ? ? ? Y
Basis Y Y Y Y Y ? ? Y
Finite basis Y N [68, 69] Y Y Y N N Y
Computable finite basis Y Y ? ? Y
Image (CS) ? ? (Ab)
Preserves V N [14, 17] 7 [11] N Y N N
Preserves N Y Y Y Y N N N N Y
Number of iterates 1 1 1 1 1 1 3 3 1
V * @
Decidability [1, 53, 56] N [12] N [12] N [50]
Basis N [1L, 58] | N [19, 12, 16] | N [50, 56]
Finite basis [68, 67] N N N
Preserves V (fixing left variable) Y
Preserves V (fixing right variable) Y Y [11]
Preserves N (fixing left variable) N N
Preserves N (fixing right variable) N [19, 15] Y [50]

Table 1: A summary of properties and problems concerning various operators on pseudovarieties




Another kind of motivation that has prompted developments in the area is the challenge
to deal with an apparently computationally intractable operator. Due to its exponential
character, it is inviable to work out complete examples before guessing what is going on,
since very small examples have limited importance.

The first easy remark consists in noting that dealing with the empty set instead of just
with nonempty subsets of a semigroup just means adding an extra zero, which amounts, up
to division, to taking a product with a semilattice. Moreover, it is easy to check that P’ LI C
LI and, if S contains a nontrivial monoid, then &'(S) contains a nontrivial semilattice. This
allows us to relate the operators P’ and P as follows.

Lemma 5.1. a) PV =P'V Vv SL
b) P’V =PV & V¢ LL

In view of Lemma 5.1(b), we will only refer to both operators P’ and P when dealing
with pseudovarieties of locally trivial semigroups.
The next observation, which seems to be due to S. Margolis, follows from Proposition 2.1.

Proposition 5.2. P'V{By} =S.0J

Conversely, we have the following solution of an equation on pseudovarieties for which
a proof using pseudoidentities can be found in [9]. The original result concerned pseudova-
rieties of monoids, instead of semigroups. But, as observed in [11, Exercise 11.10.1], this
fact really makes no difference.

Theorem 5.3 [39]. A pseudovariety X satisfies the equation PX = S if and only if By € X.

From Proposition 2.2, we in turn obtain the following formulation in terms of the power
operators.

Proposition 5.4. If V contains some non-Abelian group, then P>V = 8.0

More generally, the presence of a non-commutative monoid accounts for a somewhat
slower blowup in the power.

Theorem 5.5 [41]. If V contains a non-commutative monoid, then P3V = S.

Since PCom C Com, for pseudovarieties of monoids Theorem 5.5 completes the picture
of possible blowups, the converse being also true. For semigroups, the situation is more
complicated.

Theorem 5.6 [3]. If V contains some non-permutative semigroup, then P3V = S.

The converse again follows from the simple observation that PPerm C Perm. But it
was only a few years later that a more complete picture became available concerning the
behaviour of the power operators on pseudovarieties of permutative semigroups.
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Theorem 5.7 [11|. The wvalue of the power operator on pseudovarieties of permutative
semigroups is given by the formula

P'V = LinV NPV = P>V, (1)

The extent to which the above formula is effective depends on the ability to compute the
operators Lin and Pd. As to the operator P, if V C LI, then PdV = A and so P’ coincides
with Lin on pseudovarieties of locally trivial semigroups. The join of linear pseudovarieties
with Sl is not hard to compute [11, Proposition 6.3.16], thus reducing the calculation of P
to that of P’.

As a corollary of Theorems 5.6 and 5.7, one may deduce the following.

Theorem 5.8 [3]. The semigroup of operators on pseudovarieties generated by {P', P} has
eight elements and is defined by the following relations:

P'P =P, PP = P3Pt =P pip=prp, PPt = PP

As to the groups present in power semigroups, the following result says that no new
groups show up if we avoid By. Note that a pseudovariety does not contain Bs if and only
if it is contained in DS. For a pseudovariety H of groups, let H denote the pseudovariety
consisting of all finite semigroups whose subgroups lie in H.

Theorem 5.9 [39]. If H is a pseudovariety of groups, then PV C PDS NH if and only if
V C DSNH.

In particular, the operator P restricted to pseudovarieties of groups is injective. The
apriodic case of Theorem 5.9 is worth mentioning separately.

Corollary 5.10 [51]. PV C A & V CDA.

We showed in subsection 2.2 that PG C BG. Margolis and Pin [42] proved the following
chain of inclusions and equalities:

PG=J+GCI@®G =EJ =BG

and asked whether they are all equalities. This was confirmed by Henckell and Rhodes [33]
(see also [32, 48]) using results of Knast [37] and Ash [21], both of which are considered to
be very deep and hard results.

Theorem 5.11 [33]. PG = BG.
A related equation has also been solved.

Theorem 5.12 [11]. PX =BG & G CV C ZE.

11



For a more refined analysis of the behaviour of the power operators on pseudovari-
eties containing non-permutative semigroups, following the earlier work of Margolis and
Pin [41, 45], the author endeavored to compute the powers of the minimal non-permutative
pseudovarieties which he had obtained [3] extending the monoid case [41]. These pseudova-
rieties are generated either by a finite non-Abelian group (and the necessary groups have
been determined in [2, 11]), one of the semigroups presented by

(a,b;
<eaf;€f:€€:eaf€:ff:f>]
W =Ae.fref =ff=Ff fe=ee=¢)
(e.s,f;¢° =€ [°=fes=sf=s,ef = fe=0)
{

e,s,t;e> =e,es=s,te=t, se = et = ts = 0),

or one of the following Rees matrix semigroups, where p denotes a prime integer and 7, a
cyclic group of order p generated by a:

11
K-z (1))

In the group case, perhaps it is more enlightening to give the minimal pseudovarieties
containing a non-Abelian group in terms of pseudoidentities. To do so, for £ > 1, denote
w+k

by s“~F the power of an element s of a finite semigroup which is the inverse of s in

the cyclic subgroup generated by this element, and define length 2 and 3 commutators by
[z,y] = 2 'y* lzy and [z,vy, 2] = [[z,y], 2]. The pseudovarieties in question are then the

following [11]:

[+ =1, [#,9)* = q, [#,y,2] = 1]
[P =1, [z,y,2] = 1] for a prime p > 2
[P =1, [29,y] =1, [z,y]’ = 1] for p and ¢ distinct primes.

There seems to have been no progress in the group case beyond Theorem 5.11 and the
Abelian case (which is included in Theorem 5.7).
For V(N'), we have the following result.

Theorem 5.13 [45]. a) PV CJ & V C MN.
b)) PV=J & N' €V and VC MN.
¢) PVCR & VC MK,

The powers of V(B(1,2)!) = MK; and MK (and so their duals) have also been com-
puted [11], along with all powers of pseudovarieties contained in MK but not in Perm.
The description of such calculations would be too long and technical to be included here.
It actually contains some errors which will be hopefully corrected in a forthcoming paper.
We will just mention here that both PMK; and PMK are decidable pseudovarieties and
there is no solution to the equation PX = R.

A related result which is relevant in view of Corollary 5.10 is the following.

12



Theorem 5.14 [13]. For a pseudovariety V, we have PV C DA if and only if V. C MKV
D, VCKVMD, or V C [exeyzfyf = exyf].

Confirming the author’s guess put forward in [11], the following computation (for which
of course there is a dual result for K V MD) was achieved by Azevedo and Zeitoun [23]:

MKV D = [exeyf = exyf, z°T" = z*].

Following [46], let us call the ezponent of a pseudovariety not contained in Perm the least
nonnegative integer n such that P"V = S, where we let PV = V. By Theorem 5.6, the
exponent of a pseudovariety is either undefined or at most 3. The following result extends
the calculation of the exponent for pseudovarieties of aperiodic monoids which follows from
the results of [10]. To present it, we need to introduce some more small semigroups. Denote
by F,V the free semigroup on n generators in the variety generated by V. Consider also
the semigroup with the following presentation:

I=(es t;e’*=e, es=s, s> =se, et = st, te =ts =t> =1t).

For a semigroup S, let S? denote its dual which is obtained by transposing the table of
multiplication of S.

Theorem 5.15 [13]. For a non-permutative pseudovariety V of aperiodic semigroups,
a) 'V does not have exponent 0;
b) V has exponent 1 if and only if By € V;

¢) V has exponent 2 if and only if Bo ¢ 'V and V contains at least one of the semigroups
Y, Q, I, I, F3[2? = z,xyzzz = zy2], and F3[z? = 2, 2z1y2 = 2y2];

d) V has exponent 8 if and only if V contains none of the semigroups in (c).
An interesting connection with language theory is given by the following result which is
essentially an application of Schiitzenberger’s characterization of the languages recognized

by semigroups in DA [54].

Proposition 5.16 [49]. The languages recognized by semigroups in PDA are the rational
languages of dot-depth 2.

It remains an open problem to decide when a rational language has dot-depth 2 [61],
i.e., whether PDA is decidable. As far as the approach to this problem by using power
semigroups is concerned, the following result seems relevant.

Theorem 5.17 [6]. PX =PDA & Y € V and V C DA.

The semigroup Y also plays a role in the following result.

Theorem 5.18 [8]. The following conditions on a pseudovariety V are equivalent:
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i) PV C Com x D;
i) PV C LCom;
i) V.C LCom and Y ¢ V;
iv) V.C LComnN [(ef)“exf = exf].

In connection with Theorem 5.18, it is worth mentioning the following result of Thérien
and Weiss [63]:
Com + D = [exfyezf = ezfyexf] G LCom.

The aperiodic case is also of interest and yields the solution of another equation involving
one of the generators of minimal non-permutative pseudovarieties.

Theorem 5.19 [8]. PX = (Com*+D)NA & Q € V and V C LComN[efexf = exf]NA.

For pseudovarieties of monoids, there are further simplifications which have already
allowed the author to give a complete picture of the image of the power operator on pseu-
dovarieties of aperiodic monoids [10] which we now describe. The result, which turns out to
be a modular lattice under inclusion, departs from the description of the lattice of pseudova-
rieties of band monoids which was obtained by Wismath [70]. Both lattices are depicted in
Figure 1, where we denote by M the pseudovariety of all finite monoids.

M
PDA
PMK PB PMD
B
PMNB
PMK, PMD,
MNB 5
MK1 MDI
I Sl

Figure 1: The lattice of pseudovarieties of band monoids and
the lattice of powers (under P’) of pseudovarieties of aperiodic monoids

In particular, the power operator is injective when restricted to pseudovarieties of band
monoids. In the picture of the lattice of powers, all pseudovarieties in the interval between



PMNB and PDA remain unknown. The corresponding picture for the semigroup case is
still unknown. The extra complications are due to at least two reasons. First, the interval
between PMK; and PMK becomes nontrivial [11]. Second, the lattice of pseudovarieties
of bands is more complicated than its monoid counterpart [70].

The above results seem to indicate that, apart from the pseudovariety PDA, most of
the interesting questions on the power operator will involve the calculation of the powers
of pseudovarieties of completely regular semigroups. At present, not much is known in this
direction.

For the pseudovariety PCR itself, the following upper bound is given in [11, Exercise

11.11.7):

(xw+1yw+1)w — [xw—l—l (yx)wyw—kl]w.

But this is a rather ad hoc upper bound which nothing leads to believe might be strict.

For P(CS N Ab), a little refinement of the arguments in [11, Section 11.9], which we
now present, gives an interesting upper bound. First of all, it is an elementary exercise to
show that CS N Ab = Ab « D;. By Theorem 5.18, it follows that

P(CS N Ab) C Com * D.

Using [11, Corollary 10.7.4] or a direct calculation, it is then an easy matter to show that
CS N Ab satisfies the following pseudoidentity:

stzyz = szyzs(szzs) 'strz. (2)

Now, let subsets A and B of a semigroup S € CS N Ab be given and let m be a positive
integer such that &'(S9) satisfies the pseudoidentity z = z™. Then, for every k > 2 and
1 €7, taking s € A¥, t € B,z € A¥7', y € A“~!, and 2z € A, stxyz describes an arbitrary
element of A¥BAY~!** whereas szyzs(szzs)* Istzz lies in

ABkHE— 1414w l+(w—1)(2k+k—141) g gk—1+1 _ qo—l+k g gk

By the pseudoidentity (2), it follows that A¥BAY~!+k C A“=I+kB Ak and equality follows
by symmetry. This proves the folowing result which extends [11, Proposition 11.9.8].

Proposition 5.20. The pseudovariety P(CS N Ab) satisfies the pseudoidentity z¥yz“t! =
e Hyzk for every k.1 € 7 with k > 2.00

On the other hand, by Theorem 5.9, we have

P(CSNAb) C Ab,

a result which is also a corollary of Proposition 5.20. According to [11, Exercise 11.9.9], the
restriction £ > 2 may not be removed in the above statement. The best upper bound known
for the power of the pseudovariety V{ K, } is the one given by Proposition 5.20 together with
Theorem 5.9 which gives the pseudoidentity z¥*?P = z¢.

Proposition 2.3 has recently been extended as follows.

Proposition 5.21 [27]. PRO C BReG.
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In case the subgroups are Abelian, Colago [27] also characterized which V. C RO N Ab
have PV C DS and these results were crucial to give the following characterization of
the exponent for pseudovarieties of monoids. To state it, we need another two families of
semigroups. For n > 2, the semigroup S, is given by the set

Sp={er,....en} X ZyU{f1,..., fn},

where {e,...,e,} is a left-zero subsemigroup, Z, is a cyclic group with generator a,
{e1,...,en} X Z, is a rectangular group subsemigroup, the f; are left zeros, and (e;, a’) f* =
fi+j(modn)- Also for n > 2, T, is the monoid defined by the following presentation:

T, = (a,b;a" =1, ab= b, b* = 0).
Theorem 5.22 [27]. Let V be a non-commutative pseudovariety of monoids. Then:
a) V has exponent 0 if and only if V.= M;
b) V has exponent 1 if and only if Bs € V;

¢) V has exponent 2 if and only if BY ¢ V and V contains a non-Abelian group or one
of the monoids Y', S}, (S})p, or T, (n>2);

d) V has exponent 3 if and only if V contains none of the monoids mentioned in (c).

6. Extensions

By a relational morphism p from a semigroup S to a semigroup 7', we mean a subsemi-
group of S x T which, as a relation, has domain S. A V-pointlike subset of a semigroup S
is a subset X of S such that, for every relational morphism y : S — T with T' € V| there
exists ¢t € T such that X x {t} C u. We denote by &v(S) the set of all V-pointlike subsets
of S which constitutes a subsemigroup of #(S). For two pseudovarieties V and W, we let

PvW =V{Pvy(S): S e W} =HS{Pv(S): S € W}

For instance, algorithms for the computation of Z¢(S) and 24 (S) have been obtained
respectively by Ash [21] and Henckell [30, 31]. So, a natural question that comes up is to
study the operators Pg and Pa. Colago [27] has started the study of the operator Pg,
leading to some rather interesting results which we now briefly describe.

Another semigroup which has played a role in various contexts is the one described by
the following presentation:

Ay = (a,b;a® = a, b*> = 0, aba = a, bab = b).
Consider also the semigroup presented by
Z=(e.fie? =e f2= ] fe=0).

Extending work of Ash [20] for the semilattice case, Margolis, Birget and Rhodes [40]
showed that B @ G = [(ef)? = ef]. It follows that, for every subpseudovariety of B,
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V@G = EV. On the other hand, Colaco and the author have shown that DS « G = £DS,
while from results of Ash [32] and Jones and Trotter [36]! it follows that DS+ G = DS@® G..2
This gives a hint of what is going on with the operator Pg.

The G-ezponent of a pseudovariety V is the least integer n > 0 such that PV = M
if such an integer exists, where P&V = V. If there is no such integer, we say that the
exponent of V is infinite.

Theorem 6.1 [27]. Let V be a pseudovariety of monoids. Then
a) V has G-exponent 0 if and only if V.= M;
b) V has G-ezponent 1 if and only if V # M and Al € V;

¢) V has G-ezponent 2 if and only if both Z' € V and V C EDS, or both V C ECR
and V ¢ EMNB;

d) V has G-exzponent 3 if and only if V€ ESl and V. C EMNB;

e) V has infinite G-exponent if and only if V. C ESL.

Another possible direction for extending the theory of power pseudovarieties is to look
at subsets of a semigroup S as formal series in the elements of S with coefficients in the
Boolean semiring B = {0,1} (where a coefficient of 1 indicates that the element belongs
to the subset). Thus, #(S) is just the multiplicative semigroup of the semigroup semiring
B([[S]]. By considering semirings other than B, one may develop similar results. This has
been done in part by Blanchard [24, 25].
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