
POWER SEMIGROUPS: RESULTS AND PROBLEMSJ. Almeida�Centro de Matem�atica, Faculdade de Ciências, Universidade do Porto,P. Gomes Teixeira, 4050 Porto, PortugalE-mail: jalmeida@fc.up.ptABSTRACTThis is a survey of work on the algebraic theory of the power operator on pseudovarietiesof semigroups and monoids. Besides exploring connections with other operators, vari-ous problems and partial solutions are presented. Recent generalizations of the poweroperator, particularly the one resulting from looking only at group-pointlike subsets of�nite monoids, are also considered.1. IntroductionFor any algebraic structure S, one may de�ne on the power setP(S) a similar algebraicstructure by letting the result of applying an operation to a bunch of subsets of S be the setof all operation values which can be obtained by replacing each set by one of its elements.The question that is then naturally raised concerns which properties are preserved in thisconstruction. In the context of Universal Algebra, this question has been considered bylooking at equational properties or, equivalently, by de�ning the power operator on varietiesand looking for �xed points. The answer turns out to be rather simple (cf. [26, 55]): theequational properties which are preserved are precisely those in which both sides of theequation have no repeated variables and involve the same variables; moreover, the poweroperator on varieties is an idempotent.Now, if we are only interested in �nite algebras, Birkho�'s variety theory is no longerappropriate. In the context of semigroup theory and its applications, the convenient cor-responding notion is that of a pseudovariety [29] and the appropriate de�ning axioms areknown as pseudoidentities [52, 11]. Moreover, the reason why pseudovarieties were �rstconsidered was that they naturally came up in the applications involving syntactical char-acterizations of classes of rational languages. Eilenberg [28] provided an abstract frameworkfor such applications in the form of a one-to-one correspondence between the so-called va-rieties of languages and pseudovarieties of semigroups. In turn, operators on varieties oflanguages therefore correspond to operators on pseudovarieties of semigroups. The moti-vation for the �rst studies of the power operator on pseudovarieties came precisely from itsdiscovery as the pseudovariety operator associated with some natural operators on varietiesof languages [43].�This work was supported, in part, by F.C.T. through the Centro de Matem�atica da Universidade doPorto, the project Praxis XXI/2/2.1/MAT/63/94, and the Department of Mathematics of the University ofTasmania.
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The situation for the power operator on pseudovarieties turns out to be much morecomplicated than its variety version. Here, the operator is not an idempotent, although itsiteration stops in 3 steps. While the �xed points have been characterized, the pseudoiden-tities de�ning them are not as simple as in the variety case and the image of the poweroperator remains largely unknown. Also, some speci�c calculations involving the poweroperator have turned out to relate very closely to other crucial problems in the theory of�nite semigroups.This paper is a survey of the work done since the early 1980's on the power operator.It explores some of the connections with other operators on pseudovarieties and containsmany open problems. Some generalizations of the power operator suggested by Ash's work[21] are also considered.The reader is assumed to have a basic background in �nite semigroup theory, say aspresented in [46]. For more comprehensive treatments of the theory, see [28, 11].2. ExamplesWe consider in this section some elementary examples leading nevertheless to someimportant observations. We denote by P(S) (respectively P 0(S)) the semigroup of all(respectively nonempty) subsets of a semigroup S.2.1. Aperiodic Brandt semigroupsLet Mn denote the multiplicative semigroup of all n � n matrices with entries in theBoolean ring f0; 1g. Such matrices may be viewed as binary relations on an n-element set sothat matrix multiplication corresponds to usual relation composition. In particular, every�nite semigroup with n elements embeds in Mn+1.Let Bn be the subsemigroup of Mn consisting of all matrices with, at most, one nonzeroentry. Whenm < n, by completing an m�m matrix to an n�n matrix by adding rows andcolumns of zeros, we see that Bm embeds in Bn. On the other hand, the Kronecker productde�nes an onto homomorphism Bm � Bn ! Bmn. Finally, the mapping P 0(Bn) ! Mnsending a nonempty set X of matrices to the sum of the elements of X (i.e., the matrixhaving an entry 1 precisely at those entries where some element of X has value 1) is anonto homomorphism.So, if we say that a semigroup S divides a semigroup T (written S � T ) if S is ahomomorphic image of a subsemigroup of T , and we write S(n) for the direct product of ncopies of S, we have established the following result.Proposition 2.1. Every �nite semigroup divides some P 0(B(n)2 ).�2.2. GroupsLet S be a semigroup and suppose D is one of its regular D-classes. Let � be theleast equivalence relation on the set of group elements of D which identi�es two elementsif they are either R or L -equivalent. A block of D is a Rees quotient of the subsemigroupof S generated by a �-class, modulo the ideal consisting of the elements which do not liein D. The blocks of S are the blocks of its regular D-classes and are therefore completely[0]-simple semigroups. 2



Let G be a �nite group and consider the semigroup P 0(G). Then the following factsare easily established:� the idempotents of P 0(G) are the subgroups of G;� two elements A and B ofP 0(G) are R (respectively L )-equivalent if and only if thereexists x 2 G such that Ax = B (respectively xA = B);� let H 2P 0(G) be an idempotent; the R (respectively L )-class of H is the set G=Hof its right cosets (respectively the set HnG of its left cosets); therefore the D-classof H is a square of side (G : NG(H)) of H -classes;� the maximal subgroup of P 0(G) containing the element H is(G=H) \ (HnG) = fHx : x 2 NG(H)gand is therefore isomorphic with the quotient NG(H)=H;� the D-class of H may be represented asH �Hx=xH � � � HyHz � � �... . . . ...y�1Hz�1H y�1Hy �y�1Hz� � � � � �... ... . . .where a � marks an idempotent; in particular, the blocks of P 0(G) are groups;� B2 � P 0(G) if and only if P 0(G) has a regular D-class which is not a group, i.e.,G has a subgroup which is not normal;� if G is a non-Abelian group, then G�G has some subgroup which is not normal.We thus have the following result.Proposition 2.2. For every �nite non-Abelian group G, B2 divides P 0(G�G).�2.3. Completely simple semigroupsA rectangular band is a direct product of a left-zero semigroup by a right-zero semigroup.A rectangular group is a regular semigroup whose idempotents form a rectangular band,i.e., a direct product of a rectangular band by a group.It is easily checked that, if S = L�R, where L is a left-zero semigroup and R is a right-zero semigroup, then the semigroup P 0(S) is not regular but its regular elements form therectangular band P 0(L)�P 0(R). More generally, in the �nite case, we have the followingresult. 3



Proposition 2.3. If S = L � G � R be a �nite rectangular group, where and L and Rare as above and G is a group, then the blocks of P 0(S) are (isomorphic with) rectangulargroups of the form P 0(L)�NG(H)=H �P 0(R) where H is a subgroup of G.Proof. Suppose A is an idempotent of P 0(S). Then, since A is a subsemigroup of S,A contains some idempotent (e; 1; f). Let feg � H � ffg be the maximal subgroup of Acontaining (e; 1; f). Since each nonempty intersection A\fe0g�G�ff 0g (e0 2 L, f 0 2 R) isa subgroup of A, A is a union of subgroups. Moreover, A\fe0g�G�ff 0g � fe0g�H�ff 0gand so A = L0 �H �R0 for some L0 � L and R0 � R.The R-class of L0 �H � R0 consists of all subsets of S of the form L0 �Hy � R00 withy 2 G and ; 6= R00 � R. The H -class of such an element of P 0(S) is a subgroup if andonly if y 2 NG(H).Hence each block of P 0(S) is isomorphic with a rectangular group of the form P 0(L)�NG(H)=H �P 0(R).�For the general completely simple case, the situation is more complicated. Even if thesubgroups are Abelian, the blocks need not be completely simple. Take for instance theRees matrix semigroup S =M (f1; 2g; G; f1; 2g;� 1 11 b�)where G = ha; bi is a Klein four-group. Consider the following elements of P 0(S):T = f(1; 1; 1); (1; a; 1)g [ f(1; 1; 2); (1; a; 2)gU = f(2; 1; 1); (2; a; 1)gV = f(2; 1; 1); (2; a; 1)g [ f(2; 1; 2); (2; a; 2)g:Then T and U are idempotents, UT = V , f(1; 1; 1)gV = T , and V f(1; 1; 1)g = U so thatthe block B containing T also contains U by Green's lemma. Now, we haveTU = f(1; 1; 1); (1; a; 1); (1; b; 1); (1; ab; 1)g:Hence every element of P 0(S) which lies J -below TU must have either 0 or (at least) 4elements in each H -class. This shows that B is not simple.3. Pseudovarieties and various operatorsThe examples in section 2 suggest that we consider classes of �nite semigroups closedunder taking divisors and �nitary direct products. Such classes are called pseudovarieties.Throughout this paper, we use bold capital letters to denote pseudovarieties. In particular,the letters V, W, X are generally used to denote arbitrary pseudovarieties.For a class C of �nite semigroups, denote respectively by HC , SC , P�nC , and VC theclasses consisting of all homomorphic images, all subsemigroups, all �nitary direct productsof members of C , and the pseudovariety generated by C . So, in particular, V = HSP�n.Pseudovarieties admit several sorts of equational descriptions but more complicated ingeneral than the classical Birkho� theorem for varieties of algebras. The most useful such4



description seems to be the one given by Reiterman [52]: every pseudovariety is de�ned bya set of \pseudoidentities". Since there are several basic presentations of Reiterman's result(e.g., [52, 11, 18, 34]), rather than de�ning pseudoidentities, let us just say that pseudoiden-tities are formal equalities between certain types of expressions generalizing semigroup terms(i.e., words). The new expressions which are relevant in most of this paper are those whichare built from words using the !-power. The !-power u! is to be (recursively) interpretedin a �nite semigroup as giving the only idempotent power of the interpretation of u. For anonnegative integer k, we abbreviate u!uk by u!+k.For a set � of pseudoidentities, we denote by [[�]] the class of all �nite semigroups whichverify all pseudoidentities from �; this class is a pseudovariety and � is said to be a basisof pseudoidentities for it. The letter variables appearing in a pseudoidentity will usually bechosen to be x; y; z; t; : : :. To make pseudoidentities more compact and hopefully easier toread, we convention that when we write e; f; g; : : : in a pseudoidentity, these letters stand forexpressions of the form x!e ; x!f ; x!g ; : : : where xe; xf ; xg; : : : are new variables that previouslydid not intervene in the pseudoidentity. So, for instance, [[xe = ex]] is the pseudovarietyconsisting of all �nite semigroups whose idempotents are central. Another two convenientconventions are to write u = 1 and u = 0 respectively for uy = yu = y and uy = yu = uwhere y is variable that does not appear in the expression u.By an identity we mean a pseudoidentity whose sides are both words. The set of lettersoccurring in a word u is denoted by c(u). An identity u = v is linear if u and v are bothproducts of distinct variables; if further c(u) = c(v), then u = v is said to be a permutationidentity. We say that a pseudovariety V is linear if it is a union of pseudovarieties of theform [[�]] where � is a set of linear identities.Denote by S the pseudovariety of all �nite semigroups. For a semigroup S, let E(S) bethe set of its idempotents; for X � S, let hXi denote the subsemigroup generated by X.For semigroups S and T , we denote by S � T a semidirect product of S by T which isdetermined by a monoid homomorphism from T 1 into the monoid of endomorphisms of S(cf. [11]).Before introducing further examples of pseudovarieties, we proceed to de�ne some im-portant operators on pseudovarieties. As argued in [11], most of the contemporary theory of�nite semigroups can be viewed as being centered essentially on the study of such operators.For pseudovarieties V and W, letBV = fS 2 S : every block of S lies in VgDV = fS 2 S : every regular D-class of S is a subsemigroup which lies in VgEV = fS 2 S : hE(S)i 2 VgLV = fS 2 S : eSe 2 V for all e 2 E(S)gLinV =\fU : V � U; U is a linear pseudovarietygMV = HSP�nfS1 : S 2 VgPV = HSP�nfP(S) : S 2 VgP 0V = HSP�nfP 0(S) : S 2 VgPdV = fS 2 S : all cyclic subgroups of S lie in VgV _W = HSP�n(V [W) = HSfS � T : S 2 V; T 2WgV �W = HSP�nfS � T : S 2 V; T 2Wg = HSfS � T : S 2 V; T 2Wg
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V
m W = HSfS 2 S : (9T 2W) (9 a homomorphism ' : S ! T )(8e 2 E(T )) e'�1 2Wg.Here are now a number of examples of pseudovarieties and their de�nitions by pseu-doidentities. Some of the results summarized below are not trivial.A = f�nite aperiodic semigroupsg = [[x!+1 = x!]]Ab = f�nite Abelian groupsg = [[e = 1; xy = yx]]B = f�nite bandsg = [[x2 = x]]BG = [[(ef)! = (fe)!]]Com = f�nite commutative semigroupsg = [[xy = yx]]CR = f�nite completely regular semigroupsg = [[x!+1 = x]]CS = f�nite (completely) simple semigroupsg = [[x!+1 = x; (xy)!x = x]]D = [[xe = e]]D1 = f�nite right-zero semigroupsg = [[xy = y]]DA = [[(xy)!(yx)!(xy)! = (xy)! ; x!+1 = x!]]DS = [[((xy)!(yx)!(xy)!)! = (xy)!]]EDS = BCS = [[(e(fxe)!f)!+1 = e(fxe)!f ]] [11]G = f�nite groupsg = [[e = 1]]I = ftrivial semigroupsg = [[x = y]]J = f�nite J -trivial semigroupsg = [[(xy)!x = (xy)! = y(xy)!]]K = [[ex = e]]K1 = f�nite left-zero semigroupsg = [[xy = x]] = B \KLI = f�nite locally trivial semigroupsg = [[exe = e]]MD = [[exe = xe]] [45]MK = [[exe = ex]] [45]MK1 = [[x2 = x; xyx = xy]] = B \RMLI = [[x!yxzx! = x!yzx!; x!yxztz! = x!yzxtz!]] [4]MN = [[ex = xe; x!+1 = x!]] = ZE \A [59]MNB = [[x2 = x; xyxzx = xyzx]] = B \MLIN = f�nite nilpotent semigroupsg = [[e = 0]]NB = f�nite normal bandsg = [[x2 = x; xyzx = xzyx]] = B \PermPerm = f�nite permutative semigroupsg = [[exyf = eyxf ]]R = f�nite R-trivial semigroupsg = [[(xy)! = (xy)! ]]ReG = f�nite rectangular groupsg = [[x!+1 = x; efe = e]]RO = f�nite regular orthogroupsg = [[x!+1 = x; xyx!zx = xyzx]] [44]Sl = f�nite semilatticesg = [[x2 = x; xy = yx]]VfB2g = VfBng = [[x3 = x2; x2y2 = y2x2; xyxyx = xyx]] [65; 66]ZE = [[xe = ex]] =G _Com [5]:
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4. ProblemsIn applications of �nite semigroup theory, one is interested in obtaining algorithms todetermine whether a �nite semigroup belongs to a certain pseudovariety V. More generally,we say that a class C of �nite semigroups is decidable if there is an algorithm to decidewhether a �nite semigroup belongs to it.We now list a number of questions involving operators on pseudovarieties.Decidability. Let us call decidability question for an operatorO the question as to whether,for every decidable pseudovarietyV, OV is also decidable. The basic di�culty of �nitesemigroup theory is that most often, the operators on pseudovarieties are de�ned interms of generators and the decidability question for the operator V has a negativeanswer. This is known to happen even under further restrictions, namely for theoperators _, �, and 
m the decidability question also has a negative answer [1, 53].For other operators, such as B, D, E , L, and Pd , it is easy to show that the decidabilityquestion has an a�rmative answer. Often, calculations involving these operators endup giving casuistic relationships between them.Image. Another type of problem which is of interest consists in determining the image of agiven operator. For the operators B, D, and E , the problem of determining the imagedoes not seem to have been considered. For instance, given a pseudovariety V (sayby a de�ning set of pseudoidentities or by an algorithm to test membership in V),determine if it is of the form V = EW for some pseudovariety W.Equations. A generalization of the image problem consists in solving equations involvingthe operators. For example, the equation X � D = LX has attracted considerableattention and it has played an important role in understanding semidirect products[28, 60, 64, 11]. It remains an open question what are the idempotent pseudovarietieswith respect to the operation � (which is associative). Disproving conjectures proposedin [11], L. Teixeira [62] has recently showed that there are uncountably many suchidempotents among the aperiodic pseudovarieties.Irreducibility. For the binary operators _, �, and 
m , there is a related question whichconsists in determining which pseudovarieties decompose nontrivially using these oper-ators. The paper [38] contains a class of examples of indecomposable pseudovarieties.See also [11] for further information on the operators _ and �.Basis. Another type of problem that has received considerable attention is to determine abasis of pseudoidentities for the result of applying an operator to pseudovarieties forwhich bases are known. Formulated as such, this does not appear to be relevant toobtain decidability applications. However, the main result in [19] is of this type andhas led to substantial decidability applications.Finite basis. Assuming that the operands have �nite bases of pseudoidentities, we askwhether applying one of the operators the resulting pseudovariety also has a �nitebasis. For most operators the answer is negative.
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Computable �nite basis. This is similar to the preceding problem but it is assumed thatthe bases for the operands only involve expressions which can be e�ectively computed,and this further requirement is also sought for the result of applying the operators.Preservation of _/\. An a�rmative answer for this kind of question can be extremelyuseful, shedding new light on the lattice of pseudovarieties [22]. For the operatorsconsidered here, an a�rmative answer in both cases does not seem very likely.Number of iterates. For a unary operator O, we ask how many di�erent operators canbe obtained by repeatedly composing O with itself. This measures on one hand howfar the operator is from being an idempotent, and on the other hand, the potentialfor the operator to yield a nontrivial decomposition theory. From this point of view,the unary operators P and P 0 are particularly interesting.Although this paper is devoted mostly to the power operators, since there are so manyrelationships among the operators of section 3, it is worthwhile considering these questionsfor them. Some of the questions are somewhat meaningless or trivial for some of theoperators. We gather a summary of results in Table 1 where� a blank entry means that the author is unware of any material in the literature whichis directly relevant;� a question mark in an entry means that the problem has, at least implicitly, beenconsidered in the literature;� a Y/N entry means, respectively, that the answer for the question in the line containingit for the operator in the column containing it is a�rmative/negative;� references in the heading for a row or column apply to the whole of it;� in general, the indicated references either directly justify the entry or contain relatedmaterial;� in the presence of a Y/N and the absence of references, the answer is elementary;� in the \Image" row, (V) in an entry means that there is a natural bijection betweenthe image of the operator in the corresponding column and the lattice of subpseu-dovarieties of V.5. A review of partial resultsWe now concentrate on the power operators and review the main results concerningthem. Earlier surveys on the power operator can be found in [47, 7, 11].Since we are concerned here only with the semigroup theoretic aspects of the operator,we will not go into details on the relationships with some natural operators on classes ofrational languages which actually provided the initial motivation for the study of the poweroperators. We refer the reader to [11, Section 11.2] for an introduction to this facet and forfurther references. 8



B D E L Lin [11] M [11] P [11] P 0 [11] Pd [11]Decidability Y Y Y Y ? ? ? YBasis Y Y Y Y Y ? ? YFinite basis Y N [68, 69] Y Y Y N N YComputable �nite basis Y { Y ? ? { { YImage (CS) ? ? (Ab)Preserves _ N [14, 17] ? [11] N Y N NPreserves \ Y Y Y Y N N N N YNumber of iterates 1 1 1 1 1 1 3 3 1_ � 
mDecidability [1, 53, 56] N [12] N [12] N [50]Basis N [11, 58] N [19, 12, 16] N [50, 56]Finite basis [68, 67] N N NPreserves _ (�xing left variable) YPreserves _ (�xing right variable) Y Y [11]Preserves \ (�xing left variable) N NPreserves \ (�xing right variable) N [19, 15] Y [50]Table 1: A summary of properties and problems concerning various operators on pseudovarieties
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Another kind of motivation that has prompted developments in the area is the challengeto deal with an apparently computationally intractable operator. Due to its exponentialcharacter, it is inviable to work out complete examples before guessing what is going on,since very small examples have limited importance.The �rst easy remark consists in noting that dealing with the empty set instead of justwith nonempty subsets of a semigroup just means adding an extra zero, which amounts, upto division, to taking a product with a semilattice. Moreover, it is easy to check that P 0LI �LI and, if S contains a nontrivial monoid, thenP 0(S) contains a nontrivial semilattice. Thisallows us to relate the operators P 0 and P as follows.Lemma 5.1. a) PV = P 0V _ Sl.b) P 0V = PV , V * LI.In view of Lemma 5.1(b), we will only refer to both operators P 0 and P when dealingwith pseudovarieties of locally trivial semigroups.The next observation, which seems to be due to S. Margolis, follows from Proposition 2.1.Proposition 5.2. P 0VfB2g = S.�Conversely, we have the following solution of an equation on pseudovarieties for whicha proof using pseudoidentities can be found in [9]. The original result concerned pseudova-rieties of monoids, instead of semigroups. But, as observed in [11, Exercise 11.10.1], thisfact really makes no di�erence.Theorem 5.3 [39]. A pseudovariety X satis�es the equation PX = S if and only if B2 2 X.From Proposition 2.2, we in turn obtain the following formulation in terms of the poweroperators.Proposition 5.4. If V contains some non-Abelian group, then P2V = S.�More generally, the presence of a non-commutative monoid accounts for a somewhatslower blowup in the power.Theorem 5.5 [41]. If V contains a non-commutative monoid, then P3V = S.Since PCom � Com, for pseudovarieties of monoids Theorem 5.5 completes the pictureof possible blowups, the converse being also true. For semigroups, the situation is morecomplicated.Theorem 5.6 [3]. If V contains some non-permutative semigroup, then P3V = S.The converse again follows from the simple observation that PPerm � Perm. But itwas only a few years later that a more complete picture became available concerning thebehaviour of the power operators on pseudovarieties of permutative semigroups.
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Theorem 5.7 [11]. The value of the power operator on pseudovarieties of permutativesemigroups is given by the formulaP 0V = LinV \ PdV = P 02V: (1)The extent to which the above formula is e�ective depends on the ability to compute theoperators Lin and Pd . As to the operator P, if V � LI, then PdV = A and so P 0 coincideswith Lin on pseudovarieties of locally trivial semigroups. The join of linear pseudovarietieswith Sl is not hard to compute [11, Proposition 6.3.16], thus reducing the calculation of Pto that of P 0.As a corollary of Theorems 5.6 and 5.7, one may deduce the following.Theorem 5.8 [3]. The semigroup of operators on pseudovarieties generated by fP 0;Pg haseight elements and is de�ned by the following relations:P 0P = P2; P2P 0 = P3; P 04 = P 03; P 03P = P 02P; PP 03 = PP 02:As to the groups present in power semigroups, the following result says that no newgroups show up if we avoid B2. Note that a pseudovariety does not contain B2 if and onlyif it is contained in DS. For a pseudovariety H of groups, let H denote the pseudovarietyconsisting of all �nite semigroups whose subgroups lie in H.Theorem 5.9 [39]. If H is a pseudovariety of groups, then PV � PDS \H if and only ifV � DS \H.In particular, the operator P restricted to pseudovarieties of groups is injective. Theapriodic case of Theorem 5.9 is worth mentioning separately.Corollary 5.10 [51]. PV � A , V � DA.We showed in subsection 2.2 that PG � BG. Margolis and Pin [42] proved the followingchain of inclusions and equalities:PG = J �G � J
m G = EJ = BGand asked whether they are all equalities. This was con�rmed by Henckell and Rhodes [33](see also [32, 48]) using results of Knast [37] and Ash [21], both of which are considered tobe very deep and hard results.Theorem 5.11 [33]. PG = BG.A related equation has also been solved.Theorem 5.12 [11]. PX = BG , G � V � ZE.
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For a more re�ned analysis of the behaviour of the power operators on pseudovari-eties containing non-permutative semigroups, following the earlier work of Margolis andPin [41, 45], the author endeavored to compute the powers of the minimal non-permutativepseudovarieties which he had obtained [3] extending the monoid case [41]. These pseudova-rieties are generated either by a �nite non-Abelian group (and the necessary groups havebeen determined in [2, 11]), one of the semigroups presented byN1 = ha; b; a2 = b2 = ba = 0i1B(1; 2)1 = he; f ; ef = ee = e; fe = ff = fi1B(2; 1)1 = he; f ; ef = ff = f; fe = ee = ei1Y = he; s; f ; e2 = e; f2 = f; es = sf = s; ef = fe = 0iQ = he; s; t; e2 = e; es = s; te = t; se = et = ts = 0i;or one of the following Rees matrix semigroups, where p denotes a prime integer and Zp acyclic group of order p generated by a:Kp =M (2; Zp; 2;� 1 11 a�):In the group case, perhaps it is more enlightening to give the minimal pseudovarietiescontaining a non-Abelian group in terms of pseudoidentities. To do so, for k � 1, denoteby s!�k the power of an element s of a �nite semigroup which is the inverse of s!+k inthe cyclic subgroup generated by this element, and de�ne length 2 and 3 commutators by[x; y] = x!�1y!�1xy and [x; y; z] = [[x; y]; z]. The pseudovarieties in question are then thefollowing [11]: [[x4 = 1; [x; y]2 = q; [x; y; z] = 1]][[xp = 1; [x; y; z] = 1]] for a prime p > 2[[xpq = 1; [xq; yq] = 1; [x; y]p = 1]] for p and q distinct primes:There seems to have been no progress in the group case beyond Theorem 5.11 and theAbelian case (which is included in Theorem 5.7).For V(N1), we have the following result.Theorem 5.13 [45]. a) PV � J , V �MN.b) PV = J , N1 2 V and V �MN.c) PV � R , V �MK.The powers of V(B(1; 2)1) =MK1 and MK (and so their duals) have also been com-puted [11], along with all powers of pseudovarieties contained in MK but not in Perm.The description of such calculations would be too long and technical to be included here.It actually contains some errors which will be hopefully corrected in a forthcoming paper.We will just mention here that both PMK1 and PMK are decidable pseudovarieties andthere is no solution to the equation PX = R.A related result which is relevant in view of Corollary 5.10 is the following.12



Theorem 5.14 [13]. For a pseudovariety V, we have PV � DA if and only if V �MK_D, V � K _MD, or V � [[exeyxfyf = exyf ]].Con�rming the author's guess put forward in [11], the following computation (for whichof course there is a dual result for K _MD) was achieved by Azevedo and Zeitoun [23]:MK _D = [[exeyf = exyf; x!+1 = x!]]:Following [46], let us call the exponent of a pseudovariety not contained inPerm the leastnonnegative integer n such that PnV = S, where we let P0V = V. By Theorem 5.6, theexponent of a pseudovariety is either unde�ned or at most 3. The following result extendsthe calculation of the exponent for pseudovarieties of aperiodic monoids which follows fromthe results of [10]. To present it, we need to introduce some more small semigroups. Denoteby FnV the free semigroup on n generators in the variety generated by V. Consider alsothe semigroup with the following presentation:I = he; s; t; e2 = e; es = s; s2 = se; et = st; te = ts = t2 = ti:For a semigroup S, let S� denote its dual which is obtained by transposing the table ofmultiplication of S.Theorem 5.15 [13]. For a non-permutative pseudovariety V of aperiodic semigroups,a) V does not have exponent 0;b) V has exponent 1 if and only if B2 2 V;c) V has exponent 2 if and only if B2 =2 V and V contains at least one of the semigroupsY , Q, I, I�, F3[[x2 = x; xyzxz = xyz]], and F3[[x2 = x; xzxyz = xyz]];d) V has exponent 3 if and only if V contains none of the semigroups in (c).An interesting connection with language theory is given by the following result which isessentially an application of Sch�utzenberger's characterization of the languages recognizedby semigroups in DA [54].Proposition 5.16 [49]. The languages recognized by semigroups in PDA are the rationallanguages of dot-depth 2.It remains an open problem to decide when a rational language has dot-depth 2 [61],i.e., whether PDA is decidable. As far as the approach to this problem by using powersemigroups is concerned, the following result seems relevant.Theorem 5.17 [6]. PX = PDA , Y 2 V and V � DA.The semigroup Y also plays a role in the following result.Theorem 5.18 [8]. The following conditions on a pseudovariety V are equivalent:13



i) PV � Com �D;ii) PV � LCom;iii) V � LCom and Y =2 V;iv) V � LCom \ [[(ef)!exf = exf ]].In connection with Theorem 5.18, it is worth mentioning the following result of Th�erienand Weiss [63]: Com �D = [[exfyezf = ezfyexf ]] $ LCom:The aperiodic case is also of interest and yields the solution of another equation involvingone of the generators of minimal non-permutative pseudovarieties.Theorem 5.19 [8]. PX = (Com�D)\A , Q 2 V and V � LCom\[[efexf = exf ]]\A.For pseudovarieties of monoids, there are further simpli�cations which have alreadyallowed the author to give a complete picture of the image of the power operator on pseu-dovarieties of aperiodic monoids [10] which we now describe. The result, which turns out tobe a modular lattice under inclusion, departs from the description of the lattice of pseudova-rieties of band monoids which was obtained by Wismath [70]. Both lattices are depicted inFigure 1, where we denote by M the pseudovariety of all �nite monoids.
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Figure 1: The lattice of pseudovarieties of band monoids andthe lattice of powers (under P 0) of pseudovarieties of aperiodic monoidsIn particular, the power operator is injective when restricted to pseudovarieties of bandmonoids. In the picture of the lattice of powers, all pseudovarieties in the interval between14



PMNB and PDA remain unknown. The corresponding picture for the semigroup case isstill unknown. The extra complications are due to at least two reasons. First, the intervalbetween PMK1 and PMK becomes nontrivial [11]. Second, the lattice of pseudovarietiesof bands is more complicated than its monoid counterpart [70].The above results seem to indicate that, apart from the pseudovariety PDA, most ofthe interesting questions on the power operator will involve the calculation of the powersof pseudovarieties of completely regular semigroups. At present, not much is known in thisdirection.For the pseudovariety PCR itself, the following upper bound is given in [11, Exercise11.11.7]: (x!+1y!+1)! = [x!+1(yx)!y!+1]!:But this is a rather ad hoc upper bound which nothing leads to believe might be strict.For P(CS \ Ab), a little re�nement of the arguments in [11, Section 11.9], which wenow present, gives an interesting upper bound. First of all, it is an elementary exercise toshow that CS \Ab = Ab �D1. By Theorem 5.18, it follows thatP(CS \Ab) � Com �D:Using [11, Corollary 10.7.4] or a direct calculation, it is then an easy matter to show thatCS \Ab satis�es the following pseudoidentity:stxyz = sxyzs(sxzs)!�1stxz: (2)Now, let subsets A and B of a semigroup S 2 CS \Ab be given and let m be a positiveinteger such that P 0(S) satis�es the pseudoidentity x! = xm. Then, for every k � 2 andl 2 Z, taking s 2 Ak, t 2 B, x 2 Ak�1, y 2 A!�l, and z 2 A, stxyz describes an arbitraryelement of AkBA!�l+k, whereas sxyzs(sxzs)!�1stxz lies inA3k+k�1+1+!�l+(!�1)(2k+k�1+1)BAk�1+1 = A!�l+kBAk:By the pseudoidentity (2), it follows that AkBA!�l+k � A!�l+kBAk, and equality followsby symmetry. This proves the folowing result which extends [11, Proposition 11.9.8].Proposition 5.20. The pseudovariety P(CS\Ab) satis�es the pseudoidentity xkyx!+l =x!+lyxk for every k; l 2 Z with k � 2.�On the other hand, by Theorem 5.9, we haveP(CS \Ab) � Ab;a result which is also a corollary of Proposition 5.20. According to [11, Exercise 11.9.9], therestriction k � 2 may not be removed in the above statement. The best upper bound knownfor the power of the pseudovariety VfKpg is the one given by Proposition 5.20 together withTheorem 5.9 which gives the pseudoidentity x!+p = x!.Proposition 2.3 has recently been extended as follows.Proposition 5.21 [27]. PRO � BReG. 15



In case the subgroups are Abelian, Cola�co [27] also characterized which V � RO \Abhave PV � DS and these results were crucial to give the following characterization ofthe exponent for pseudovarieties of monoids. To state it, we need another two families ofsemigroups. For n � 2, the semigroup Sn is given by the setSn = fe1; : : : ; eng � Zn [ ff1; : : : ; fng;where fe1; : : : ; eng is a left-zero subsemigroup, Zn is a cyclic group with generator a,fe1; : : : ; eng�Zn is a rectangular group subsemigroup, the fi are left zeros, and (ei; aj)fk =fi+j ( mod n). Also for n � 2, Tn is the monoid de�ned by the following presentation:Tn = ha; b; an = 1; ab = b; b2 = 0i:Theorem 5.22 [27]. Let V be a non-commutative pseudovariety of monoids. Then:a) V has exponent 0 if and only if V =M;b) V has exponent 1 if and only if B12 2 V;c) V has exponent 2 if and only if B12 =2 V and V contains a non-Abelian group or oneof the monoids Y 1, S1n, (S1n)�, or Tn (n � 2);d) V has exponent 3 if and only if V contains none of the monoids mentioned in (c).6. ExtensionsBy a relational morphism � from a semigroup S to a semigroup T , we mean a subsemi-group of S � T which, as a relation, has domain S. A V-pointlike subset of a semigroup Sis a subset X of S such that, for every relational morphism � : S ! T with T 2 V, thereexists t 2 T such that X�ftg � �. We denote byPV(S) the set of all V-pointlike subsetsof S which constitutes a subsemigroup of P(S). For two pseudovarieties V and W, we letPVW = VfPV(S) : S 2Wg = HSfPV(S) : S 2Wg:For instance, algorithms for the computation ofPG(S) andPA(S) have been obtainedrespectively by Ash [21] and Henckell [30, 31]. So, a natural question that comes up is tostudy the operators PG and PA. Cola�co [27] has started the study of the operator PG,leading to some rather interesting results which we now brie
y describe.Another semigroup which has played a role in various contexts is the one described bythe following presentation:A2 = ha; b; a2 = a; b2 = 0; aba = a; bab = bi:Consider also the semigroup presented byZ = he; f ; e2 = e; f2 = f; fe = 0i:Extending work of Ash [20] for the semilattice case, Margolis, Birget and Rhodes [40]showed that B 
m G = [[(ef)2 = ef ]]. It follows that, for every subpseudovariety of B,16



V
m G = EV. On the other hand, Cola�co and the author have shown that DS �G = EDS,while from results of Ash [32] and Jones and Trotter [36]1 it follows that DS�G = DS
mG.2This gives a hint of what is going on with the operator PG.The G-exponent of a pseudovariety V is the least integer n � 0 such that PnGV = Mif such an integer exists, where P0GV = V. If there is no such integer, we say that theexponent of V is in�nite.Theorem 6.1 [27]. Let V be a pseudovariety of monoids. Thena) V has G-exponent 0 if and only if V =M;b) V has G-exponent 1 if and only if V 6=M and A12 2 V;c) V has G-exponent 2 if and only if both Z1 2 V and V � EDS, or both V � ECRand V * EMNB;d) V has G-exponent 3 if and only if V * ESl and V � EMNB;e) V has in�nite G-exponent if and only if V � ESl.Another possible direction for extending the theory of power pseudovarieties is to lookat subsets of a semigroup S as formal series in the elements of S with coe�cients in theBoolean semiring B = f0; 1g (where a coe�cient of 1 indicates that the element belongsto the subset). Thus, P(S) is just the multiplicative semigroup of the semigroup semiringB[[S]]. By considering semirings other than B, one may develop similar results. This hasbeen done in part by Blanchard [24, 25].References1. D. Albert, R. Baldinger, and J. Rhodes, The identity problem for �nite semigroups (the unde-cidability of), J. Symbolic Logic 57 (1992) 179{192.2. J. Almeida, Power pseudovarieties of semigroups I, Semigroup Forum 33 (1986) 357{373.3. , Power pseudovarieties of semigroups II, Semigroup Forum 33 (1986) 375{390.4. , On pseudovarieties of monoids, in Semigroups: Theory and Applications, H. J. et al,ed., vol. 1320 of Lect. Notes in Mathematics, Berlin, 1988, Springer, 11{17.5. , Some pseudovariety joins involving the pseudovariety of �nite groups, SemigroupForum 37 (1988) 53{57.6. , The equation PX = PJ, in Semigroup and its Related Fields, M. Yamada and H.Tominaga, eds., vol. 1-11, Matsue University, 1990.7. , On the power semigroup of a �nite semigroup, Portugali� Mathematica 49 (1992)295{331.1The result of Jones and Trotter (namely the locality ofDS) depends on a result of Jones and Pustejovsky[35] whose proof L. Teixeira has shown to be 
awed. Recently, Steinberg [57] has announced a proof of theresult previsouly stated by Jones and Pustejovsky.2This equality also follows from DS �G = EDS since it is easy to show that DS �G � DS
m G � EDS.
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