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1 First order ODE

1.1 Introduction

An Ordinary differential equation (ODE) is an equation involving an unknown function and its

derivatives with respect to an independent variable x:
F(z,y, y M y(k)) =0.

Here, y is the unknown function, z is the independent variable and y¥) represents the j-th derivative

of y. We shall also denote

y/ — y(l), y// — y(2)7 y/// _ y(3).

Thus, a first order ODE is of the form
F(z,y,y') = 0. (%)

Sometimes the above equation can be put in the form:

y = fz,y). (1)

By a solution of (*) we mean a function y = ¢(z) defined on an interval I := (a,b) which is

differentiable and satisfies (x), i.e.,

Example 1.1.
Note that, for every constant C, y = 22/2 + C satisfies the DE for every x € R. &

The above simple example shows that a DE can have more than one solution. In fact, we obtain a
family of parabolas as solution curves. But, if we require the solution curve to pass through certain

specified point then we may get a unique solution. In the above example, if we demand that

y(@o) = o
for some given xg, yo, then we must have
2
T
Yo = ?0 +C
so that the constant C' must be )
O T
=%Yo 9 -
Thus, the solution, in this case, must be
e
Y= D) Yo 5



1.2 Direction Field and Isoclines

Suppose y = ¢(z) is a solution of DE (1). Then this curve is also called an integral curve of the
DE. At each point on this curve, the tangent must have the slope f(x,y). Thus, the DE prescribes a
direction at each point on the integral curve y = (). Such directions can be represented by small
line segments with arrows pointing to the direction. The set of all such directed line segments is called
the direction field of the DE.

The set of all points in the plane where f(z,y) is a constant is called an isocline. Thus, the family

of isoclines would help us locating integral curves geometrically.

Isoclines for the DE: y' = x + y are the straight lines x +y = C.

1.3 Initial Value Problem

An equation of the form
y' = fz,y) 1)

together with a condition of the form the form

y(zo) = yo (2)
is called an initial value problem. The condition (2) is called an initial condition.

THEOREM 1.2. Suppose f is defined in an open rectangle R = I x J, where I and J are open
intervals, say I = (a,b), J = (¢,d):

R:={(z,y):a<ax<b, c<y<d}

0
If f is continuous and has continuous partial derivative —f in R, then for every (zo,y0) € R, there

dy
exists a unique functiony = ¢(x) defined in an interval (xo—h, zo+h) C (a,b) which satisfies (1)—(2).

Remark 1.3. The conditions prescribed are sufficient conditions that guarantee the existence and
uniqueness of a solution for the initial value problem. They are not necessary conditions. A unique
solution for the initial value problem can exist without the prescribed conditions on f as in the above
theorem. &

e The condition (2) in Theorem 1.2 is called an initial condition, the equation (1) together with

(2) is called an initial value problem.
e A solution of (1) the form
y = (x,0),

where C' is an arbitrary constant varying in some subset of R, is called a general solution of

(1)



e A solution y for a particular value of C is called a particular solution of (1).
e If general solutions of (1) are given implicitly in the form
u(z,y,C) =0
arbitrary constant C, then the above equation is called the complete integral of (1).
e A complete integral for a particular value of C is called a particular integral of (1).

Remark 1.4. Under the assumptions of Theorem 1.2, if x¢ € I, then existence of a solution y for (1)

is guaranteed in some neighbourhood Iy C I of z(, and it satisfies the integral equation

va) =wn+ [ eyt
o
A natural question would be:

Is the family of all solutions of (1) defined on I a one-parameter family, so that any two

solutions in that family differ only by a constant?

It is known that for a general nonlinear equation (1), the answer is nt in affirmative. However, for

linear equations the answer is in affirmative. &

1.4 Linear ODE

If f depends of y in a linear fashion, then the equation (1) is called a linear DE. A general form of
the linear first order DE is:

Y+ plx)y = q(x). (3)

Here is a procedure to arrive at a solution of (3):

Assume first that there is a solution for (3) and that after multiplying both sides of (3) by a
differentiable function p(x), the LHS is of the (u(z)y)’. Then(3) will be converted into:

so that
@)y = /Q(x)dx +C.

Thus, p must be chosen in such a manner that
Wy +py' = ply +py)-

Therefore, we must have

, . dp
Wy=ppy, ie, p'=pp, ie, —==pdr,



ie.,

Thus, y takes the form

v-t [ [ wtwytwrte+ c} L ) = el P, (1)

It can be easily seen that the function y defined by (4) satisfies the DE (3). Thus existence of a

solution for (3) is proved for continuous functions p and gq.

Suppose there are two functions ¢ and ¢ which satisfy (3). Then x(z) := ¢(x) — ¢ (z) would
satisfy
X'(z) +p(a)x(z) = 0.

Hence, using the arguments in the previous paragraph, we obtain

x(z) = Cp(z) "
for some constant C.

Now, if p(x9) = yo = (7o), then we must have x(z¢) = 0 so that Cu(x)~! = 0. Hence, we obtain
C = 0 and hence, ¢ = ¥. Thus, we have proved the existence and uniqueness for the linear DE only

by assuming that p and ¢ are continuous.

Example 1.5.
y=x+y.

Then, 1 = e~/ % = ¢~ and hence,

y=e" [/ e *xdx + C’] =e {—xe‘z + / e dx + C’} .

Thus,
y=e® [—xe‘x —e " —i—C] =—x—1+4Ce".
y0)=0 = 0=-1+C = C=1
Hence,
y=—x—1+¢€".
Note that

y=—-1+e"=-1+(x+y+1)=z+y.



1.5 Equations with Variables Separated

If f(x,y) in (1) is of the form
flzy) = fi(2)f2(y)

for some functions fi, fa, then we say that (3) is an equation with separated variables. In this

case (3) takes the form:
y' = fi(@) f2(y);

equivalently,
/

y __ T
m_fl( )7

assuming that fo(y) is not zero at all points in the interval of interest. Hence, in this case, a general

solution is given implicitly by

dy = x)axr
Rw_/ﬁUd+G

Example 1.6.
y = zy.
Equivalently,
9 _ xdz.
Yy
Hence,
22
logly| = - +C,
2
ie.,
y= 01612/2.
Note that

y=Cre" 2 = o =0 (e“"z/zx) = xy.

¢
An equation with separated variables can also be written as
M (z)dx + N(y)dy = 0.
In this case, solution is implicitly defined by
/M@M+/N@@:0 (5)
Equation of the form
M (z)N1(y)dz + Ma(2)Na(y)dy =0 (6)

can be brought to the form (5): After dividing (6) by N1(y)Maz(z) we obtain

M (z) No(y) ,
Mz(w)dx * Nl(y)dy =0




1.6 Homogeneous equations

A function f: R — R is said to be homogeneous of degree n if
fQx,Ay) = A" f(z,y) YAeER

for some n € N.

The differential equation (1) is called a homogeneous equation if f is homogeneous of degree
0, i.e., if
fQz, \y) = f(z,y) VAeR.

Suppose (1) is a homogeneous equation. Then we have

v = flay) =D =), u=

Now,
d
u:g = uxr =y= u+x—u:y’:f(1,1t)-
T dx
Thus,
du dx

f(Lu) —u z
and hence, u and therefore, y is implicitly defined by

du dx
[ =5+
1.7 Exact Equations

Suppose (1) is of the form
M(z,y)dz + N(z,y)dy =0, (7)

where M and N are such that there exists u(x,y) with continuous first partial derivatives satisfying

ou Ju
M _ %N Sy
(@) = o0 Nlop) = 5 0
Then (7) takes the form
ou ou
—d —dy = 0;
oz’ + Oy y=0
equivalently,
du = 0.

Then the general solution is implicitly defined by
u(z,y) =C.

Equation (7) with M and N satisfying (8) is called an exact differential equation.



0%u

0x0dy

Note that, in the above, if there exists u(x,y) with continuous second partial derivatives

2

0“u
—, th
and 8y8x’t en

oM _on
oy  Ox’

In fact it is a sufficient condition of (7) to be an exact differential equation.

THEOREM 1.7. Suppose M and N are continuous and have continuous first partial derivatives
oM

a—y andaa—x in I xJ, and
oM _oN
oy Oz’
Then the equation (7) is exact, and in that case the complete integral of (7) is given by
x y
| Mz [ Nopiy=c.
zo

Yo

Proof. Note that for any differentiable function g(y),
u(e.y)i= [ Mlz)ds + (0
o

0
satisfies = = M (z,y). Then

or
ou oM /
331_/% 7yd;)j—|— / —dz +¢'(y) = N(z,y) — N(x0,y) + ¢ (y).
Thus,
ou , Y
3 =N < ¢ (y) = N(z0,y) < g(y)=/ N (zo,y)dy.
Yo

Thus, taking
Yy xT
oy) = / N(zo,y)dy and ulz,y) = / M(z, y)dz + g(y)
Zo

Yo
we obtain (8), and the complete integral of (7) is given by

@ y
/ M(z, y)da + / N(ao,y)dy = C.
Zo Yo

O
Example 1.8.
y cos zydzx + x cos zydy = 0.
0
o(r,y) =sinzy — @ _ rcoszy and @ _ T COS LY.
Ox dy
Hence, sinzy = C. Also,
d d
ycoszydr + xcoszydy =0 <— y’ = _Y <~ @ + bl =0.
x x y
Hence, log |zy| = C. ¢



Example 1.9.

In this case
oM  6x ON

Dy g on
Hence, the given DE is exact, and w is give by
z?
3

)

wu(z,y) = /de+/N(0,y)dy _

< | =

so that the complete integral is given by u(z,y) = C. &

1.8 Equations reducible to homogeneous or variable separable or linear or

exact form
1.8.1 Reducible to homogeneous or variable separable form

Note that the function
ax + by +c

z,Yy) = ————
f@y) a1r + b1y + ¢

is not homogeneous if either ¢ # 0 or ¢; # 0, and in such case,

Y few) (1)

is not homogeneous. We shall convert this equation into a homogenous equation in terms a variables:

Consider the change of variables:

Then
ar+by+c=a(X+h)+bY +k)+c=aX+bY + (ah + bk + ¢),

al$+b1y+01 = al(X—l—h) +b1(Y+I€) +c1 = a1X+b2Y+ (a1h+b1k+01).

There are two cases:

Case(i): det (a b) # 0.
by

In this case there exists a unique pair (h, k) such that

ah+bk+c=0 (2)

a1h+b1k—|—01 (3)
are satisfied. Hence, observing that

dY —dY dy dx dy

dX ~ dy dvdX  dx’



the equation (1) takes the form
dY aX +bY

X~ aX +0Y’
This is a homogeneous equation. If Y = ¢(X) is a solution of this homogeneous equation, then a
solution of (1) is given by

y=k+o(x—h).

b
Case(ii): det (a ) = 0. In this case either
a1 01

a1 =aa, by =ab forsome acR

or
a1 = Bayi, b = Bby for some B € R.
Assume that a; = aa and b; = ab for some o € R. Then, (1) takes the form

dy — ar+by+c  ax+by+c
dx_a1x+b1y+61_a(a$+by)+cl'

Taking z = ax + by, we obtain

dz dy z+c
Y e A L
dx ot dx ot (a(z—I—cl)

This is an equation in variable separable form.

Example 1.10.
dy 2z+y—1

dr  4r+2y+5
Taking z = 2x + v,

%—2+@72+ -1 4z _52+49
de de 2z 45 de  2z+45’
ie.,
22+ 5
dz = dx.
5219 T
Note that

2245 (1) 102425 (1\2(2+9)+7 (2 N 7 1
5249 \5/) 5249  \5 5249  \5 5) 5249

2 2 7
/;ISdz:infdx = €Z+%10g|52+9|=x+9

2(2x + 7
%+%log|5(2x+y)+9|:z+9

Thus, the solution y is given by

sr+2y 7
x; y+%log|10x+5y+9|:m+9.

10



1.8.2 Reducible to linear form

Bernauli’s equation:

Y +p(r)y = q(z)y".

Write it as
y~"y 4 p(e)y " = g(a).
Taking z = y~"*1,
dz _ndy
Z = cn )y = (cn o+ D)z + (@),
ie.,
dz
7~ (FntDp(@)z = (-n+1)g(x).
Hence,
1
y = m (/u(w)(—n + Dg(z)dx + C) . op(z) = e(=n+1) [p(z)dz
Example 1.11.
@ +xy = x3y3.
dz

Here, n = 3 so that —n + 1 = —2 and

/J(,T) _ e(—n+1)fp(ac)dac _ e—fodac _ e—x2.

- ﬁ ( / () (=n + l)q(x)dx—I—C') — ( / —2e‘z2x3dx+0)

= 2" (/ e 23dy — C/2> .

(22 +1+ Ce””2)y2 =1.

Gives:

1.8.3 Reducible to exact equations

oM ON OM ON
Suppose M (x,y) and N(x,y) are functions with continuous partial derivatives —, —, —, —.
dr’ Ox’ Oy Oz

Consider the differential equation
M(z,y)dz + N(z,y)dy = 0.

Recall that it is an exact equation if and only if
oM  ON
oy  Ox’
Suppose the equation is not exact. Then we look for a function u := p(z) such that

pw(z)[M(z,y)dz + N(z,y)dy] =0 (*)

11



is exact. So, requirement on g should be

B) d oM  ON
= (uM) = —(uN), i.e, g = pi— + ' N
ay(“ )= 5,1 ),Ze,uay P TH

o #_1(oM oN
w N\9dy Ox)°
Thus:
1 M N
If p:=— oM _ON is a function of = alone, then the above differential equation
N \ Oy oz

for u can be solved and with the resulting p := el #d* the equation (x) is exact equation.

Similarly, looking for a function i = fi(y) such that
fi(x)[M (2, y)dx + N(z,y)dy] = 0 (%)

becomes exact, we arrive at the equation

-5 (5-%)

ox oy
Hence, we can make the following statement:

1 (ON oM
If v:=— | —= — —— | is a function of y alone, then the above differential equation for
M\ Oz Jy
w1 can be solved and with the resulting p := e P07 the equation (xx) is exact equation.
Definition 1.12. Each of the functions p(z) and fi(y) in the above discussion, if exists, is called an

integrating factor. &

Example 1.13.
(y + zy*)dx — xdy = 0.

Note that %—24 =1+2zy, N =-1,

Oz
1 (oM _ON\_(+2ey)+1 2(1+ay)
TN dy ox ) —x B S
T (.
M \oxr oy )  y(l4wzy) oy
Thus,
s 1
~ - dy _
u.—efy y——E

is an integrating factor, i.e.,

1 1
*7[(y+$y2)dx —zdy] =0 <~ ( — x) dr — %dy =0
Yy Yy Yy

is an exact equation. Then

1 2
u:/de—i—/N(O,y)dy:/(——x)dx:_x_x.
Y y 2

Thus the complete integral is given by £ + m—; =C. &

z
Y

12



2 Second and higher order linear ODE

Second order linear ODE is of the form
y" +a(z)y +bx)y = f(z) (1)

where a(x),b(z), f(x) are functions defined on some interval I. The equation (1) is said to be

1. homogeneous if f(x) =0 for all x € I, and
2. non-homogeneous of f(x) =0 for some z € I.

THEOREM 2.1. (Existence and uniqueness) Suppose a(z),b(z), f(z) are continuous functions
(defined on some interval I). Then for every xo € I, yo € R, zg € R, there exists a unique solution y
for (1) such that

y(Io) = Yo, y/(l”o) = 20-

2.1 Second order linear homogeneous ODE

Consider second order linear homogeneous ODE:
y" +a(@)y +b(z)y = 0. (2)
Note that:
e If y; and yo are solutions of (2), then for any «, 8 € R, the function ay; + By» is also a solution
of (2).
Definition 2.2. Let y; and y2 be functions defined on an interval I.
1. y1 and ys are said to be linearly dependent if there exists A € R such that either y1 (z) = Ay2(x)
or y2(z) = Ay1(x); equivalently, there exists «, 5 € R with atleast one of them nonzero, such

that
ay1(z) + By2(x) =0 Vel

2. y1 and yo are said to be linearly independent if they are not linearly dependent, i.e. for
a,B eR,
ayr(z) + By2(z) =0 Vel = a=0,5=0.

We shall prove:

THEOREM 2.3. The following hold.

13



1. The differential equation (2) has two linearly independent solutions.

2. Ify; and ys are linearly independent solutions of (2), then every solutiony of (2) can be expressed
as
y=ay + By2

for some a, B € R.

Definition 2.4. Let y; and yo be differentiable functions (on an interval I). Then the function

W (y1,y2)(z) := det <y1 y2>

Y Yo

is called the Wronskian of y;, . O

Once the functions y1,y2 are fixed, we shall denote W (y1,y2)(z) by W (x).

Note that:

e If y; and ys are linearly dependent, then W (z) =0 for all z € I.

Equivalently:

o If W(xg) # 0 for some ¢ € I, then y; and yo are linearly independent.

b
THEOREM 2.5. Consider a nonsingular matrix A = a0
az 02

]. Let g € I. Let y1 and ys be

unique solutions of (2) satisfying the conditions

Then y1 and y2 are linearly independent solutions of (2).

Proof. Since A =W (z) and det(A) # 0, the proof follows from the earlier observation. O
LEMMA 2.6. Let y1 and yo be solutions of (2) and x¢ € I. Then

W(x) = W(xg)e Jzo altydt,
In particular, if y1 and yo are solutions of (2), then

W (zo) =0 at some point xy <= W (x) =0 at every point x € I.

Proof. Since y; and ys are solutions of (2), we have

Yy +a(x)y +b(x)yr =0,

14



vy +a(x)ys + b(x)y2 = 0.

Hence,
(19 — y21f) + a(@) (19 — y2y1) = 0.
Note that
W=y —ah, W' =uy1yz —yayf.
Hence
W'+ a(z)W = 0.
Therefore,

W (z) = W(xg)e Jzo 2%,

THEOREM 2.7. Let y; and yo be solutions of (2) and xg € I. Then
y1 and yo are linearly independent, <= W(x) # 0 for every x € I.

Proof. We have already observed that if W (zg) = 0 for some zy € I, then y; and y, are linearly
independent. Hence, it remains to prove that if y; and yo are linearly independent, then W (zx) # 0

for every x € I.

Suppose W (xzg) = 0 for some xg € I. Then by the Lemma 2.6, W(x) = 0 for every = € I i.e.,
Y1y —y2yy =0 on I.

Let Iy = {x € I : y1(z) # 0}. Then we have

Y1Y5 — Y2y1

5 =0 on I,
Y1
ie.,
d
- (yQ) =0 on Io.
dz \y1
Hence, there exists A € R such that
¥z _ A on Ij.
Y1
Hence, yo = Ay; on I, showing that y; and y, are linearly dependent. O

THEOREM 2.8. Let y1 and y2 be linearly independent solutions of (2). Then every solution y of
(2) can be expressed as

Yy =ayr + Bya

for some a, B € R.

15



Proof. Let y be a solution of (2), and for zq € I, let

Yo ‘= y(mo), 20 ‘= y/(xo).

Let W(zx) be the Wronskian of y1,y2. Since y; and yo are linearly independent solutions of (2), by

Theorem 2.5, W(xg) # 0. Hence, there exists a unique pair «, 3) of real numbers such that
y1(wo)  ya(wo)| || |%o
yi(zo) ya(xo)| |B] |20

o(x) = ayi(z) + By2(x), x€l.

Let

Then ¢ is a solution of (2) satisfying
@(x0) = ayi(xo) + By2(z0) = yo, ¥ (x0) = ayy(wo) + Bys(x0) = 20.
By the existence and uniqueness theorem, we obtain ¢(z) = y(x) for all x € I, i.e.,

Yy = ayy + Bya.

Theorem 2.5 and Theorem 2.8 give Theorem 2.3.
Now, the question is how to get linearly independent solutions for (2).

THEOREM 2.9. Let y; be a nonzero solution of (2). Then

) dr, @) = e IO

y2(2) = y1(z) i(2)?

is a solution of (2), and y1,y2 are linearly independent.

Proof. Let ya2(x) = y1(x)¢(x),where

)= y"j}((j))Q dr, P(z):=e Jro O
Then
vy =10 +yie, vl =y v + v+ ylo = e + 2000 + gl
Hence,

ys +ay +bys = 10" + 200" +ylo +alyie’ + i) + byre
= " + 219 + (Y + ayy + byro)p + ayrg’
= " +21¢ +ayo’

16



Note that

¢ = yzf((z))z ie., yig' =
Hence
yie" 2y’ =0 de, (e’ +2y1¢") =
so that , ,
ys +ay' +bys = y19" +2y1¢" +ay1p’ = VW _vra
Y1 Y1 Y1
Clearly, y; and ys are linearly independent. O

Motivation for the above expression for ys:

If y; and y are solutions of (2), then we know that

W (z) B Ce™ Jay alt)dt

Y3 Y3 Y3

Ce™ Jay a(t)dt
Y2 = y1/ —— | du.
Y1

2.2 Second order linear homogeneous ODE with constant coefficients

A (y2\ _ iy — vy
dz \ 1

Hence,

The DE in this case is of the form
v +py +qy=0, (1)

where p, q are real constants. Let us look for a solution (1) in the form y = e*® for some ), real or

complex. Assuming that such a solution exists, from (1) we have
A2 4 pA+q)eM =0
so that A must satisfy the auxiliary equation:
M 4+pA+g=0. (2)

We have the following cases:

1. (2) has two distinct real roots A1, Ag,
2. (2) has two distinct complex roots Ay = o + 8, Ao = o — if3,

3. (2) has a multiple root A.

e In case 1, %, e are linearly independent solutions.

e In case 2, e*® cos Bz, e*” sin Sz are linearly independent solutions.

17



e In case 1, e’ 2e™ are linearly independent solutions.

Example 2.10.
y'+y —2y=0

Auxiliary equation: A2 + X\ —2 = 0 has two distinct real roots: A\ =1, Ay = —2.
General solution: y = Cje® + Coe™ 2%, &

Example 2.11.
y//+2y/+5y:0

Auxiliary equation: A2 +2X\ + 5 = 0 has two complex roots: —1 +42, = —1—32.
General solution: y = e~*[C} cos 2z + Cy sin 2z]. &

Example 2.12.
y'— Ay’ +4y =0

Auxiliary equation: A2 — 4\ 4+ 4 = 0 has a multiple root: Ao = 2.
General solution: y = e2*[C} + Cae??]. O

2.3 Second order linear non-homogeneous ODE

Consider the nonhomogeneous ODE:
y' +a(@)y +b(x)y = f(z), (1)
We observe that if yp is a solution of the homogeneous equation
y' +a(@)y’ +b(z)y =0 (2)
and y* is a particular solution of the nonhomogeneous equation (1), then
y=yo+y"

is a solution of the nonhomogeneous equation (1). Also, if y* is a particular solution of the nonho-
mogeneous equation (1) and if y is any solution of the nonhomogeneous equation (1), then y — y* is
a solution of the homogeneous equation (2). Thus, knowing a particular solution y* of the nonho-
mogeneous equation (1) and a general solution g of homogeneous equation (2), we obtain a general

solution of the nonhomogeneous equation (1) as
y=u+y".

If the coefficients are constants, then we know a method of obtaining two linearly independent solutions

for the homogeneous equation (2), and thus we obtain a general solution for the homogeneous equation
(2).

How to get a particular solution for the nonhomogeneous equation (1)?

18



2.3.1 Method of variation of parameters

Suppose y; and ys are linearly independent solutions of the homogeneous ode:

y" +a(z)y’ +b(z)y = 0. (2)
The, look for a solution of (1) in the form

Y = U1yl + u2y2

where u; and uy are unctions to be determined. Assume for a moment that such a solution exists.
Then
Yy = wy) + u2ys +uiyr + usye.

We shall look for uq, us such that

Uy + sy =0 (3).

Then, we have
Y =y +uayh, (4)
y" = ury! + uoys + uly) + uhys. (5)

Substituting (4-5) in (1),
(uryy 4 ugyy +uiyy + usys) + a(x)(uryy + usys) + b(x)(uryr + uzy2) = f(z),
ie.,
wr [y) + a(z)yyb(z)y1] + ualyy + a(@)ysb(x)ye] + uiyy +ubyh = f(x),
i.e.,
uyyy + ugyy = f(a). (6)
Now, (3) and (6):

gives
ool oS
1 W ) 2 W .
Hence,
U = y;/f +Cy, ug = /ylf + Cs.
Thus,
Y2 f yif
=(- C C.
Y ( W+ 1)y1—|—< W+ 2)

is the general solution. Thus we have proved the following theorem.
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THEOREM 2.13. Ify;, yo are linearly independent solutions of the homogeneous equation (2), and

if W(x) is their Wronskian, then a general solution of the nonhomogeneous equation (1) is given by

Y = uryr + u2ys2,
where

B yof
up=— | ==

o TOL w= nf

= 4+ (5.
W+2

Analogously, it the following theorem also can be proved:

THEOREM 2.14. If y1, yo,

, Yn are linearly independent solutions of the homogeneous equation

y™ +ay @)y Y 4 a1 (2)y Y +an(z)y =0,
where a1, as,

., an are continuous functions on an interval I, and if W (z) is their Wronskian, i.e.,

Y1 Y2 Yn
/ / . /
W(x) — det Y1 Yo Yn ,
ygn—l) ygn—l) y’ELn—l)

then a general solution of the nonhomogeneous equation

y™ 4 ay(2)y™ D 4+ a1 (2)y ™ + an(z)y = flz)

s given by

y = (ur+Cyr + (u2 + Co)ya + -+ + (un + Cn)yn,
where uy,uh, ..., ul are obtained by solving the system

Y1 Yo ot Un )
Yy Yy Yn uy

ygn—l) yén—l) y;n—l) U;L f
Remark 2.15. Suppose the right hand side of (1) is of the form f(x) = fi(x) + f2(z). Then it can
be easily seen that:

If y1 and yo are solutions of

y' +a(x)y +bx)y = fi(z), Y +al@)y +b(x)y = faox),

respectively, then y; + yo are solutions of

Y +a(x)y’ +b(x)y = fi(z) + fa(z).
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2.3.2 Method of undetermined coefficients

This method is when the coefficients of (1) are constants and f is of certain special forms. So, consider

y' +py +ay =T, (1)
where p, ¢ are constants.
Case (i): f(x) = P(xz)e**, where P is a polynomial of degree n, and « € R:

We look for a solution of the form
y = Q(x)e™”,

where @ is a polynomial of degree n Substituting the above expression in the DE, we obtain:
Q"+ 2o+ p)Q' + (& + pa + q)Qle™™ = P(x)e™™.

Thus, we must have
Q"+ (20 +p)Q + (o* + pa +¢)Q = P(x).

Note that, the above equation is an identity only if a? +pa+¢q # 0, i.e., o is not a root of the auxiliary
equation A%+ p\ +q = 0. In such case, we can determine @Q by comparing coefficients of powers of 2*
for k=0,1,...,n.

If o is a root of the auxiliary equation A2 + pA + ¢ = 0, then we must look for a solution of the

form
y = Q(x)e™,
where @ is a polynomial of degree n + 1, or we must look for a solution of the form

y = 2Q(z)e™,

where @) is a polynomial of degree n. Proceeding as above we can determine @ provided 2« + p # 0,

i.e., if o is not a double root of the auxiliary equation A2 4+ pA + ¢ = 0.

If o is a double root of the auxiliary equation A2 4+ pA + ¢ = 0, then we must look for a solution

of the form
y = Qw)e,
where @ is a polynomial of degree n + 2, or we must look for a solution of the form

y = 2°Q(x)e”,

where @ is a polynomial of degree n, which we can determine by comparing coefficients of powers of

x.

Case (ii): f(x) = Pi(x)e*® cos Bz + Pi(x)e®” sin Sz, where P; and P are polynomials and «, § are

real numbers:
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‘We look for a solution of the form

y = Q1(x)e”” cos Bz + Q1 (x)e™” sin B,

where )7 and ()2 are polynomials with

degQ;(z) = max{P;(z), P»(z)}, je€{1,2}.

Substituting the above expression in the DE, we obtain the coefficients of Q1,Q2 if a + i8 is not a
root of the auziliary equation \* + p\ + q = 0.

If a + 43 is a simple root of the auxiliary equation A2 + pA 4+ ¢ = 0, then we look for a solution of

the form

y = 2@ ()" cos fz + Q1 ()" sin ],
where @ and @ are polynomials with degQ;(z) = max{P;(z), Pz(z)},j € {1,2}.

The following example illustrates the second part of case (ii) above:
Example 2.16. 2 We find the general solution of
y" + 4y = x sin 2z.
The auxiliary equation corresponding to the homogeneous equation y” + 4y = 0 is:
N +4=0.
Its solutions are A = +2i. Hence, the general solution of the homogenous equation is:
yo = Acos2x + Bsin2z.

Note that the non-homogenous term, f(z) = xsin 2z, is of the form

f(x) = Pi(x)e** cos Bz + Py (x)e*” sin Sz,

with Py(z) =0, «a=0,8=2. Also, 2i = a+ 4 is a simple root of the auxiliary equation. Hence,

a particular solution is of the form

y = z[Q1(2)e™” cos Bz + Q1 (x)e*” sin fx],

where Q1 and Q2 are polynomials with degQ;(z) = max{P;(x), P2(x)} = 1. Thus, a a particular
solution is of the form
y = x[(Ap + A1z) cos 2z + (Bo + Bix) sin 2x].

Differentiating:

y' = [Ag + (241 + 2Bo)z + 2B12%] cos 2z + [By + (2B1 — 2A0)x — 24,22 sin 2z,

2This example is included in the notes on November 23, 2012 — mtnair.
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y' +4y = 2[By+ (2B1 —240)x — 24A,2%] cos 2z
—2[Ag + (24, + 2Bo)x + 2B, 2°] sin 2z
+[(2B1 — 240) — 4A 2] sin 2z 4 [(241 + 2By) + 4B x] cos 2x
+4z[(Ag + A1) cos 2z + (By + Bix) sin 2z].

Hence, y” + 4y = x sin 2z if and only if
2[Bo + (2B1 — 2A0)x — 2A12°] + [(241 + 2Bo) + 4By 2] + 42(Ag + A1x) = 0,

—2[A0 + (241 +2By)x + 231.%'2] + [(231 —24p) — 4A15E} +4x(By + Biz) = x

1 1
Ap=0, Ai=—=-, By=—, By =
0=0, 1 g 0= 15 1=0,

so that )

y = z[(Ao + A1z) cos 2z + (By + Bix) sin2z] = —% cos 2x + 1% sin 2z.

Thus, the general solution of the equation is:

. x? T
Acos2z + Bsin2x — 3 cos 2x + 16 sin 2x.

o

Remark 2.17. The above method can be generalized, in a natural way, to higher order equation
y™ +ary" N+ anay + any = f(2)

where f is of the form
f(z) = Pi(x)e*® cos Bz + Py(x)e*” sin fx

with P; and P, being polynomials and «, 8 are real numbers. &

2.3.3 Equations reducible to constant coefficients case

A particular type of equations with non-constant coefficients can be reduced to the ones with constant

coefficients. here it is: Consider
2"y ™ 4 apa Yy b a2yt ay = fla). (1)
In this case, we take the change of variable: x — z defined by

r =e€".

Then the equation (1) can be brought to the form

D"+ D" 'y -+ b, 1Dy +any = f(e?), D:i=—
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where by, bs, ...,b, are constants. Let us consider the case of n = 2:

22y 4+ arzy’ + azy = f(x).

Taking x = €7,
_dydr
dz dzdz ’
de d, , dy’' ,dx "2 ’ noo Ay
@—@(yx)—ax—l—ya—yx +y'z=y"x +£'

Hence we have

d? d d d? d
2y’ + arzy’ + agy = (dZ:g - Z) +a1£ +axy = TZZ; + (a1 — l)cTZ + agy.

Thus, the equation takes the form:

d?y dy .
@—k(al—l)%—i—agyzf(e )-

Note also that

dgy d, ., oo / dy” 2 1o, AT
B —— g J— — 2 - "_2 /
dz3 dz(yx +y') d2’$ ty mdz—’_yx Ty

" ", 2 ",_2

y" 3 4+ 2y oy 2y
d? d d
y///x3+3(y_y)+y

dz? dz dz’
Hence,
x3y"’+ax2y”+bxy’+cy — @_3 @_@ —d£+a @_@ +b@+cy
dz3 dz? dz dz dz? dz dz
d*y d*y dy
= Y-t h-a+3) L + oy
dz3’+(a )d22+( ot )dz+cy
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3 System of first order linear homogeneous ODE

Consider the system:

d
% = axi + bxa
d
% = cx1 +dxs

The above system can be written in matrix notation as:

d |z a bl |z
il =LA »

or more compactly as:

dX
E — .AX7
where -
X [zl A= a b] .
2] c d

Here, we used the convention:

Substituting this into the system of equations we get

A= | oL M.
Qg c d| |as

Equivalently,

That is,

Thus, if \g is a root of the equation

- A b
det “ =0, (2)
c d— A

(€51

then there is a nonzero vector a1, az]” satisfying (2), and X = [ 1 e™?! s a solution of the system

(1).

Q2
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Definition 3.1. The equation (3) is called the auxiliary equation for the system (1). &

Let us consider the following cases:

Case (i): Suppose the roots of the auxiliary equation (3) are real distinct, say A; and As. Suppose

(1) (2)
Q Q;
and
Lé”} L@]

are nonzero solutions of (2) corresponding to A = A; and A\ = Ao, respectively. Then, the vector valued

functions
(1) (2)

X = l%n] M Xy = [a%m} et
A )

are solutions of (1), and they are linearly independent. In this case, the general solution of (1) is given
by Cle + CQXQ.

Case (ii): Suppose the roots of the auxiliary equation (3) are complex non-real. Since the entries of

the matrix are real, these roots are conjugate to each other. Thus, they are of the form « + ¢3 and
@

a —if for B # 0. Suppose '| be a nonzero solution of (2) corresponding to A = a + i8. The
Qa9

numbers «q and s need not be real. Thus,

a1 N
fo%
(2)

a(ll) + 10
aél) + z'ozg)

agl) + ia?)

) + méz)

a
Qg

Then, the vector valued function

X = [Oél] elotif)t _ e [cos Bt + i sin ]

Q2

is a solution of (1). Note that
X =X; +iXo,

where
agl) cos it — agm sinBt| .. agl) sin 5t + a§2) cos Bt
Xi=1m O angl € 2T |0y @
oy’ cos it — ay” sin Bt oy’ sin Bt + ay  cos Bt

at

We see that X; and X5 are also are solutions of (1), and they are linearly independent. In this case,
a general solution of (1) is given by C1 X, + CoXos.

Case (iii): Suppose Ao is a double root of the auxiliary equation (3). In this case there are two
subcases:

e There are linearly independent solutions for (2).

e There is only one (up to scalar multiples) nonzero solution for (2).
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In the first case if
agn a§2)
and
Oéél) O[22)
are the linearly independent solutions of (2) corresponding to A = Ag, then the vector valued functions
(1) (2)
@ @
Xy = l %1)1 At Xy = [ %2)1 et
Qg Qg

are solutions of (1), and the general solution of (1) is given by

C1 X1 + CyXs.
In the second case, let u := lall is a nonzero solution of (2) corresponding to A = Ag, and let
(&%)
V= b is such that
B2
(A= Xol)v =u.

Then
X = Crue™t + Cyltu + v]er!

is the general solution.

Remark 3.2. Another method of solving a system is to convert the given system into a second order

system for one of x; and x5, and obtain the other. &
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4 Power series method

4.1 The method and some examples

Consider the differential equation:

Y’ + f(@)y + g(x)y = r(x). (1)

We would like to see if the above equation has a solution of the form

o0
y=7 calz—ao)" (2)
n=0
in some interval I containing some known xg, where cg, ¢y, ... are to determined.
(oo}
Recall from calculus: Suppose the power series Z an(x —x0)" converges at some point other than
n=0

Zo-

e There exists p > 0 such that the series converges at every = with |z — zo| < p.

e The series diverges at every x with |z — x¢| > p.
o0

. Z an(x — o)™ = 0 implies a, = 0 for all n =0,1,2,....
n=0

e The series can be differentiated term by term in the interval (zo —r, o+ p) any number of times,

ie.,
g & S -
Tk Zan(x—xo)” = Zn(n— D (n—k+Day(x —zo)" "
n=0 n=~k

for every = with |z — x¢| < p and for every k € N.

(n)
o If f(x) :=> " gan(x — xo)" for |z — zo| < p, then a,, = fT('l‘o).

o0
The above number p is called the radius of convergence of the series Z an(x —z0)".

n=0
Definition 4.1. A (real valued) function f defined in a neighbourhood of a point g € R is said to

be analytic at zq if it can be expressed as
o0
f(z) = Zan(ﬂﬁ —z0)", |z —z0| <p,
n=0
for some p > 0, where ag, ay, ... are real numbers. &

Recall that if p(x) and g(x) are polynomials given by

p(z) =ao+a1x+ - +ayz", q(x)=0bo+brx+ - +bya",
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then
p(x)q(x) = agbo + (apby + arbo)x + - - - + (agbn + arbp—1 + - -+ + apbo)z™.

o0 (o)
Motivated by this, for convergent power series Z an(x — x0)" and Z bn(z — x0)", we define
n=0 n=0

(i an(x — xo)”) (i by (x — xo)") = i en(z —x0)", cp = zn:akbn_k.
n=0 n=0 n=0 k=0

Now, it may be too much to expect to have a solution of the form (2) for a differential equation
(1) for arbitrary continuous functions f, gr. Note that we require the solution to have only second
derivative, whereas we are looking for a solution having a series expansion; in particular, differentiable
infinitely many times. But, it may not be too much expect to have a solution of the form (2) if f, g, r

also have power series expansions about zg5. Power series method is based on such assumptions.

The idea is to consider those cases when f, g, r also have power series expansions about xg, say

f(z) = Z an(@ —20)",  g(z) = Z bn(2 —20)", 1(2) = Z dn(z — 20)"..
n=0 n=0 n=0
Then substitute the expressions for f,g,r,y and obtain the coefficients ¢,,n € N, by comparing
coefficients of (x — zo)* for k =0,1,2,....

Note that this case includes the situation when:

e Any of the functions f, g, r is a polynomial,

e Any of the functions f, g, r is a rational function, i.e., function of the form p(z)/q(x) where p(z)

and ¢(x) are polynomials, and in that case the point 2y should not be a zero of ¢(x).

Example 4.2.
y' +y=0. (%)
In this case, f =0, g =0, 7 = 0. So, we may assume that the equation has a solution power series

expansion around any point zg € R. For simplicity, let zg = 0, and assume that the solution is of the

o0
form y = Z cpx™. Note that

n=0

(%) — Z n(n —1)e,z" % + Z cpr” =0 = Z(n +2)(n+ 1)cppoz™ + Z cpz™ =0
n=2 n=0

n=0 n=0

= Z[(n +2)(n+Depqo+cplz” =0 <= (n+2)(n+1)cpye + ¢, Vn e Ng:=NU{0}

n=0
Cn
2 1 r = —_——
= (n+2)(n+ 1Dcppo CESICESY Vn € Ny
s gy = N0 CL"a e .

@n)l T on 1)
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oo
Thus, if y = Z cnx™ is a solution of (x), then

n=0
oo
y = E Cnx E Conz" E Conp122" T = ¢gcosx + ¢r sinx
n=0
for arbitrary ¢y and c;. We can see that this, indeed, is a solution. &

The following theorem specifies conditions under which a power series solution is possible.

THEOREM 4.3. Let p,qr be analytic at a point xo. Then every solution of the equation

Y +p(x)y + q(z)y = r(x)

can be represented as a power series in powers of T — xg.

4.2 Legendre’s equation and Legendre polynomials

The differential equation
(1—2?)y" =22y +a(a+1)y =0 (*)

is called Legendre equation. Here, o is a real constant. Note that the above equation can also be

written as p ay
a 2
|- g ] Fatetny=o0.

Note that () can also be written as

w o 2zy ala+ 1y

=0.
1— 22 1— 22

It is of the form (1) with

f(x):*iv g(fv):M, r(z) = 0.

1— 22 1— 22
Clearly, f, g, r are rational functions, and have power series expansions around the point x¢o = 0. Let
o0

us assume that a solution of (x) is of the form y = Z cpx™. Substituting the expressions for y,y’, y”

n=0
into (*), we obtain
o0 (o) oo
(1— 2% Z n(n —1)c,z" % — 2z Z nepx™t + ala + 1) Z cpx =0
n=2 n=1 n=0
ie.,
Zn(n—l)cnx”_g—Zn(n—lcn Zannx +ala+1) ch =0,
n=2 n=2
ie.,
Z(n+2)(n+1)cn+2x"—2n(n—1 Cn® Zannx +Z (a+ 1D)epz™ = 0.
n=0 n=2
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Equating coefficients of z* to 0 for k € Ny, we obtain
2 +afa+1)cg =0, 6eg—2¢1 +ala+1)eg =0,

n+2)(n+1)cpye +[—n(n —1) = 2n + ala + 1)]c, =0,

ie.,
2c0+afa+1)cg =0, 6c3+ -2+ a(a+1)]e; =0,
(n+2)(n+1)cppo + (@ —n)(a+n+1)e, =0,
ie.,
. __a(a—l—l)c . _—2+a(a+1)c . __(a—n)(a+n+1)c
2= Ty BT T O g2 = m+2nt1) ™

Note that if o = k is a positive integer, then coefficients of 2" *2 is zero for n € {k,k + 1,...}. Thus,

in this case we have y = y1(x) + ya2(x), where:

e If @ = k is an even integer, then y;(z) is a polynomial of degree k with only even powers of x,

and ya(z) is a power series with only odd powers of z,

e If o = k is an odd integer, then ys(x) is a polynomial of degree k with only odd powers of x,

and yi(x) is a power series with only even powers of x.

Now, suppose a = k is a positive integer. Then, from the iterative formula

(a—n)(a+n+1)
(n+2)(n+1)

Cn42 = — n

we have ¢ # 0 and cx42 = 0 so that

Cry2; =0 for jeN.

Thus,
o _FE=D)
2T k1)
_ k= =3) k(b= D(k—2)(k - 3)
Ch—4 = *mck* =(=1) 2.4.(2k — 1)(2k — 3) o
5 k(= (k= 2)(k = 3)(k— 4)(k = 5)
HOT Tk —5) T 24602k — )2k —3)2k—5) "

In general, for 2/ < k,

k(k —1)(k—2) - (k — 20+ 1)

24 (20](2k — 1)(2k — 3) - -- (2k — 20+ 1)
kl(2k — 2)(2k — 4) - - (2k — 20)

(k — 20)12001(2k — 1)(2k — 2)(2k — 3)(2k — 4) - -~ (2k — 20 + 1)(2k — 20)
20k —1)(k—2)---(k—¥0)

(k — 20)12001(2k — 1)(2k — 2)(2k — 3)(2k — 4) -~ (2k — 20 + 1)(2k — 20) "

B o Kk —1)1(2k — 20— 1)!

A T T A T s

chooe = (=1)° Ck

= (-

Ck

= (-1
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Taking
(2k)!

2k (k1)2

Ci =

it follows that
(2k — 20)!

2RO (k — 0)I(k — 20)1

croe = (—1)*

Definition 4.4. The polynomial

M.
- 2n — 20)!
Pn — -1 4 ( n—2¢0
() g( S it = oin — 201"
is called the Legendre polynomial of degree n. Here, M,, = n/2 if n is even and M,, = (n —1)/2 if
n is odd. &
Recall
.- (2n — 2k)! n—2k

Pua) =Y (-1}

x
!

27kl(n — k)!(n — 2k)
It can be seen that

Po(z) =1, Pi(z)=z, Pyx)= g(ﬁ ~1), Pya) = %(5:&‘ ~32),

Py(z) = é(35:z:4 —302° +3), Ps(x)= %(6?@5 — 702% + 157).
M.
e (2n — 2k)! ook n
Fn(=w) = k:O(_l)kZ”k!(n AT P TATAY f = (F)"Pa(a).
Rodrigues’ formula: P,(r) = n!12” dd%(mz -1
Let .
fo) = @2 = 1) = (1) ("C)atn
r=0
Then
My
@) =Y (~1)7("Cp)(2n — 2r)a 2L,
r=0
Mo
(@)= (=) ("Cr)(2n — 2r)(2n — 2r — 1)z* 2,
r=0
M,
M) = Z(—I)T(’LCT)[(ZTL —2r)(2n —2r —1)- (2n — 2r —n + 1)]2*" 277",
e
= ) (=) ("CHI2n—2r)(2n —2r — 1) - (n = 2r + 1)]a" 7,
r=0
&L . nl (2n=2r) 5
- ;(_1) rl(n—r)! (n—2r)! e
= nl2"P,(x),
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Generating function:

V1 —2xu—|—u2 ZP”

For a fraction 3, we use the expansion:

(1+a)’ i “c,) =

Thus, for 8 = —1/2,

e = (=D (-5-0)(-3-2) (-3 -n+1)]
- A OO )

~ (c1m 1 {(271)']

nl2n [ 2np!

(2n)!
= —1 n .
(=) 22n(nl)?
Thus,
. (2n)!
1 — O[ 2 Zana Ap ‘= (—1) W
Also,
n—k Nk _ - kon—k n! n—k, n+k
(2zu — u? Z Fn = 2xu) (—u)® = k;o(—l) 2 moj u .
Thus,
|
n—kyntk _ (_1\kon—k n
(22u — u?)™ an LT bpk = (—1)%2 Hin =)
Taking a = 2zu — u?, we have
(1 —2zu+ ug)_% = Z an, {Z bn,kx”_ku""'k}
n=0 k=0
= ap-+ albLqu + (albl,l + a2b2,0x2)u2
+(a2b271x + a3b370x3)u3
—‘r(azbg’g + a3b3,1m2 + a4b4,4x4)u4 + -
= fo(@) + fi(x)u+ falz)u® +- -,
where
My,
x) = Zan,kbn,k’kxn_%.
k=0
Since
a b _ [2(77‘ B k)}' _ )k: (TL B k)' 2n72k _ (_ )k: (2’)7, B 2k)'
no kTR R T (9n=kY2](n, — k)12 k\(n — 2k)! B 22 kl(n — k)!(n — 2k)!”
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we have

Thus,

\/1—2xu—u2 ZP

Note that, taking x =1,

S
n=0
so that P,(1) =1 for all n.
Recurrence formulae:
1. (n+ 1)P,i1(x) = (2n+ 1)aP,(z) — nP,—1(z).
2. nP, =zP(z)— P,_,(2).
3. (2n+ )Pas1(2) = Py (2) — nPh_ (@),
4. Py(@) = 2Py () = nPy1(a).

5. (1 —2*)P.(x) = n[P,_1(x) — 2P, (z)].

1 oo
=N" P, (1)u"
— ; (Du

Proofs. 1. Recall that the generating function for (P,) is (1 — 2zt +t%)"2, i.e.,

(1—2at+1%)"7 = ZP

Differentiating with respect to ¢:

(z —t)(1 — 22t + t?) 5= ZnP

oo
(x—t)(1 — 22t +t2)"2 = (1 — 22t + t2) Z

(x —1t) ZP

Equating the coefficients of ", we obtain

= (1 — 2zt + %) ZnP )t

n=1

xPpx — Pp_q(z) =

ie.,

(n+ 1)P,y1(x) = (2n+ 1)aP,(x)

34

(n+1)P,y1(x) — 2znP,(x) +

tnl

2fnl

o0

=(1=2at+*) Y (n+ 1) Py (2)t".

n=0

(n—1)P,_1(x),

—nP,_1(x).



2. Differentiating with respect to ¢:

3

(. —t)(1 — 2t +12)"2 ZnP )t
Differentiating with respect to x:

(1 —2at+1%)"2 = ZP’
n=0

Hence,
oo
3
(. —t)t(1 — 2wt +12)72 Z )" = ZnP
Thus,

(x —1t) ZP’ ZnP "t

Equating the coefficients of t", we obtain nP,, = z P, (z) — P,_;(x).

3. Differentiating the recurrence relation in (1) with respect to # and then using the expression

for P/ (x) from (2), we get the result in (3).
4. Differentiating the recurrence relation in (1) with respect to x leads to
(n+ 1P (2) = 2n+ )Py (2) + (n+ DaP,(z) + n[zP,(x) — P, (2)].
Now, using (2) and replacing n by n — 1 leads to the required relation.
5. Recurrence relation in (2) and (4) imply the required relation.

Exercise 4.5. 1. Show that P/ (1) = %
(Hint: Use the fact that P, (x) satisfies the Legendre equation.)

2. Using generating function derive

=
N~—
5
T
&
S~—"
I

(=1)"P,(z). (Hind: Replace z by y := —x and then ¢ by 7 := —t.)

1 1 1
3. Find values of/ z[P,(2))?dx, / 2P, (2))?dx, / 2Py y1(2) Py (x)dz.
~1 -1 —1
(Hint: Use recurrence formula.)

4. Prove that for every polynomial g(x) of degree n, there exists a unique (n+1)-tuple (agp, ag, - . .

of real numbers such that g(x) = agPo(z) + a1 P1(z) + . .. ap Pr(2).

(Hint: use induction on degree.)

35

7an)



4.3 Power series solution around singular points

Look at the DE:
2*y" — (14 z)y = 0.

oo
Does it have a nonzero solution of the form Z an,z™ ? Following our method of substitution and

n=0
determination of coefficients, it can be see that a,, = 0 for all n € Ny.

What went wrong?

Note that the above DE is same as

1+z
y// - 2 Yy= 07
x
which is of the form
y" +p@)y +q(z)y =0 (1)
1
with p(z) = 0 and ¢(x) = —i—2m Note that p(z) is not analytic at zo = 0.
x

Definition 4.6. A point z¢ € R is called a regular point of (1) if p(x) and ¢(z) are analytic at x.

If 2o is not a regular point of (1), then it is called a singular point of (1). &

Example 4.7. 1. Consider (z — 1)y" + xy’ + Y — 0. This takes the form (1) with
x
T 1
p(z) = -1 q(z) = m
Note that = 0 and x = 1 are singular points of the DE. All other points in R are regular

points.

2. Consider the Cauchy equation: z2y” + 2xy’ — 2y = 0. This takes the form (1) with
2 2
po) =2, o) = 2.

Note that x = 0 is the only singular point of this DE.

¢

Definition 4.8. A singular point zp € R of the DE (1) is called a regular singular point if
(z — x0)p(z) and (z — x0)%q(x) are analytic at zg. Otherwise, x¢ is called an irregular singular
point of (1). O

Example 4.9. Consider z%(z — 2)y” + 2y’ + ( + 1)y = 0. This takes the form (1) with

_ 2 ) = _x+l
Note that 9 1
W) = oy ra(x) = %
(x —2)p(x) = %, (z —2)%q(z) = W
We see that
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e z =0 is an irregular singular point,

e r = 2 is a regular singular point.

¢

Example 4.10. Consider the DE

b(x c(x
N C IS T
x x
, - . b(z)
where a(z) and b(x) are analytic at 0. Note that the above equation is of the form (1) with p(z) = —
x

and ¢(x) = ng). Thus, 0 is a regular singular point of the given DE. &

4.3.1 Frobenius method

It is known that a DE of the form

b(x) , clx)

"y = =0 1
V=Y 5y =0, (1)

where a(x) and b(z) are analytic at 0 has a solution of the form
y(z) = 2" Z anx”,
n=0

for some real or complex number r and for some real numbers ag, a1, az, ... with ag # 0.

Note that () is same as
oy + ab(x)y + c(x)y =0 (2)

and it reduces to the Euler—Cauchy equation when b(x) and c(z) are constant functions.

Substituting the expression for y in (2) into (1), we get:

o o
z? Z(n +7r)(n+7r —Da,z" 2 + zb(x) Z(n + 1) anz™ T 4 e(z) = 0.
n=0 n=0
That is,
Z(n +7r)(n+7r—Da,z™" + b(z) Z(n +7)apz™ " + e(z) = 0. (3)
n=0 n=0
Let

b(z) = i bpa™, c(x) = i cna”.
n=0 n=0

Comparing comparing coefficients of x", we get
[r(r —1) + bor + colap = 0.

This quadratic equation is called the indicial equation of (1).
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Let r1, 72 be the roots of the indicial equation. Then one of the solutions is
oo
yi(z) =2 ) ana®,
n=0

where ag, a1, ... are obtained by comparing coefficients of "+" n = 0,1,2,..., in (3) for r = ry.

Another solution, linearly independent of y; is obtained using the method of variation of parameter.

Recall that, in the method of variation of parameter,

e the second solution ys is assumed to be of the form ys(z) = u(z)y: (z),
e substituting the expressions for yo, v, ¥4 in (2),

e use the fact that y; () satisfies (2),

e obtain a first order ODE for u(x), and

e solve it to obtain an expression for u(z).

‘We have seen that

e J p(=) alz
y2(2) = y1 () / W dx, p(x):= %

In case y;(x) is already in a simple form, then the above expression can be used. Otherwise, one may
use the above mentioned steps to reach appropriated expression for ys(x) by making use of the series

expression for yi(x).

By the above procedure we have the following (see Kreiszig):

Case 1: If r; and r, distinct and not differing by an integer, then ¥, is of form

Case 2: If r; = ry = r, say, i.e., r is a double root, then ys is of the form

ya(2) = y1(z) In(x) + 27 > Apa™.
n=1

Case 3: If r; and r, differ by an integer and ro > 71, then ys is of the form

yo(x) = ky1(x) In(x) + 2™ Z Apx™.
n=0

The method described above is called the Frobenius method?.

3George Frobenius (1849-1917) was a German mathematician.
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Example 4.11. Let us ind linearly independent solutions for the Euler-Cauchy equation:

1

22y" + boxy’ + coy = 0.

Note that this is of the form (2) with b(x) = by, c(x) = ¢o, constants. Assuming a solution is of the

form y = 2" Y07 a,a", we obtain

Z(n +7r)(n+7r—1Da,z™" + by Z(n +7)anz™ " 4 ¢ = 0.
n=0 n=0

Now, equating the coefficient of " to 0, we get the indicial equation as [r(r — 1) + bor + ¢oplag = 0,
ag # 0, so that
72 — (1 —=bo)r +co = 0.

For a root r and n € N,
[(n+r)(n+r—1)+ (n+7)bolan, =0, ie, (n+7)[(n+r—1)+byla, =0, i.e.,

[(m+7r—1)+bla, =0 VneN.

We can take a,, = 0 for all n € N. Thus, y;(2) = 2”. The other solution is given by

e~ Jp(@) alz
o) = 11 (2) / I e () = A2

[y1(2)]? x
Thus,
= [p(z) b 1
T € : r
yQ(x) =T /7 dl‘y p(-f) = ;07 1.e., yQ(Jj) =T /W dx.
If r is a double root, then 2r + by = 1 so that
ya(z) = 2" In(z).

If r is not a double root, then

@ =2 [ g d !
Xr) = €r = .
Y2 x2r+bo —(2r 4+ by — 1)xr+bo—1

If r = r; and ro are the roots, then we have r1 + ro = 1 — bg so that » 4+ bg — 1 and hence,

T2

(z) = v
Y2 o 7(27”1+b071).
Thus, 2™ and x™ are linearly independent solutions. &
Example 4.12. Consider the DE:
z(z—1)y"+ Bz - 1)y +y=0. (*)
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This is of the form (1) with b(x) =

T Now, taking y = 2" >~ ; a,z", we obtain

z—1 T —
from (1):
o0
z(x—1)y" = (2% —2) Z(n +r)(n+r—1Da,z" 2
n=0
= Z(n +r)(n+r—Da,z™t" — Z(n +r)(n+r—1Da,z™ 1
n=0 n=0
Bz —1)y = (Bz—1) Z(n + 7)apa" T
n=0
= Z 3(n +r)a,a™ T — Z(n +7r)a,z" T
n=0 n=0
Hence, (x):
o) oo
Z[(n +r)(n+r—1)+3(n+7r)+ az"" + Z[—(n +r)n+7r—1)—(n+7r)a, " =0.
n=0 n=0

Equating coefficient of 27! to 0, we get the indicial equation as —r(r —1) —7 = 0, i.e., 72 = 0. Thus,

r = 0 is a double root of the indicial equation. Hence, we obtain:

Z[(n)(n —1)4+3(n) + l]apz™ + Z (n—1) — (n)]anz™ "t =0,
n=0
ie.,
> _(n+1)%ana" Z nfa,a" ' =0, de, Y (n+1)%ana" =Y (n+1)%anp12" =0.
n=0 n=0 n=0

Thus, a,4+1 = a, for all n € Ny, and consequently, taking ag = 1,

)
=3 -
n=0

Now,
— J pdx 3z -1
e x
z) =y1(x ——dx, T)i=——-—.
() = (o) [ Tde, p@) = S
Note that
3 1 3 1
/p(x)dx = /x_ldx_/mdl'—/xjdxﬁ- ;d.’b—
= 3lnjz—1|+Injz| —In|z — 1] =2In|z — 1| +In|z| = In|(z — 1)*z|,
e J pde _ 1 B
(@) @ =12l (@)
Thus,
In(x
va(w) = 1£g);
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Example 4.13. Consider the DE:

(2% — D)a?y” — (2* + Day’ + (2% + 1)y = 0. (%)
241 241
This is of the form (1) with b(z) = —E;—i—l;, c(x) = % Now, taking y = 2"y~ a,z", we
obtain from (1):
(22 =Dy’ = (22 -1) i(n +r)(n+7r—1Da,az™t"
n=0
= Z(n +7)(n 47— 1Daz" 2 — Z(n +7)(n+r—1az"*"
n=0 n=0
(2 + a2y = 1) Z(n +7)a, "t
n=0
= Z(n +r)a,z" T 4 Z(n +7)anz" T,
n=0 n=0
o (o)
2241 = apx" T2 4 anpz™ "
( y
n=0 n=0

Thus, () takes the form

o0

Z[(n+r)(n+r—1) (n+r)+1jay, ”+T+2—|—Z (n+r)(n+r—1)—(n+r)+la,z"" = 0. (x*)
n=0

Equating coefficient of z" to 0, we get the indicial equation as

[—r(r—1)—r+1ag =0, ie,(r*—1)=0.

The roots are 7, = 1 and ro = —1. For r; = 1, (*x) takes the form
o0
Z[(n +1)n— (n+1)+ 1a,z™ > + Z n+1n—(n+1) + la,z"™ =0,
n=0

i.e.

o0 oo
E n2a,z" — E n(n+2)a,z" =0, e,
n=0 n=0

This implies a; = 0 and
n?a, — (n+2)(n +4)an2 =0 YnecN.

Hence, a,, = 0 for all n € N so that y(x) = . Taking y; (z) = x, we obtain the second solution y» as
_ fp
e
Ya(r) = yl/ )
vi

z® +1 (22 -1)+2 {1+ 2 }_ {1 1 1

p:_(xQ—l)x:_ 22— 1)z x—1+x—|—1 x

where

x  (x2-1)x
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-1
so that

_ T
Hence, e Ir =

e_fi" ] 21 21

x x 1
— — — — 1 X
yg(a:) yl/ y% aj/ 5 ( )da’: Jf/ 3 dx x(n(m)—i— 2)

1
— — 1 —_—
y1=x, y2=xln(r)+ o7

are linearly independent solutions. &

Thus,

Remark 4.14. It can be seen that if we take the solution as y = 2"~ j A,z™ with » = —1, then
we arrive at A,, = 0 so that it violates our requirement, and the resulting expression will not be a

solution. &

4.3.2 Bessel’s equation

Bessel’s equation is given by

(E2y/l+$yl+($2 —VQ)yZO

where v is a non-negative real number. This is a special case of the equation
y" +p()y +qlz)y=0

where p, ¢ are such that xp(z) and z2g(z) are analytic at 0, i.e., 0 is a regular singular point. Thus,

Frobenius method can be applied.

o0
Taking a solution y of the form y = 2" Z anx™, we have

n=0
o0 o0 o0 o0
Z(n +r)(n 47— Da,z™t" + Z(n +1r)apx™ " + Z(an_gx”“" — Z via,z"t" = 0.
n=0 n=0 n=2 n—0

Coefficient of 2" is 0 < [r(r — 1) +r —1v%ag < 2 —1?>=0.
Coefficient of 27+ is 0 <= [(r +1)2 — v2]a; =0
Coefficient of z™™:  [(n+7r)(n+r—1)+ (n+7) — v?a, + an_o2.

Thus, roots of the indicial equation are ry = v, ro = —v. Taking r = r; = v, we have a; = 0 and

An—2 An—2 2.3
ap = — =— , n=2,3,....
(n+r)(n+r—1)+(n+r)—v? n?+ 2nv

Hence, as,_1 = 0 for all n € N and

o — — a2n—2 ___ 9on—2 neN
an (2n)2 + 4nv 22n(n+v)’ ’

It is a usual convention to take

1 o0
ao 7 IN{))] ::/ et ldt, a>0.
0

T 2T(v+1
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Recall that I'(a 4+ 1) = aI'(«). Then we have
ap 1 1

CTTRA ) 2R DI(vtl) | 20T+ 2)
an 2 1
== —1 e —
U= "m0, "V smerp 1y
—1)"
a2n = ( )

22ntvpIll(v+n+1)
The corresponding solution is

_ - (_1)71 2n+v
() = Z 22ntvpIl(n 4+ v+ 1) v ’

n=0

which is called the Bessel function of the first kind of order v.

Observe:

e Since the Bessel equation involves only /2, it follows that

J,,,(.T) — i (_1)n p2n—v
22n=vpIl'(n — v+ 1)

n=0

is also a solution.
e If v is not an integer, then J,(x) and J_, (z) are linearly independent solutions.
e If v is an integer, then say v = k € N then
Jor(z) = (=1)"Ji(2) (%)

say v = k € N then so that J_; and Ji are linearly dependent.

To see the above relation (x), note that

_ - (_1)n 2n+k
S Z 22ntknID(k +n + 1)‘76 ’

n=0
S0
= 22ntkpl(n + k)!
Also,
oo 1y
(@) = HZ:;) 22””n!(I‘(n)— v+ 1)!1«2”—”
It can be seen that if n =1,2,...,v — 1, then I'(n —v — k) = oo as v — n. Hence for v = —k, k € N,

_ = (_1)n 2n—k
Tr@) = 2, e ey A

n=0
_ i (_l)n xQn—k
B 22ntkpl(n — k)!

n=~k

S
- Z 22n+k(n + k)In!

n=0

= (~)Mia).

2n+k
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Now, for an integer k, for obtaining a second solution of the Bessel equation which is linearly

independent of Jj, we can use the general method, i.e., write the Bessel equation as

Y +p(x)y + q(z0y =0

— fp(z)dz
and knowing a solution y;, obtain yg := y1 () / eizdm. Note that
Y1
1 z? — k2

Thus, the second solution according to the above formula is

Vi) = Ju(x) / :Mf?;”z.

This is called the Bessel equation of the second kind of order k.

Now, we observe few more relations:

L (2" J,(2)) = 2" J,_1(x).
2. (a7 J,(x) = =z T4 (x).
3. Ju—1(x) + Jpp1(x) = 2?"Jl,(a:).

4. Jy_1(z) — Jy_1(x) = 2J)(2).

Proofs:
Note that
> 2n + 2v)x2ntv-l
l/JV / — -1 n (
(l' (l')) 7;)( ) 22”+Vn!F(n+ v+ 1)

B i( 1)n 2(71 + V)l,2n+21/71
B 22ntvpl(n + v)I'(n 4+ v)

n=0

St 2n+2r—1
- Z(*l)n 2n+f—1 |

o 2 n!T(n 4+ v)

oo m2n+21/—1

— v 1)

x nE::o( ) 22ntv—=IpIT(n 4 v)
= z"J,_1(x)
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This proves (1). To prove (2), note that

(1’71/;]1,(1’))/ =

2n—1

22ntvpll(n+ v+ 1)

2(n + 1)a2r!

- S
= 22ntv+2(n 4+ D)I0(n + v + 2)

9]
x2n+1

e
22ntv+iplT(n + v + 2)

n=0
[e's)
x2n+u+1

— —v _1 n+1
. nZ:%( ) 22ntvHiplD(n + v + 2)

_VJV+1(SC).

= —T

Proofs of (3) & (4): From (1) and (2),

JV—l(x) + Jv+1(z)

JV—l(x) - Jl,+1(a:)

e (2" T, (2)) — 2 (a7 Ty (x))

e[z T () + vt T, (2)] — 2V eV T (x) — v L (2)

2—VJI,(JL‘).

T

7 (x¥ T, (x)) + 2” (x_”Jl,(x))/

o[z T (z) + vt T, ()] 4+ 2t e T () — vV L (2)]

2J) ().

Using the fact I'(1) = /7, it can be shown (verify!) that

J

2 . 2
1 =4/—sinz, J_1 =4/—cosz.
2 L T

SIS

4.4 Orthogonality of functions

Definition 4.15. Functions f and g defined on an interval [a,b] are said to be orthogonal with

respect to a nonzero weight function w if

A sequence (f,,) of functions is said to be an orthogonal sequence of functions with respect to w

if

[Here, we assume that the above integral exits; that is the case, if for example, they are continuous

/ f(z)g(z)w(z)dz = 0.

b
/ fi(z) fj(z)w(z)dr =0 for ¢ # j.

or bounded and piece-wise continuous.]
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Note that
/2” { 0 ifn#m,
sin(nz) sin(ma)dz =
0

m  if n#m,

2 .
4 0 if
/ cos(nx) cos(mx)dxr = { ifn #m,
0

m  if n#m,

2m
/ sin(nx) cos(max)dx = 0.
0

Thus, writing
fon—2(x) = cos(nx), fon—1(x) =sin(nz) for n €N,

then (f,,) is an orthogonal sequence of functions with respect to w = 1.

b
. G = / filw) £ (w)w(z) da

and call this quantity as the scalar product of f and g with respect to w. If w(z) = 1 for every
x € [a,b], then we shall denote (f, g) := (f, g).. We observe that

Notation: We shall denote

o (fiflw=20,
b <f+gah>w = <f7 h>w + <gvh>wv
o (cf,[lw=c(f, [

If f,g,w are continuous functions, then

o (/i lw=0 = f=0.

Exercise 4.16. Let f1,,..., f, be linearly independent continuous functions. Let g; = f; and for
j=1,...,n, define g1, ..., g, iteratively as follows:
gi+1 = fir1 — (fir1, 91) w1 — (fi+1, 92)wg2 — - (fi+1,9)wgi, F=1,...,n—1

J
ie., gj+1 = fi+1 _Z<fj+1’ fiywfi, 7=1,2,...,n—1. Prove that g1, ..., g, are orthogonal functions
i=1
with respect to w. &
Definition 4.17. Functions fi, f2,... are said to be linearly independent if for every n € N,
fi,--., fn are linearly independent, i.e., for every n € N, if aq,...,q, are scalars such that oy f1 +
-+ apfn=0,then a; =0fori=1,... ,n. &

Definition 4.18. A sequence (f,,) on [a, ] is said to be an orthonormal sequence of functions with

respect to w if (f,,) is an orthogonal sequence with respect to w and (f,, fn)w = 1 for every j € N. &

Exercise 4.19. Let f;j(z) = 277! for j € N. Find g1, g2, ... as per the formula in Exercise 4.16 with
w(z) = 1 and [a,b] = [—1,1]. Observe that, for each n € N, g, is a scalar multiple of the Legendre
polynomial P,_. &
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4.4.1 Orthogonality of Legendre polynomials

Recall that for non-negative integers n, the Legendre equation is given by
(1—2®)y" =22y’ + Xy =0, Ay :=n(n+1).

This equation can be written as:
[(1=2%)y] + Ay = 0. (%)

Recall that for each n € Ny, the Legendre polynomial

M, .
~ 2n — 2k)! z if n even
Pn _ -1 k ( n—2k Mn = 2 )
() kz:%( AT e AT n—1if p odd
satisfies the equation (x). Thus,
[(1=2*)Pp) + AP =0, (#)1
(1 —2*)P) + AP =0. (%)2
=
(1 —2*)P)) Py + PPy =0, [(1—2*)P.]'Py+ PP, =0
—
{[(1 - Z‘Q)PT/L]/P,,” - [(1 - xQ)Pyln]/Pn} + (An - )\m)PnP’rn = 07
ie.,
(1 —2*)P.P,) —[(1 —2*) P, P + Ay — An)PuPr =0
- 1 1
/ {[A - 2*P.P,) — [(1 —2*) P, P,) }Ydx + (A — /\m)/ P,P,dx =0
-1 -1
i.e.,
1
(A — Am)/ P,P,,dx = 0.
-1
Thus,

1
nEm = AN FEA\ny — /Pandm:().
-1

Using the expression for P,, it can be shown that

! 2
/ Pidr = .
-1 27’L+ 1

Hence,

. { 2l p,ine NO} is an orthonormal sequence of polynomials.
Remark 4.20. Recall that for n € Ny, the Legenendre polynomial P,(x) is of degree n and the
Py, P1, Py, ... are orthogonal. Hence Py, P, Ps, ... are linearly independent. We recall the following

result from Linear Algebra:
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e If gqo,q1,-..,qn are polynomials which are

1. linearly independent and

2. degree of g; is atmost n for each j =0,1,...,n,
then every polynomial ¢ of degree at most n can be uniquely represented as

q=coqo+c1q1+ ...+ CnGn-

In the above if go, ¢1, .. ., g, are orthogonal also, i.e., (g;,qx) = 0 for j # k, then we obtain

(q,4;)
<qj7Qj>’

Cj =

Thus,

In particular:

e If ¢ is a polynomial of degree n, then

= <Qa P]>
q= P'a
= (B Fy) !
where Py, Py, ... are Legendre polynomials.

From Real Analysis, we recall that:

e For every continuous function f defined on a closed and bounded interval [a, b], there exists a

sequence (gp,) of polynomials such that (g,) converges to f uniformly on [a,], i.e., for every

€ > 0 there exists a positive integer N, such that

|f(x) = gqu(z)| <e ¥Yn>N., Vaela,bl

The above result is known as Weierstrass approximation theorem. Using the above result it can be

shown that:

e If go,q1,..., are nonzero orthogonal polynomials on [a,b] such that Jmax deg(g;) < n, then
<j<n

every continuous function f defined on [a,b] can be represented as

LS
4q,4q; .
f:Zqu]'7 Cj 1= 7< ! j>7 ]GN().
=0 <Qj’Qj>

The equality in the above should be understood in the sense that

o0
Hf—chqu—>O as m — 0o

j=n

where [|g||> := (g, 9).
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The expansion in (x) above is called the Fourier expansion of f with respect to the orthogonal
polynomials ¢, n € Ny. If we take Py, P, Ps, ... on [—1,1], then the corresponding Fourier expansion

is known as Fourier—Legendre expansion. &

4.4.2 Orthogonal polynomials defined by Bessel functions

Recall that for a positive integer n € N, the Bessel function of the first kind of order n is given by

- (-1) 2
I — _ J+n
() JZ::O 9271410 (n + j + 1)

is a power series, and it satisfies he Bessel equation:
22J" +xJ! + (2% —n?)J, = 0.
THEOREM 4.21. If a and 3 are zeros of J,(x) in the interval [0,1], then

1 .
/ xJp(ax)J, (fr)dr = ? Z'fa 75
0 sInti(a), ifa=p.

Proof. Observe that, for A € R, if z = Az and y(x) = J,(Az), then
yn(@) = M, () = Ma(2), - yn(x) = NJ}/(2).

Thus, we have

1 /
2T (2) 4+ 2T (2) + (22 = n?)Jp(2) =0 <= \22? y’;\(f) + )\xy"f\x) + (A% = n?)yn(z) =0

<
2y () + zy, (x) + (N2 = n)yn(x) =0

Now, let
u(z) = Jp(az), v(z) = J(Bz).

Thus, we have

22" 4 2’ + (a2? — n®)u =0, 220" + xv’ + (B2 —n?)v =0
—
n2 ,  n?
zu” +u' + (Pr — —)u =0, o + 0 + (B — —)v =0
T T
—
n2 ,  n?
v xu”—l—u’—&—(azx——)u} =0, u[mv"—&—v'—&—(ﬁ r——)v| =0
T T
—

zlou” — w”] + [ou) — wv'] + (o — BHauv = 0
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%[x(vu’ — )] + (a? = BHauv =0

1 1
/0 %[m(vu' —uwv)|dz + (o® — B?) /0 ruvdr = 0.

Since u(1) = Jp(a) =0 and v(1) = J,(8) = 0, it follows that

1
*-p? dz = 0.
(a ﬁ)/oxuvx

Hence, .
a#pf = / xdp(ax) Iy (Bz)dx = 0.
0

Next, we consider the case of 8 = a: Note that

2/ [2?u” + xu’ + (@®2? —n?)u =0,

ie.,
2220/ u” + 2zu'v’ + 2(a2® — n?)u'u = 0,

i.e.,

[2%(u))?]) + 2(®2® — n?)u/u = 0,
Also,

[@?z?u? — n*u?]) = o?(22%uu’ + 2zu?) — n?(2uu’) = 2(?z? — n*)u'u + 20 zu’.

Thus,

[2%(u)?] + 2(c?2? — n*)u/u =0
—

[$2(ul)2]/ + [0421'2’&2 _ n2u2]/ . 2a2xu2 _ 07
—
1 1 1
/ [2%(u))?) dx + / [@?2?u?® — n*u?) dx — 2a2/ ruldr =0,
0 0 0

ie.,

1
[22(u)?]} + [@?r?u? — n?u?]) — 2a2/ rudr = 0,
0
Since u(1) = Jp(«) = 0 and u(0) = J,(0) = 0, it follows that
1
[u/(1)]? — 2a2/ rudr = 0,
0

/0 ela(0w)Pde = ST (@) = SJnia(a)

The last equality follows, since:

(7" Jp) =~ "y = 27 "J, —nz "', =~ " J 1

50



so that taking z = «,
—a "Jpi1(@) =a "I () —na” " L (a) = o T ().

Thus, J/,

n

(o) = Jp+1(a), and the proof is complete.
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5 Sturm-Liouville problem (SLP)

Definition 5.1. For continuous real valued functions p, ¢, 7 defined on interval such that r’ exists and

continuous and p(z) > 0 for all & € [a, b], consider the differential equation
(r()y") + lg(x) + Ap(z)]y = 0, 1
together with the boundary conditions
k1y(a) + k2y'(a) =0, (2)

l1y(b) + L2y’ (b) = 0. 3)

The problem of determining a scalar A and a corresponding nonzero function y satisfying (1)—(3) is
called a Sturm-Liouville problem (SLP). A scalar (real or complex number) A for which there
is a nonzero function y satisfying (1)—(3) is called an eigenvalue of the SLP, and in that case the

function y is called the corresponding eigenfunction. &

We assume the following known result.

THEOREM 5.2. Under the assumptions on p,q,r given in Definition 5.1, the set of all eigenvalues
of SLP is a countably infinite set.

THEOREM 5.3. Figenfunctions corresponding to distinct eigenvalues are orthogonal on [a,b] with
respect to the weight function p(z).

Proof. Suppose A1 and Ao are eigenvalues of the SLP with corresponding eigenvectors y; and ys,

respectively. Let us denote
Ly := [r(z)y'] + q(x)y.
Then we have Let us denote

Ly = —Aipy1, Lya = —Aapys.

=
(Ly1)y2 — (Ly2)y1 = (A2 — A1)py1ye.
—
b b
/ [(Ly1)y2 — (Ly2)yrdz = (Ao — Al)/ Py1y2d.
Note that

(Ly1)yz — (Ly2)y = [(ry))yz — (rys)um]’

4A set S is said to be countably infinite if it is in one-one corresponding to the set N of natural numbers. For example,
other than N itself, the set Z of all integers, and the set @Q of all rational numbers are countably infinite. However,
the set {x € R: 0 < = < 1} is not a countably infinite set. An infinite set which is not countably infinite is called an
uncountable set. For example, the set {x € R: 0 < z < 1} is an uncountable set; so also the set of all irrational numbers
in{zeR:0<z<1}
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Hence b
/ [(Ly1)y2 — (Ly2)yrde = [(ry))y2 — (rya)yi](0) — [(ry1)y2 — (rys)yi](a).

Using the boundary conditions, the last expression on the above can be shown to be 0. Thus, we

obtain
b
(A2 — A1)/ py1y2 dr = [(ry))y2 — (rys)yi](b) — [(ry1)y2 — (rya)yi](a) = 0.

b
Therefore, if Ao # A1, we obtain / py1y2 dx = 0. O

a

THEOREM 5.4. FEvery eigenvalue of the SLP (1)-(3) is real.

Proof. Let us denote
Ly = [r(@)y] + a(z)y.
Suppose A := « + i is an eigenvalue of SLP with corresponding eigenfunction y(x) = u(x) + iv(z),

where «a, 8 € R, and u, v are real valued functions. Then we have

L(u +iv) = —(a +i8)p(u + iv),

i.e.,
Lu+iLv = —p(au — Bv) — ip(av + Bu).
Hence,
Lu = —p(au — Bv), Lv = —p(av + Pu)
.
(Lu)v — (Lv)u = Bp(v? + u?).
_—
b b
/ [(Lu)v — (Lv)uldz = ﬂ/ p(v? + u?)dzx.
But,
(Lu)v — (Lv)u = [(ru/)v — (rv")u]’.
Hence,

b b
/ [(Lu)v — (Lv)u]dx = / [(ru') — (rv")u) dz = [(ru")v — (rv")u](b) — [(ru’)v — (rv)u](a).
Using the fact that « and v satisfy the boundary conditions (2)-(3), it can be shown that

[(ru" v — (rv")u](b) — [(ru’)v — (rv")u](a) = 0.

b b
Thus, we obtain ,8/ p(v? + u?)dr = 0. Since ﬂ/ p(v? 4+ u?)dx we obtain 8 = 0, and hence
A=a€eR. ‘ ‘ O

THEOREM 5.5. If y; and ys are the eigenfunctions corresponding to an eigenvalue \ of the SLP,

then prove that y1,y2 are linearly dependent.

53



Proof. Suppose y; and ys are eigenfunctions corresponding to an eigenvalue A of the SLP. Then we

have
Ly = =Apyr,  Lyz = —Apye.
Hence,
(Ly1)y2 — (Ly2)y1 = 0.
But,

(Ly1)y2 — (Ly2)y1 = [(ry1)yz — (rya)ya]” = [rW (y1, y2)]".
Thus [rW (y1, y2)]" = 0 so that, using the assumption that r is not a zero function, we obtain rW (y1, y2)
is a constant function, say

r(x)W(y1,y2)(x) = ¢, constant.

But, by the boundary condition (2) we have
kiyi(a) + kayi(a) =
kiya(a) + kays(a) =

vi(a) wila)| [ka| _ |0
y2(a) wa(a)] |k2 0
Hence, W (y1,y2)(a) = 0 so that r(a)W (y1,y2)(a) = 0 and hence, ¢ = 0. This implies that W (y1, y2)

is a zero function, and hence 1, ys are linearly dependent. O

o O

ie.,

Example 5.6. For A € R, consider the SLP:
v + Ay =0,  y(0)=0=y(m)
Note that, for A = 0, the problem has only zero solution. Hence, 0 is not an eigenvalue of the problem.
If A <0, say A = —u?, then a general solution is given by
y(x) = C1e'™ 4 Cae™#7.

Now, %(0) implies C; + Cy = 0 and y(7) = 0 implies C1e#™ 4+ C1e~ ™ = 0. Then, it follows that,
C1 = 0= (5. Hence, the SLP does not have any negative eigenvalues.

Next suppose that A > 0, say A = p2. Then a general solution is given by
y(x) = Cy cos(pa) + Co sin(px).

Note that y(0) = 0 implies C; = 0. Now, y(w) = 0 implies y(7) = Cysin(ur) = 0. Hence, for those

values of p for which sin(um) = 0, we obtain nonzero solution. Now,
sin(ur) =0 < ur=nn for neZ.
Thus the eigenvalues and corresponding eigenfunctions of the SLP are

Api=n%  yn(x) :=sin(nz), n €N,
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Example 5.7. For A € R, consider the SLP:
y'+xy=0, Y (0)=0=1y(r)

Note that, for A = 0, y(z) = a + Bz is a solution of the DE. Now, 3/(0) =0 = ¢/(7) = 0 imply 8 = 0.

Hence, y(z) =1 is a solution.

If A <0, say A = —u?2, then a general solution is given by

y(z) = Cre!” + Cae™H7.
Note that y'(z) = uCre* — uCse **. Hence,
y(0)=0=y'(r) = C1—Cy=0, C1e'™ —Cre ™ =0.

Hence, C1 = Cy = 0, and hence the SLP does not have any negative eigenvalues.

Next suppose that A > 0, say A = p2. Then a general solution is given by

y(x) = Cy cos(px) + Cy sin(puz).

Then,
y'(z) = —pCh sin(ux) + pCsy cos(px).
Now, y(0) implies Cy = 0, and hence y(7) = 0 implies sin(um) = 0. Note that

sin(ur) =0 <= pr=nn for neZ.
Thus the eigenvalues and corresponding eigenfunctions of the SLP are

Ay i=n?, yn(x) := cos(nz), n € Ny.

Exercise 5.8. For A € R, consider the SLP:
y'+xy=0,  y(0)=0, y(r)=0.

Show that the eigenvalues and the corresponding eigenfunctions for the above SLP are given by

)\n:(2n2_1)2, yn(x):sin[(Qngl)x}, n € N.

Exercise 5.9. Consider the Schrédinger equation:
h2

—%d/’(x) =Mz, z€0,4],

along with the boundary condition
$(0) =0 =1(0).

Show that the eigenvalues and the corresponding eigenfunctions for the above SLP are given by

h2m?n? \/5 . [(NTX
)\n— W’ 'l,z)n(ﬁﬂ)— ZSIH (7), n € N.
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Exercise 5.10. Let
Ly = [r(2)y']" + a(2)y.
Prove that
(Ly,z)p = (y; Lz)p Vy,z € Cla,b],

for every weight function p(x) > 0 on [a, ). O

Definition 5.11. An orthogonal sequence (¢,) of nonzero functions in Cfa,b] is called a complete

system for C[a, b] with respect to a weight function w if every f € Cf[a,b] can be written as

)
f = Z CnPn,
n=1

where the equality above is in the sense that

/

{fs Pn)w

It can be seen that ¢, = ——— &

<f7L7 @7L>U) .

‘ 2

w(z)de -0 as N — oo.

N
f(JC) - Z Cn(PvL(x)
n=1
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