Sample Stokes' and Divergence Theorem questions

Professor: Lenny Ng Fall 2006

These are taken from old 103 finals from Clark Bray. Full solutions are available on his web site http://www.math.duke.edu/~cbray/ (these are from his Summer 2005 and Fall 2005-06 classes). *Note:* Stokes' Theorem and the Divergence Theorem are not necessarily applicable to all of these.

- 1. Compute the flux of \vec{F} through S, where:
 - (a) $\vec{F} = \vec{\nabla} \times (y + ze^{xy}, -x + ze^z, x^2y^2)$, S is the part of the unit sphere above the xy-plane, oriented away from the origin (answer: -2π);
 - (b) $\vec{F} = (x^2, x^2z + e^z, xy^2)$, S is the surface of the box $[0, 2] \times [0, 1] \times [0, 3]$, oriented outwards (answer: 12);
 - (c) same as (b) but S is missing the bottom $[0,2] \times [0,1] \times \{0\}$ (answer: 38/3, I think; how would you use (b) to calculate this?).
- 2. Let *B* be the ball in \mathbb{R}^3 of radius 5, centered at the origin. Compute

$$\iiint\limits_{R} (\vec{\nabla} \cdot \vec{F}) \, dV$$

where $\vec{F} = (-yze^{x^2y^3\sin z}, 3xze^{x^2y^3\sin z}, -2xye^{x^2y^3\sin z})$. (Answer: 0.)

- 3. (a) Compute the flux $\iint_S \vec{F} \cdot d\vec{S}$ where $\vec{F} = (e^y, -e^x, 0)$, and S is the portion above the xy-plane of the surface defined by $x^2 + 5y^2 (z-3)^2 = 16$, oriented outward (at the point (0,0,7), the unit normal vector is \hat{k}). (Answer: 0, but *be careful*: S isn't a closed surface.)
 - (b) Compute the flux $\iint_S (\vec{\nabla} \times \vec{G}) \cdot d\vec{S}$, where $\vec{G} = (0, 0, e^{xyz})$. (Answer: 0.)
- 4. Compute the flux $\iint_S \vec{F} \cdot d\vec{S}$ where $\vec{F} = (2y,z,-x)$, and S is the part of the plane x+y+z=4 that is above the rectangle in the xy-plane with vertices at (0,0,0), (2,0,0), (0,1,0), and (2,1,0), oriented upwards. (Answer: 5. You can't use Stokes for this one!)