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42.1. Prove that none of the spaces Rn, l1, l2, c0, or l∞ is compact.

Solution. Let X = Rn, l1, l2, c0, or l∞. Let 0 = (0, . . . , 0) in the case X = Rn and let 0 = (0, 0, . . . )
in the case X = l1, l2, c0, or l∞. For n ∈ P, let Bn(0) be the ball of radius n about 0 with respect
to the relevant metric on X. Note that U = {Bn(0) : n ∈ P} is an open cover of X. However, if U
had a finite subcover, then we would have X = BN (0) for some N ∈ P. This is a contradiction in
all cases. In the case of X = RN , note that (N + 1, 0, . . . , 0) /∈ BN (0). In the case X = l1, l2, c0,
or l∞, note that (N + 1, 0, . . . ) /∈ BN (0). Hence none of the spaces Rn, l1, l2, c0, or l∞ is compact.

42.3. Let X1, . . . , Xn be a finite collection of compact subsets of a metric space M . Prove that X1 ∪X2 ∪
· · ·∪Xn is a compact metric space. Show (by example) that this result does not generalize to infinite
unions.

Solution. Let U be an open cover of X1 ∪ X2 ∪ · · · ∪ Xn. Then U is an open cover of Xi for
each 1 ≤ i ≤ n. Since each Xi is compact, there is a finite subcover U∗i of Xi for each i. Let
U∗ = ∪n

i=1U∗i . Then U∗ is finite collection as it is a finite union of finite collections. Also, U∗
covers Xi for all i as U∗i covers Xi for each i. Therefore U∗ is a finite subcollection of U covering
X1 ∪X2 ∪ · · · ∪Xn, and so X1 ∪X2 ∪ · · · ∪Xn is compact.

To see that this result does not generalize to infinite unions, let M = R and let Xn = [n − 1, n]
for all n ∈ P. Then each Xn is compact, but ∪∞n=1Xn = ∪∞n=1[n− 1, n] = [0,∞) is not compact.

42.5. A collection C of subsets of a set X is said to have the finite intersection property if whenever
{C1, . . . , Cn} is a finite subcollection of C, we have C1 ∩ C2 ∩ · · · ∩ Cn 6= ∅. Prove that a metric
space M is compact if and only if whenever C is a collection of closed subsets of M having the finite
intersection property, we have ∩C 6= ∅.

Solution. First, suppose that M is compact. Let C be a collection of closed subsets of M hav-
ing the finite intersection property. Let U = {Cc : C ∈ C}. Then U is a collection of open sets.
Suppose for a contradiction that ∪U = M . Then since M is compact, there exists some finite
subcover U∗ of U . Label the sets in U∗ as U∗ = {Cc

1, . . . , C
c
n} with Ci ∈ C for all i. Since C

has the finite intersection property, we have C1 ∩ C2 ∩ · · · ∩ Cn 6= ∅. Taking complements, we get
Cc

1 ∪ Cc
2 ∪ · · · ∪ Cn 6= M , contradicting the fact that U∗ is a cover of M . Hence it must be that

∪U 6= M , and taking complements gives ∩C 6= ∅.
Next, suppose whenever C is a collection of closed subsets of M having the finite intersection

property, we have ∩C 6= ∅. Let U be an open cover of M . Let C = {U c : U ∈ U}, so C is a collection
of closed subsets. Since U is an open cover, we have ∪U = M hence ∩C = ∅. By assumption,
this means that U c

1 ∩ · · · ∩ U c
n = ∅ for some finite subset of C. Taking complements, we get that

U1 ∪ · · · ∪ Un = M for some finite subset of U . This shows that M is compact.

42.10. Let {Xn} be a sequence of compact subsets of a metric space M with X1 ⊃ X2 ⊃ X3 ⊃ · · · . Prove
that if U is an open set containing ∩Xn, then there exists Xn ⊂ U .

Solution. Note M = U ∪ (∪∞n=1X
c
n) so X1 ⊂ (U) ∪ (∪∞n=2X

c
n). Hence U,Xc

1 , X
c
2 , X

c
3 , X

c
4 . . . is

an open cover of the compact space X1. By definition of compactness, there exists some finite
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subcover. Since Xc
2 ⊂ Xc

3 ⊂ Xc
4 ⊂ . . . , this means there exists some n such that X1 ⊂ U ∪ Xc

n.
Hence

Xn = X1 ∩Xn ⊂ (U ∪Xc
n) ∩Xn = U ∩Xn ⊂ U.

42.12. A contractive mapping on M is a function f from the metric space (M,d) into itself satisfying
d(f(x), f(y)) < d(x, y) whenever x, y ∈ M with x 6= y. Prove that if f is a contractive mapping on
a compact metric space M , there exists a unique point x ∈M with f(x) = x.

Solution. Suppose there does not exist such a fixed point x with f(x) = x. Then the function
g(x) = d(f(x), x) positive. To see that g is continuous, use the fact that f is continuous (which
follows since f satiesfies the contractive mapping property) and the triangle inequality. Since M is
compact, by Corollary 42.7 there exists c ∈M such that g(c) ≤ g(x) for all x ∈M . As g is positive,
this means that g(c) > 0. However, note

g(f(c)) = d(f(f(c)), f(c)) < d(f(c), c) = g(c).

This is a contradiction. Therefore, there must exist a fixed point x ∈ M with f(x) = x. This
fixed point must be unique, for if there were some y 6= x with f(y) = y, then we would have
d(f(x), f(y)) = d(x, y), which contradicts our hypotheses.

43.1. Prove that the set {x ∈ M : d(x, 0) = 1} is closed and bounded in M , but not compact if M is l2,
c0, or l∞.

Solution. Let f(x) = d(x, 0), which is a continuous function by Theorem 40.3. So {x ∈M : d(x, 0) =
1} = f−1({1}) is the continuous preimage of a closed set, hence closed by Theorem 40.5(ii).

Note that d(y, z) ≤ 2 for all y, z ∈ {x ∈M : d(x, 0) = 1}, as d(y, z) ≤ d(y, 0) +d(0, z) = 1 + 1 = 2.
Hence {x ∈M : d(x, 0) = 1} is bounded by Definition 43.6.

Let δ(k) in l2, c0, or l∞ be given by

δ(k)
n =

{
1 if n = k

0 if n 6= k.

Check that {δ(k)}∞k=1 is a sequence of points in l2, c0, or l∞ that has no convergent subsequence.
Therefore l2, c0, and l∞ are not compact by Theorem 43.5.

43.4. If (M,d) is a bounded metric space, we let diamM = lub{d(x, y) : x, y ∈ M}. Prove that if (M,d)
is a compact metric space, there exist x, y ∈M such that d(x, y) = diamM .

Solution. I will give two solutions.
First solution: For each x ∈ M , define f(x) = max{d(x, y) : y ∈ M}, where this maximum is

realized by Theorem 40.3 and Corollary 42.7. Let yx ∈M be a point such that f(x) = d(x, yx).
We want to show that f is continuous. Let ε > 0. Suppose d(x, x′) < ε. It must be that

d(x, yx) < ε+ d(x′, yx′), for otherwise we would have

d(x, yx′) ≤ d(x, x′) + d(x′, yx′) < ε+ d(x′, yx′) ≤ d(x, yx),

contradicting the choice of yx. Similarly, it must be that d(x′, yx′) < ε + d(x, yx). Together, these
two inequalities show that |d(x, yx)− d(x′, yx′)| < ε. Hence

|f(x)− f(x′)| = |d(x, yx)− d(x′, yx′)| < ε.

This shows f is continuous.
Therefore, we apply Corollary 42.7 to see that there exists some c ∈M such that f(c) ≥ f(x) for

all x ∈M . Hence
d(c, yc) = f(c) ≥ f(x) = max{d(x, y) : y ∈M}
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for all x ∈M . This shows that d(c, yc) = lub{d(x, y) : x, y ∈M} = diamM .

Second solution: Consider the product metric space (M×M,d′), where d′ is defined by d′[(x1, x2), (y1, y2)] =
d(x1, x2) + d(y1, y2) as in Exercise 35.8. Since (M,d) is compact, by Exercise 43.2 it follows that
(M ×M,d′) is compact. Show that d : M ×M → R is continuous, using the definition of d′ and
the triangle inequality. So Corollary 42.7 tells us that there exist points (c, d) ∈ M ×M such that
d(c, d) ≥ d(x, y) for all x, y in M . Hence d(c, d) = diamM .

43.7. Let X be a compact subset of a metric space M . If y ∈ Xc, prove that there exists a point a ∈ X
such that d(a, y) ≤ d(x, y) for all x ∈ X. Give an example to show that the conclusion may fail if
“compact” is replaced by “closed.”

Solution. Let f(x) = d(x, y). By Theorem 40.3, the function f is continuous. By Corollary 42.7,
there exists a point a ∈ X such that d(a, y) ≤ d(x, y) for all x ∈ X.

To see that the conclusion may fail if “compact” is replaced by “closed,” let M = l∞. Let δ(k) ∈ l∞
be given by

δ(k)
n =

{
1 if n = k

0 if n 6= k,

and let X = {δ(k) : k ∈ P}. Note that X contains its limit points and is therefore closed. Let
y = (−1,− 1

2 , . . . ,−
1
n , . . . ). So d(δ(k), y) = 1 + 1

k for all k ∈ P, which implies that there does not
exist a fixed k0 ∈ P such that d(δ(k0), y) ≤ d(δ(k), y) for all k ∈ P.

44.1. Give an example of metric spaces M1 and M2 and a continuous function f from M1 onto M2 such
that M2 is compact, but M1 is not compact.

Solution. Let M1 = R, let M2 be the trivial metric space {0} consisting of a single point, and
let f : R → {0} be given by f(x) = 0 for all x ∈ R. Check that f is a continuous function. Note
that M2 = {0} is compact, but M1 = R is not compact.

44.6(a,b,c). Let f be a one-to-one function from a metric space M1 onto a metric space M2. If f and f−1 are
continuous, we say that f is a homeomorphism and that M1 and M2 are homeomorphic metric spaces.

(a) Prove that any two closed intervals of R are homeomorphic.

Solution. Let [a, b] and [c, d] be any two closed intervals of R. Define f : [a, b] → [c, d] by
f(x) = d−c

b−a (x− a) + c. Check that f is one-to-one and onto, and that f−1[c, d] → [a, b] is given by
f−1(x) = b−a

d−c (x− c) + a. Check that f and f−1 are continuous functions, and hence [a, b] and [c, d]
are homeomorphic.

(b) Prove (a) with “closed” replaced by “open”; with “closed” replaced by “half-open”.

Solution. When “closed” is replaced by “open”, the argument given in (a) works after replacing
[a, b] and [c, d] with (a, b) and (c, d), respectively.

When “closed” is replaced by “half-open,” there are four cases. If the two intervals are (a, b] and
(c, d] or [a, b) and [c, d), then the argument given in (a) carries over. If the two intervals are (a, b]
and [c, d) or [a, b) and (c, d], then define f by f(x) = − d−c

b−a (x− a) + d, and proceed as above.

(c) Prove that a closed interval is not homeomorphic to either an open interval or a half-open interval.

Solution. I will prove the following claim: if two spaces M1 and M2 are homeomorphic, then M1 is
compact if and only if M2 is compact. For the proof, note that if M1 is compact, then M2 = f(M1)
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is compact by Theorem 44.1. Conversely, if M2 is compact, then M1 = f−1(M2) is compact by
Theorem 44.1.

Since a closed interval is compact but an open interval or a half-open interval is not compact,
our claim shows that a closed interval is not homeomorphic to either an open interval or a half-open
interval.

44.8. Let X be a compact subset of R, and let f be a real-valued function on X. Prove that f is continuous
if and only if {(x, f(x)) : x ∈ X} is a compact subset of R2.

Solution. First, suppose f is continuous. Let {(xn, f(xn))} be any sequence of points in {(x, f(x)) :
x ∈ X}. Then {xn} is a sequence of points in X. Since X is compact, by Theorem 43.5 there is a
convergent subsequence {xnk

} with limk→∞ xnk
= x ∈ X. Since f is continuous, by Theorem 40.2

we have limk→∞ f(xnk
) = f(x). Hence limk→∞(xnk

, f(xnk
)) = (x, f(x)) by Theorem 37.2. Hence

{(x, f(x)) : x ∈ X} is compact by Theorem 43.5.
Conversely, suppose that {(x, f(x)) : x ∈ X} is a compact subset of R2. Let {xn} be any sequence

of points in X with limn→∞ xn = x ∈ X. Consider the sequence of points {(xn, f(xn))} in {(x, f(x)) :
x ∈ X}. Let U be any open neighborhood about (x, f(x)) in R2. Suppose for a contradiction that
{(xn, f(xn))} is not eventually inside U . Then there is a subsequence {(xnk

, f(xnk
))} which lies

in {(x, f(x)) : x ∈ X} \ U . Note {(x, f(x)) : x ∈ X} \ U is a closed subset of the compact set
{(x, f(x)) : x ∈ X} and is hence compact. So {(xnk

, f(xnk
))} has a convergent subsequence in

{(x, f(x)) : x ∈ X} \U . But any subsequence of {(xnk
} must converge to x, and so any subsequence

of {(xnk
, f(xnk

))} must converge to (x, y) for some y, which contradicts the fact that there is no point
of the form (x, y) in {(x, f(x)) : x ∈ X}\U . Hence it must be the case that {(xn, f(xn))} is eventually
inside U , and so limn→∞(xn, f(xn)) = (x, f(x)). By Theorem 37.2, this means limn→∞ f(xn) = f(x)
and so f is continuous by Theorem 40.2.
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