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Homework 7 Solutions

Math 171, Spring 2010
Henry Adams

Prove that none of the spaces R”, 11,12, ¢, or I* is compact.

Solution. Let X = R™, I', I?, ¢y, or [*®. Let 0 = (0,...,0) in the case X = R™ and let 0 = (0,0,...)
in the case X = [', 12, ¢y, or [*°. For n € P, let B,,(0) be the ball of radius n about 0 with respect
to the relevant metric on X. Note that & = {B,,(0) : n € P} is an open cover of X. However, if U
had a finite subcover, then we would have X = By(0) for some N € P. This is a contradiction in
all cases. In the case of X = R™ note that (N + 1,0,...,0) ¢ By (0). In the case X = I', 12, co,
or [°°, note that (N +1,0,...) ¢ Bx(0). Hence none of the spaces R™, I1, I2, cg, or [ is compact.

Let X;,..., X, be a finite collection of compact subsets of a metric space M. Prove that X; U X, U
---UX, is a compact metric space. Show (by example) that this result does not generalize to infinite
unions.

Solution. Let U be an open cover of X7 U Xy U---U X,,. Then U is an open cover of X; for
each 1 < 4 < n. Since each X; is compact, there is a finite subcover U of X, for each i. Let
U = UJp_U. Then U* is finite collection as it is a finite union of finite collections. Also, U*
covers X, for all ¢ as U covers X; for each ¢. Therefore /* is a finite subcollection of U covering
X1UXoU---UX,, and so X; U X, U---UX, is compact.

To see that this result does not generalize to infinite unions, let M = R and let X,, = [n — 1,7
for all n € P. Then each X,, is compact, but U2 X,, = U2 [n — 1,n] = [0, 00) is not compact.
A collection C of subsets of a set X is said to have the finite intersection property if whenever
{C1,...,C,} is a finite subcollection of C, we have C; N CyN---NC, # 0. Prove that a metric
space M is compact if and only if whenever C is a collection of closed subsets of M having the finite
intersection property, we have NC # ().

Solution. First, suppose that M is compact. Let C be a collection of closed subsets of M hav-
ing the finite intersection property. Let U = {C°¢ : C € C}. Then U is a collection of open sets.
Suppose for a contradiction that U4 = M. Then since M is compact, there exists some finite
subcover U* of U. Label the sets in U* as U* = {C%,...,C5} with C; € C for all i. Since C
has the finite intersection property, we have C;1 N Co N ---NC,, # (). Taking complements, we get
CyuCsU---UC), # M, contradicting the fact that U* is a cover of M. Hence it must be that
UU # M, and taking complements gives NC # {.

Next, suppose whenever C is a collection of closed subsets of M having the finite intersection
property, we have NC # (). Let U be an open cover of M. Let C = {U®: U € U}, so C is a collection
of closed subsets. Since U is an open cover, we have U/ = M hence NC = (). By assumption,
this means that Uf N --- NUE = @ for some finite subset of C. Taking complements, we get that
Ui U---UU, = M for some finite subset of /. This shows that M is compact.

Let {X,,} be a sequence of compact subsets of a metric space M with X; D Xo D X3 D ---. Prove
that if U is an open set containing NX,,, then there exists X, C U.

Solution. Note M = U U (U3, XS) so X; C (U) U (USL,X¢). Hence U, X7, X5, XS X§... is
an open cover of the compact space X;. By definition of compactness, there exists some finite
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subcover. Since X§ C X§ C X§ C ..., this means there exists some n such that X; C U U X¢.
Hence

X,=XiNX,C(UUX)NX,=UNX,CU.

A contractive mapping on M is a function f from the metric space (M,d) into itself satisfying
d(f(z), f(y)) < d(z,y) whenever x,y € M with z # y. Prove that if f is a contractive mapping on
a compact metric space M, there exists a unique point x € M with f(x) = «.

Solution. Suppose there does not exist such a fixed point  with f(x) = x. Then the function
g(z) = d(f(x),x) positive. To see that g is continuous, use the fact that f is continuous (which
follows since f satiesfies the contractive mapping property) and the triangle inequality. Since M is
compact, by Corollary 42.7 there exists ¢ € M such that g(c) < g(x) for all z € M. As g is positive,
this means that g(c) > 0. However, note

9(f(c)) = d(f(f(c)), f(c)) < d(f(c),c) = g()-

This is a contradiction. Therefore, there must exist a fixed point x € M with f(z) = x. This
fixed point must be unique, for if there were some y # z with f(y) = y, then we would have
d(f(z), f(y)) = d(x,y), which contradicts our hypotheses.

Prove that the set {x € M : d(x,0) = 1} is closed and bounded in M, but not compact if M is I2,
cp, or [*°.

Solution. Let f(z) = d(z,0), which is a continuous function by Theorem 40.3. So {z € M : d(z,0) =
1} = f=1({1}) is the continuous preimage of a closed set, hence closed by Theorem 40.5(ii).

Note that d(y,z) < 2forall y,z € {x € M : d(x,0) =1}, as d(y,z) < d(y,0)+d(0,z) =141 =2.
Hence {z € M : d(z,0) = 1} is bounded by Definition 43.6.

Let 6 in [2, ¢, or [°° be given by

500 1 ifn=k
"0 ifn#k.

Check that {6(k)}z":1 is a sequence of points in 2, ¢y, or > that has no convergent subsequence.
Therefore 2, ¢y, and [ are not compact by Theorem 43.5.

If (M,d) is a bounded metric space, we let diam M = lub{d(z,y) : z,y € M}. Prove that if (M,d)
is a compact metric space, there exist z,y € M such that d(z,y) = diam M.

Solution. 1 will give two solutions.
First solution: For each x € M, define f(x) = max{d(z,y) : y € M}, where this maximum is
realized by Theorem 40.3 and Corollary 42.7. Let y, € M be a point such that f(z) = d(z,y.).
We want to show that f is continuous. Let € > 0. Suppose d(z,2') < e. It must be that
d(x,y,) < e+ d(z', y.), for otherwise we would have

d(xvyz/) < d(m,x’) + d(xlvym’) <€+ d(xlvyz/) < d(l’,ym),

contradicting the choice of y,. Similarly, it must be that d(z’,y.) < € + d(z,y,). Together, these
two inequalities show that |d(z,y.) — d(2’, y.)| < €. Hence

|f(@) = f(@)] = ld(2,y2) — d(@’, yor)| < e
This shows f is continuous.
Therefore, we apply Corollary 42.7 to see that there exists some ¢ € M such that f(c) > f(z) for
all x € M. Hence
d(c,ye) = f(e) = f(x) = max{d(z,y) : y € M}
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for all © € M. This shows that d(c,y.) = lub{d(z,y) : z,y € M} = diam M.

Second solution: Consider the product metric space (M x M, d'), where d' is defined by d'[(z1, 2), (y1,¥y2)] =
d(x1,22) + d(y1,y2) as in Exercise 35.8. Since (M, d) is compact, by Exercise 43.2 it follows that
(M x M,d") is compact. Show that d : M x M — R is continuous, using the definition of d’ and
the triangle inequality. So Corollary 42.7 tells us that there exist points (¢,d) € M x M such that
d(e,d) > d(x,y) for all z,y in M. Hence d(c,d) = diam M.

43.7. Let X be a compact subset of a metric space M. If y € X¢, prove that there exists a point a € X
such that d(a,y) < d(z,y) for all x € X. Give an example to show that the conclusion may fail if
“compact” is replaced by “closed.”

Solution. Let f(z) = d(z,y). By Theorem 40.3, the function f is continuous. By Corollary 42.7,
there exists a point a € X such that d(a,y) < d(z,y) for all z € X.
To see that the conclusion may fail if “compact” is replaced by “closed,” let M = [>°. Let §(*) ¢ [>

be given by
" 0 ifn#k,

and let X = {0 : k € P}. Note that X contains its limit points and is therefore closed. Let
y=(-1,-%,...,—2,...). So A6 y) =1+ + for all k € P, which implies that there does not

exist a fixed ko € P such that d(6(0),y) < d(6*), y) for all k € P.

44.1. Give an example of metric spaces M; and Ms and a continuous function f from M; onto Ms such
that Ms is compact, but M; is not compact.

Solution. Let M; = R, let My be the trivial metric space {0} consisting of a single point, and
let f: R — {0} be given by f(xz) = 0 for all z € R. Check that f is a continuous function. Note
that My = {0} is compact, but M; = R is not compact.

44.6(a,b,c). Let f be a one-to-one function from a metric space M; onto a metric space Mo. If f and f~! are
continuous, we say that f is a homeomorphism and that M; and M5 are homeomorphic metric spaces.

(a) Prove that any two closed intervals of R are homeomorphic.

Solution. Let [a,b] and [c,d] be any two closed intervals of R. Define f : [a,b] — [c,d] by
f(z) = =¢(x — a) + c. Check that f is one-to-one and onto, and that f~'[c,d] — [a,b] is given by

f~Hz) = =%(2 — ¢) + a. Check that f and f~! are continuous functions, and hence [a, b] and [c, d]

are homeomorphic.

I

(b) Prove (a) with “closed” replaced by “open”; with “closed” replaced by “half-open”.

Solution. When “closed” is replaced by “open”, the argument given in (a) works after replacing
[a,b] and [c,d] with (a,b) and (c,d), respectively.

When “closed” is replaced by “half-open,” there are four cases. If the two intervals are (a,b] and
(c,d] or [a,b) and [c,d), then the argument given in (a) carries over. If the two intervals are (a, b
and [c,d) or [a,b) and (c,d], then define f by f(z) = —$=¢(z — a) + d, and proceed as above.

(c) Prove that a closed interval is not homeomorphic to either an open interval or a half-open interval.

Solution. 1 will prove the following claim: if two spaces M7 and M, are homeomorphic, then M is
compact if and only if Ms is compact. For the proof, note that if M; is compact, then My = f(M;)
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is compact by Theorem 44.1. Conversely, if M, is compact, then M; = f~1(My) is compact by
Theorem 44.1.

Since a closed interval is compact but an open interval or a half-open interval is not compact,
our claim shows that a closed interval is not homeomorphic to either an open interval or a half-open
interval.

Let X be a compact subset of R, and let f be a real-valued function on X. Prove that f is continuous
if and only if {(z, f(x)) : # € X} is a compact subset of R2.

Solution. First, suppose f is continuous. Let {(z,, f(z,))} be any sequence of points in {(z, f(z)) :
x € X}. Then {xz,} is a sequence of points in X. Since X is compact, by Theorem 43.5 there is a
convergent subsequence {z,, } with limg_,o z,, = x € X. Since f is continuous, by Theorem 40.2
we have limy o0 f(2n,) = f(z). Hence limg_,o0 (2n,, f(2n,)) = (z, f(x)) by Theorem 37.2. Hence
{(z, f(x)) : @ € X} is compact by Theorem 43.5.

Conversely, suppose that {(z, f(z)) : * € X} is a compact subset of R2. Let {x,,} be any sequence
of points in X with lim,,_,o x, = € X. Consider the sequence of points {(z,, f(zy))} in {(z, f(z)) :
x € X}. Let U be any open neighborhood about (z, f(z)) in R?. Suppose for a contradiction that
{(xn, f(z,))} is not eventually inside U. Then there is a subsequence {(x,,, f(z,))} which lies
in {(z, f(z)) : © € X} \U. Note {(z, f(z)) : © € X} \ U is a closed subset of the compact set
{(z, f(z)) : * € X} and is hence compact. So {(zn,, f(zn,))} has a convergent subsequence in
{(z, f(z)) : x € X} \U. But any subsequence of {(x,, } must converge to x, and so any subsequence
of {(zn,, f(zn,))} must converge to (x,y) for some y, which contradicts the fact that there is no point
of the form (z,y) in {(z, f(z)) : « € X}\U. Hence it must be the case that {(z, f(x,))} is eventually
inside U, and so lim,—,c0 (Zn, f(2,)) = (x, f(x)). By Theorem 37.2, this means lim,, o f(z,) = f(z)
and so f is continuous by Theorem 40.2.



