Ashoka Scientific Forum Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

THERMODYNAMICS-3

		I II DIG TOD	THE THEOD O				
1.	. Heat product in calories by the combustion of 1g of carbon is called?						
	(a) Heat of combustion	of carbon	(b) Heat of formation of carbon				
	(c) Calorific Value of ca	arbon	(d) Heat of product of carbon				
2.	and Angeles and the contract of the contract o						
	(a) Adiabatic Compression		(b) Isothermal Compression				
	(c) Isothermal Expansion		(d) Adiabatic Expansion				
3.	For the isothermal exp	ansion of an ideal gas	s:				
	(a) E and H increases		(b) E increases but H decreases				
	(c) H increases and E decreases		(d) E and H are unaltered				
4.	In an isochoric process						
	(a) Equal to the heat al	bsorbed	(b) Equal to heat evolved				
	(c) Equal to the work done		(d) Equal to sum of heat absorbed and work done				
5.	Internal energy is an example of:						
	(a) Path Function	(b) State Function	(c) Both a and b	(d) None of these			
6.	The process in which n	o heat enters or leave	s the system is termed as:				
	(a) Isochoric	(b) Isobaric	(c) Isothermal	(d) Adiabatic			
7.	If in a container, neith	er mass nor heat excha	ange occurs, then it constit	utes:			
	(a) Closed System	(b) Open System	(c) Isolated System	(d) Imaginary System			
8.	Which of the following is true for an adiabatic process?						
	(a) ∆ H = 0	(b) $\Delta W = 0$	(c) $\Delta Q = 0$	(d) $\Delta V = 0$			
9.	Among the following, i						
	(a) Mass	(b) Volume	(c) Surface Tension				
10.	. For the reaction of one mole of zinc dust with one mole of sulphuric acid in a bomb calorimete						
	Δ V and W correspond to:						
	(a) $\Delta U < 0$, $W = 0$ (b) $\Delta U = 0$, $W < 0$ (c) $\Delta U > 0$, $W = 0$ (d) $\Delta U = 0$, $W > 0$						
11.	1. Which of the following expressions represent the first law of thermody						
	(a) $\Delta E = -q + W$		(c) ∆ E = q + W	Ad ME X W			
12.	. At 27°C one mole of an ideal gas is compressed isothermally and residuated has pressed of 2						
	atm to 10 atm. The value of Δ E and q are (R = 2):						
		(a) 0, - 965.84 cal (b) – 965.84 cal, - 865.88 at					
	(c) 865.58 cal, - 865.58 cal (d) – 865.58 cal, - 865.58 cal,						
13.			of a body by 1K is called:	TEICY			
	(a) Specific Heat	(b) Thermal Capacity		None of these			
14.	Which of the following is true for the reaction:						
	$H_2O(I) \rightleftharpoons H_2O(g)$ at $100^{\circ}C$ at one atmosphere?						
	(a) ∆ E = 0	(b) ∆H = 0	(c) $\Delta H = \Delta E$	(d) $\Delta H = T \Delta S$			
15.	Identify the correct statement regarding entropy:						

2637, Hudson Lane, Behind Khalsa College, Near G.T.B. Nagar Metro Station Gate No. 3 & 4, New Delhi – 110009 Mob.011-47455430, 08860929430, e-mail: info@asfinstitute.com, www.asfinstitute.com

Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

(a) At 0°C, the entropy of a perfectly crystalline substance is taken to be zero (b) At absolute zero of the temperature, the entropy of all perfectly crystalline substance is (c) At absolute zero of the temperature the entropy of all perfectly crystalline substance is taken (d) At absolute zero temperature, the entropy of a perfectly crystalline substance is taken to be 16. Maximum entropy will be in which of the following? (b) Liquid Water (c) Snow (d) Water Vapours 17. If enthalpies of formation C₂H₄ (g), CO₂ (g) and H₂O (l) at 250°C and 1 atm. pressure be 52, -394 and -286 KJ mol 1 respectively. The enthalpy of combustion of C₂H₄ (g) will be: (a) + 1412 KJ mol 1 (b) - 1412 KJ mol1 (c) + 141.2 KJ mol-1 (d) - 141.2 KJ mol 1 18. Heat of neutralization of strong acid and weak base is: (a) 57.1 KJ mol¹ (b) 13.7 KJ mol¹ (c) Less than 13.7 Kcal mol¹ (d) More than 13.7 Kcal mol¹ 19. The heat evolved in the combustion of methane is given by the following equations: $CH_{4}(g) + 2 O_{2}(g) \rightarrow CO_{2}(g) + H_{2}O(1)$ $\Delta H = -890.3 \text{ KJ}$ How many grams of methane would be required to produce 444.15 KJ of heat of combustion? (a) 4 g (b) 8 g (c) 12 g (d) 16 g 20. In a calorimeter, the temperature of the calorimeter increases by 6.12K, the heat capacity of the system is 1.23 KJ/g/deg. What is the molar heat of decomposition of NH4NO₃? (b) - 398.1 KJ mol 1 (c) - 16.1 KJ mol 1 (d) - 602 KJ mol 1 21. Enthalpy change for a reaction does not depend upon: (a) The physical states of reactants and products (b) Use of different reactants for the same product (c) The nature of the intermediate reaction steps (d) The differences in initial or final temperature of involved substances 22. The heat of combustion of carbon to CO₂ is - 393 KJ/mol. The heat released 35.2 g of CO, from carbon and oxygen gas is: (c) - 315 KJ (a) + 315 KJ(b) -31.5 KJ23. Consider the reaction: $N_1(g) + 3H_1(g) \rightleftharpoons 2NH_1(g)$ Carried out at constant temperature and pressure. If Δ H and Δ U are δ 0 energy changes for the reaction, which of the following expressions is tru (b) $\Delta H = \Delta U$ (c) ΔH < ΔU 24. The work done in ergs for the reversible expansion of one mole of an ideal gas from a volume of 10L to 20L at 25°C is: (b) 298×10,×8.314×2.303 log2 (a) 2.303×298×0.82 log2 (d) 2.303×298×2 log2 (c) 2.303×298×0.082 log0.5

2637, Hudson Lane, Behind Khalsa College, Near G.T.B. Nagar Metro Station Gate No. 3 & 4, New Delhi – 110009 Mob.011-47455430, 08860929430, e-mail: info@asfinstitute.com, www.asfinstitute.com

Ashoka Scientific Forum Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

25.	Work done during i	sotnermai expar	ision of 1 mole of	it an ideal gas t	rom 10 atm to	1 atm at 300K
	is:					
	(a) 4938.8 J	(b) 4138.8 J	(c) 574	4 J	(d) 6257.2 J	
26.	Δ E ^o of combustion	of isobutylene i	s – x KJ mol·1. Th	e value of Δ H $^{ m o}$	is:	
	(a) = ∆ E°	(b) > ∆ Eº	(c) = 0	(d) <	ΔEº	
27.	The free energy cha	ange for a revers	ible reaction at (equilibrium is:		
	(a) Large positive	(b) Smal	negative	(c) Small P	ositive	(d) Zero
28.	The heat of neutral	ization of a stror	ng acid and a str	ong alkali is 57.	0 KJ mol-1. The	heat released
	when 0.5 mole of H	INO₃ solution is r	nixed with 0.2 m	iole of KOH is:		
	(a) 57.0 KJ	(b) 11.4 KJ	(c) 2	28.5 KJ	(d) 34.9	KJ
29.	Heat of formation of	of H₂O is – 188 KJ	per mole and H	₂ O ₂ is – 286 KJ r	mol1. The enth	alpy change for
	the reaction 2 H	$l_2O_2 \rightarrow 2 H_2O + O$	is:			
	(a) 196 KJ	(b) – 196 KJ	(c) 9	984 KJ	(d) - 984	KJ
30.	The values of ΔH f	or the combustion	on of ethene and	l ethyne are – :	341.1 and – 31	.0.0 K cal
	respectively. Which	of the following	is a better fuel?	,		
	(a) C ₂ H ₂	(b) C ₂ H ₄	(c) Both a a	nd b	(d) None	of these
31.	Given that bond en	ergies of H-H an	d CI-Cl are 430 a	nd 240 KJ mol 1	respectively,	and ΔH_t
	for HCl is - 90 KJ m	iol ⁻¹ . Bond enthal	py of HCl is:			
	(a) 290 KJ mol-1	(b) 380 KJ mo	l-1 (c) 42	25 KJ mol⁴	(d) 245	KJ mol-1
32.	Hess's Law deals w	ith:				
	(a) A change in hea	t of reaction	(b)	Rate of reaction	n	
	(c) Equilibrium cons	stant	(d) (nfluence of pre	essure on volu	me of gas
33.	One mole of metha	nol when burnt	in O₂ gives out 7	23 KJ mol ⁻¹ hea	t. If one mole	of O₂ is used,
	what will be the an	nount of heat ob	served?			
	(a) 723 KJ	(b) 924 KJ	(c) 4	82 KJ	(d) 241 KJ	
34.	The enthalpy and e	ntropy change fo	or the reaction:			
	$Br_2(l) + Cl_2(g) \rightarrow 2$, S	HUK.
	Are 30 KJ mol 1 and	105 JK-1mol-1 res	pectively. The te	mperature at v	vhich the	thon will be
	equilibrium is:					
	(a) 285.7 K	(b) 273 K		50 K	(d) 3000	
35.	The change in the				9	
	(Melting point of ic				./	//\\>
	(a) 11.73 JK-1mol 1	(b) 18.84 JK	mol¹ (d	:) 21.97 JK ¹ mol	1	FICE
36.	For a spontaneous	•				
	(a) Entropy of the s		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		What on least a reconstruction	always increases
	(c) Total entropy ch) Total entropy	change is alw	ays positive
37.	The absolute entha	30 to 10 to 10 to				
	MgO (s) + 2 HCl (aq					
2	637, Hudson Lane, Behir	nd Khalsa College, Ne	ear G.T.B. Nagar Me	tro Station Gate N	o. 3 & 4, New De	lhi - 110009

Mob.011-47455430, 08860929430, e-mail: info@asfinstitute.com, www.asfinstitute.com

Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

(a) Less than - 57.33 KJ mol-1

(b) - 57.33 KJ mol-1

(c) Greater than - 57.33 KJ mol

(d) 57.33 KJ mol 4

38. For the reaction of one mole of zinc dust with one mole of sulphuric acid in a bomb calorimeter, Δ U and W corresponds to:

(a) $\Delta U < 0$, W = 0

(b) ∆U < 0, W < 0</p>

(c) $\Delta U > 0$, W = 0

(d) $\Delta U > 0, W >$

0

39. Standard enthalpy and standard entropy changes for the oxidation of NH₃ at 298 K are – 382.64 KJ mol⁻¹ and – 145.6 JK⁻¹mol⁻¹, respectively. Standard Gibb's energy change for the same reaction at 298 K is:

(a) - 2221.1 KJmol 1

(b) - 339.3 KJmol 1

(c) - 439.3 KJmol 1

(d) - 523.2 KJmol⁻¹

40. $\Delta G = \Delta H - T \Delta S$ was given by:

(a) Faraday

(b) Kirchhoff

(c) Einstein

(d) Gibbs-Helmholtz

ANSWER KEY

1. c	2. d	3. d	4. a	5. b	6. d	7. c	8. c	9. c	10. a
11. c	12. a	13. b	14. d	15. d	16. d	17. b	18. c	19. b	20. d
21. c	22. c	23. b	24. b	25. c	26. b	27. d	28. b	29. a	30. a
31. b	32. a	33. a	34. a	35. c	36. d	37. a	38. a	39. b	40. d

HINTS AND EXPLANATIONS

2637, Hudson Lane, Behind Khalsa College, Near G.T.B. Nagar Metro Station Gate No. 3 & 4, New Delhi – 110009 Mob.011-47455430, 08860929430, e-mail: info@asfinstitute.com, www.asfinstitute.com

Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

- 1) Heat produced in calories by the combustion of 1 g of carbon is called calorific value of carbon
- 2) When a real gas is forced to through a porous plug into a region of low pressure, it is found that due to the expansion of the gas on the side of low pressure gets cooled
- 3) In isothermal reversible process, ideal gas has constant volume and so, $\Delta E = 0$ and $\Delta H = \Delta E = 0$
- 4) For an isochoric process, $\Delta V = 0$, so $q_v = \Delta E$ i.e. heat given to a system under constant volume is used up in increasing ΔE .
- 5) The functions whose value depends only on the state of a system are known as state functions
- For adiabatic process, q = 0
- 7) An isolated system neither shows exchange of heat nor matter with surroundings
- 8) For adiabatic process, $\Delta Q = 0$
- Surface tension is an intensive property which do not depend upon the quantity of matter present in the system
- 10) In bomb calorimeter, the process is run in a sealed container and no expansion or compression is allowed, so, W = 0 and $\Delta U < 0$
- 11) $\Delta E = q + w$
- 12) W = 2.303 nRT log p_2/p_1 = 2.303 \times 2 \times 300 log 10/2 = 965.84 At constant temperature, Δ E = 0 Δ E = q + W; q = - W = - 965.84 cal
- 13) Heat required to raise the temperature of a body by 1 K is called thermal capacity of the body
- 14) At equilibrium, $\Delta G = 0$ hence, $0 = \Delta H T\Delta S$ or $\Delta H = T\Delta S$
- 15) This is the statement of third law of thermodynamics
- Entropy is the measure of randomness in the molecules. Randomness is maximum in case of gases (water vapours)
- 17) $C_2H_4 + 3 O_2 \rightarrow 2 CO_2 + 2 H_2O$ $\triangle H_{reaction} = [2^{\times} \triangle H_i^o(CO_2) + 2^{\times} \triangle H_i^o(H_2O)] - [\triangle H_i^o(C_2H_4) + 3^{\times} \triangle H_i^o(O_2)]$ = [2 (-394) + 2 (-286)] - [52 + 0] = -1412 KJ18) Heat of neutralization of strong acid and weak base is less than 13.7 Keylon

445.15×16

- 19) CH, required = 890.3 = 8 g
- 20) Molecular weight of NH₄NO₃ = 80

Heat evolved = 1.23 × 6.12

Molar heat of decomposition = 1.23 × 6.12 × 80 = 602 KJmol-1

- 21) According to Hess's Law, the enthalpy change for a reaction does not depend apply the nature of intermediate reaction steps
- 22) C + O₂ → CO₂; Δ H = 393.5 KJ mol¹

44 g CO₂ formed by which heat released = - 393.5 KJ

1 g CO, formed by which heat released = - 393.5/44

2637, Hudson Lane, Behind Khalsa College, Near G.T.B. Nagar Metro Station Gate No. 3 & 4, New Delhi – 110009 Mob.011-47455430, 08860929430, e-mail: info@asfinstitute.com, www.asfinstitute.com

Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

393.5×35.2

35.2 g CO₂ formed by which heat released = 44 = -315 KJ

23) At constant p or T,

$$\Delta H = \Delta U + \Delta nRT$$

$$\Delta n = n_p - n_R = 2 - 4 = -2$$

 $\Delta H < \Delta U$

- 24) W = 2.303 nRT $\log V_1/V_1 = 298 \times 10^{7} \times 8.314 \times 2.303 \log 2$
- 25) W = 2.303 nRT log $P_2/P_1 = 2.303 \times 1 \times 8.314 \times 300 \log 1/10 = 5744.1 J$
- 26) CH₃-C(CH₃)=CH₂ (g) + 6 O₂ (g) → 4 CO₂ (g) + 4 H₂O (I)

$$\Delta n_{\bullet} = 4 - 7 = -3$$

$$\Delta H = \Delta E + \Delta n_s RT$$

$$\Delta H = \Delta E - \Delta n_a RT$$

ΔΗ< ΔΕ

- 27) At equilibrium, $\Delta G = 0$
- 28) 0.2 mole will neutralize 0.2 mole of HNO, heat evolved = 51 × 0.2 = 11.4 KJ

$$\Delta H = -188 \text{ KJmol}^3 \dots (i)$$

$$H_1 + O_1 \rightarrow H_2O_2$$
;

$$\Delta H = -286 \text{ KJmol}^{-1}$$
 (ii)

$$\Delta H = -376 \text{ KJ mol}^{-1}$$
 (iii)

$$\Delta H = -572 \text{ KJ mol}^{-1}$$
 (iv)

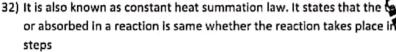
By (iii) - (iv)

$$2 H_2O_1 \rightarrow 2 H_2O + O_2;$$

$$\Delta$$
 H = 196 KJ

30) ∆ H for C,H, = - 341.1 Kcal

Its calorific value = - 341.1/30 = -11.37 Kcal/g


$$\Delta$$
 H for C₁H₂ = - 310.0 Kcal

Hence, C2H2 is a better fuel

31) $\Delta H_{reaction} = \Delta_{HH} + \Delta H_{cl-cl} - 2\Delta H_{HCl} = -90 \text{ KJ}$

2

$$\Delta$$
 430+240-(-90)

$$\Delta H = -723 \text{ KJ}$$

By burning with 3/2 O2 (g), heat evolved = - 723 KJ

By burning one mole of $O_2(g) = (-723 \times 2)/3 = -482 \text{ KJ}$

34) At equilibrium $\Delta G^0 = 0$ ($\Delta G^0 = \Delta H^0 - T\Delta S$)

2637, Hudson Lane, Behind Khalsa College, Near G.T.B. Nagar Metro Station Gate No. 3 & 4, New Delhi – 110009 Mob.011-47455430, 08860929430, e-mail: info@asfinstitute.com, www.asfinstitute.com

Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

 $0 = 30 \times 10^3 - T \times 105$

 $T = (30 \times 10^3)/105 \text{ K} = 285.71 \text{ K}$

- 35) Entropy change of fusion $\Delta S_i^0 = \Delta H_i^0/T$ $\Delta S_i^0 = 60 \times 10^3/273 = 21.97 \text{ JK}^1\text{mol}^1$
- 36) For a spontaneous process, total entropy change is always positive
- 37) Heat of neutralization of strong acid and strong base is 57.33 KJ. MgO is a weak base while HCl is strong acid, so the heat of neutralization of MgO and HCl is lower than 57.33 KJ because MgO requires some heat in ionization, then net released amount of heat is decreased
- 38) In bomb calorimeter, heat of combustion is determined at constant volume, hence heat of reaction corresponds to $\Delta\,\text{U}$

 $\Delta U < 0, W = 0$

- 39) $\Delta G = \Delta H T \Delta S = 382.64 (298 \times -145.6 \times 10^3) = -339.3 \text{ KJ mol}^3$
- 40) Gibbs Helmholtz equation $\Delta G = \Delta H T \Delta S$

