Ashoka Scientific Forum Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

IIT-JAM

CONDUCTANCE							
Single	Answer Type						
1.	The unit of molar conductiv						
	(a) Ω^{-1} (b) Ω^{-1}	2 ⁻¹ cm ⁻¹ (e	c) Ω^{-1} cm $^{-1}$ mol $^{-1}$	(d) Ω^{-1} cm ² mol ⁻¹			
2.	The cell constant of a cond	uctivity cell is defin	ned as				
	(a) $K = \frac{l}{A}$ (b) K	C = IA	$K = \frac{A}{l}$ = area of gross section	$(d) K = \frac{1}{14}$			
	Where $l = \text{distance between}$	electrodes and A	= area of cross-sectio	n of each of the electrodes			
3.		olar conductivity is defined as					
		ζV _m	G/				
	$\frac{K}{V_m}$ (b)		c)	(d) KF			
	Where $k = conductivity G$	= conductance /	= distance hetween to				
Where $k =$ conductivity, $G =$ conductance, $l =$ distance between two electrodes and $V_m = v$ solution containing 1 mol of electrolyte							
4.			ne variation of molar	conductivity with concentration is			
	For a dilute solution of a strong electrolyte, the variation of molar conductivity with conce given by						
	(a) $\Lambda_{\rm M} = \Lambda_{\rm M}^{\infty} + bc$ (b) Λ	$\Lambda_{M} = \Lambda_{M}^{\infty} - bc$	$\Delta \Delta_{v}^{\infty} = \Delta_{v} - b\sqrt{c}$	(a) $\Lambda_{v} = \Lambda_{v}^{\infty} - b\sqrt{c}$			
5.	Which of the following ion	is expected to have	e least value of molar	conductivity at infinite dilution in			
٥.	an aqueous solution?	is expected to have	e least value of moiai	conductivity at infinite dilution in			
	(a) Na ⁻ (b) K	: (c) Rb-	(d) Cs ⁺			
6.				lar o du traity at infinite dilution			
~~	in an aqueous solution?	at dispersion to him		SHUK			
	A			142			
	(a) Na ⁺ (b) K	C ⁺ (6	c) H ⁺	(A) 19/2 (A)			
7.	The degree of dissociation	of a weak electroly	te is given b				
	$\sim \Lambda_{\rm c}$	Λ^{∞}	Λ_c^2	(d) Solution?			
	$\alpha = \frac{\Lambda^{\infty}}{\Lambda^{\infty}}$	$x = \frac{1}{\Lambda_a}$	$\alpha = \frac{1}{\Lambda^{\alpha_0}}$	(d) As			
8.	Which of the following ion	has highest molar	conductivity	to division?			
0.							
9.	The equilibrium constant of	f acetic acid in an a	queous solution	sucentivation C is a by			
	$C\Lambda^2$	$C\Lambda_{\alpha}^{2}$	$C\Lambda^2$				
	(a) $K = \frac{C\Lambda_C^2}{\Lambda^{\infty} - \Lambda_C}$ (b)	$\zeta = \frac{1}{\Lambda^{\infty}(\Lambda^{\infty} - \Lambda)}$	$K = \frac{1}{\Lambda^{\infty} + \Lambda}$				
10			(c) (c)	(a) A (a)			
10.	Molar conductivity of Fe ₂ (S		A 50 A 50 /T - 3+ \ .	4 % (CO2-)			
	(a) $\Lambda_{M}^{\infty} = \Lambda_{eq}^{\infty}(Fe^{3+}) + \Lambda_{eq}^{\infty}(S$,					
	(c) $\Lambda_{\rm M}^{\infty} = \Lambda_{\rm eq}^{\infty}({\rm Fe^{3+}}) + 3\Lambda_{\rm eq}^{\infty}({\rm Fe^{3+}})$	SO_4^{2-}) (6	$d) \Lambda_{M}^{\infty} = 2\Lambda_{M}^{\infty}(Fe^{3+}) +$	$3\Lambda_{\rm M}^{\infty}({\rm SO}_4^{2-})$			
11.	Equivalent conductivity of	Fc2(SO4)3 is related	to molar conductivit	y by the expression			
				(d) $\Lambda_{eq} = \Lambda_{M/6}$			
12.	Which of the following exp	,	,				
	(a) $\Lambda^{\infty}_{\cdot,\cdot}(NH,OH) = \Lambda^{\infty}_{\cdot,\cdot}(NH,OH)$						

Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

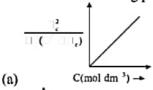
(b) $\Lambda_M^{\infty}(NH_4OH) = \Lambda_M^{\infty}(NH_4CI) - \Lambda_M^{\infty}(NaOH) + \Lambda_M^{\infty}(NaCI)$

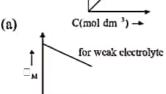
	(c) $\Lambda_{M}^{\infty}(NH_{\downarrow}OH) =$	$\Lambda_{M}^{\infty}(NH_{4}Cl) - \Lambda_{M}^{\infty}(NH_{4}Cl)$	laOH) – Λ [∞] _M (NaCl)					
	(d) $\Lambda_M^{\infty}(NH_4OH) =$	$\Lambda_{M}^{\infty}(NH_{4}Cl) + \Lambda_{M}^{\infty}(NH_{4}Cl)$	NaOH)+Λ [∞] _M (NaCl)					
13.	If x is the specific r	esistance of the elec	trolyte solution and v	is he molarity of the solu	tion, then $\Lambda_{\rm M}$			
	is given by		,,	,				
	1000x	1000y	1000	xv				
	(a) y	(b) x	(c) xy	$\frac{xy}{1000}$				
14.		• •		on of K ₂ SO ₄ , its resistance	was 326 O If			
17.) of K ₂ SO ₄ solution is	was 320 sz. 11			
	(a) 4.997×10^{-4}	(b) 5.997 × 10 ⁻⁴		(d) 7.997×10^{-4}				
15.	100	• •	3 . 7	is 105 cm ² equivalent. T	he pH of HA			
13.	solution is	unice of o.1 Ivi III	(weak acid) solution	is 105 cm equivalent.	ne pir or in			
	(a) 1.3	(b) 1.7	(c) 2.3	(d) 3.7				
16.					cm² eq 1 The			
10.	For HCl solution at 25°C, the equivalent conductivity at infinite dilution is 425 Ω^{+} cm ² eq ¹ . The specific conductance of a solution of HCl is 3.825 Ω^{+} cm ⁻¹ . If the apparent degree of dissociation is							
	90%, the normality		CI IS S.O25 at CIII .	ii the apparent degree of	dissociation is			
	(a) 0.9	(b) 10.00	(c) 1.1	(d) 1.2				
17.		infinite dilution follo		(-)				
				Na^{+} (d) $K^{+} > Na^{+} > Li^{+}$				
18.				r Theory for strong electro	lytes is			
	(a) $\Lambda_{\rm M} = \Lambda_{\rm M}^{\rm so} - (A\Lambda$				-,			
			$(b) \Lambda_{M} = \Lambda_{M}^{\infty} - A$	GIUK				
	(c) $\Lambda_{\rm M}^{\infty} = \Lambda_{\rm M} - (\Lambda \Lambda)$	[∞] _M + B)√C	$(d) \ \Lambda_{M}^{\prime \circ} = \Lambda_{M} - \Lambda_{M}$	PVET	1			
				Y X\\\/\				
19.		-	r equation for stron	extrolytes h				
	(a) Ω^{-1} cm ² M ^{-1/2}	(b) Ω^{-1} cm ⁻² M ^{1/2}	(c) Ω^{-1} m ² M ⁻¹	TO MA	\ <u> </u>			
20.			now the minimum		oi ions?			
	(a) 0.1 M NaCl solu		(b) 0.1 M KQ s					
	(c) 0.1 M HCl solut	ion	(d) 0.1 M Mg	lution///				
	ole Answer Type		· · · · · · · · · · · · · · · · · · ·		~			
21.		ving options are corre)~			
			movement of electro					
	(b) The electrolytic conduction is due to the movement of ions in the to me (c) The metallic conduction increases with increase in temperature							
	(c) The metallic conduction increases with increase in temperature (d) The electrolytic conduction decreases with increase in temperature							
22.			nobility and molar co					
22.	Fu	ions between conc. r $\Lambda_{M} = FuZ_{+}$ (b)	Λ					
	$\Lambda_{\rm M} = \frac{\rm Fu}{\rm Z_+}$	11 _M - 1 42 ₊	$u = \frac{\Lambda_{MZ_{\perp}}}{F}$	$(d) u = \frac{\Lambda_{M}}{F Z_{+}}$				
	(a) 2 ₊	(b)	(c) r	(a) 1 Z ₊				
23.	Which of the follow		with dilution					
	(a) Conductivity of a solution increases with dilution (b) Molar conductivity of a solution increases with dilution							
	(c) Conductivity of a solution decreases with dilution							
2627				ation Gate No. 3 & 4. New De	lhi – 110009			

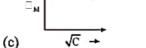
Developing Scientific Temper Among Students

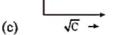
IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

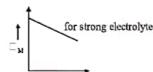
- (d) Molar conductivity of a solution decreases with dilution
- 24. Which of the following expressions are correct?

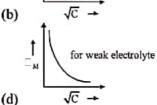

(a)
$$\Lambda_{eq}^{\infty}[Al_2(SO_4)_3] = 6\{\Lambda_{eq}^{\infty}(Al^{3+}) + \Lambda_{eq}^{\infty}(SO_4^{2-})\}$$


(b)
$$\Lambda_{sp}^{\infty}[Al_2(SO_4)_3] = 2\Lambda_{sp}^{\infty}(Al^{3+}) + 3\Lambda_{sp}^{\infty}(SO_4^{2-})$$


(c)
$$\Lambda_{M}^{\omega}(O_{x}H_{2}) = \Lambda_{M}^{\omega}(Na_{2}O_{x}) + \Lambda_{M}^{\omega}(H_{2}SO_{4}) - \Lambda_{M}^{\omega}(Na_{2}SO_{4})$$


(d)
$$\Lambda_{M}^{\infty}(FeSO_{4}) = \Lambda_{M}^{\infty}(Fe^{2+}) + \Lambda_{M}^{\infty}(SO_{4}^{2-})$$


25. Which of the following plots are correct



26. The correct expressions of molar conductivity are

(a)
$$\Lambda_{\rm M} = \frac{K}{C}$$

$$\Lambda_{M} = \frac{K}{V_{r}}$$

$$\Lambda_{\rm M} = {\rm KV_m}$$

$$\Lambda_{\rm M} = {\rm KC}$$

The correct expressions for dissociation constant of weak acid are 27.

(a)
$$K = \frac{C\alpha^2}{(1-\alpha)}$$

$$K = \frac{C\Lambda_c}{\Lambda^{\infty}(\Lambda^{\infty} - \Lambda_c)}$$

(b)
$$K = \frac{C\Lambda}{(\Lambda^{\infty})^2(\Lambda^{\infty})}$$

$$K = \frac{1}{\Lambda^{\infty}}$$

- The correct expressions which explain the Debye-Huckel 28.
 - (a) $\Lambda_{M} = \Lambda_{M}^{\infty} (A\Lambda_{M}^{\infty} + B)C$
- (c) $\Lambda_M^{\infty} = \Lambda_M^{\infty} (A\Lambda_M^{\infty} + B)\sqrt{C}$
- The correct order of molar conductivities at infinite dilution 29.
- (a) $Li^+ < Na^+ < K^+$ (b) $K^+ < Na^+ < Li^+$
- (c) $H^+ < Li^+ < Na$
- The correct expressions for equivalent conductance are 30.

$$\Lambda_{\rm eq} = Gl^2 / \rm eq$$

$$\Lambda_{eq} = KV_{eq}$$

$$\Lambda_{eq} = \frac{K}{V_{eq}}$$

$$\Lambda_{eq} = \frac{Gl^2}{V_{eq}}$$

- 31. Choose the correct statements
 - (a) In comparison to other cations, H⁺ has highest value of molar conductivity in aqueous solution
 - (b) Among anions NH, has highest value of molar conductivity in liquor ammonia
 - (c) Among cations, H' has highest value of molar conductivity in all solutions
 - (d) Among anions, HO' has highest value of molar conductivity in all solutions.
- 32. Choose the correct options

 $< K^{+} < H^{+}$

Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

	(a) $\Lambda_{eq} = 2\Lambda_{M}$ for FeSO ₄ solution	(b) $\Lambda_{eq} = 6\Lambda_{M}$ for FeSO ₄ solution	n			
	(c) $\Lambda_{\rm M} = 6\Lambda_{\rm eq}$ for $Al_2(SO_4)_3$ solution	(d) $\Lambda_{eq} = 6\Lambda_{M}$ for $Al_2(SO_4)_3$ solu	tion			
33.	Which of the following will have same val		alent conductivity			
	(a) 0.1 M NaCl solution	(b) 0.1 M Na ₂ SO ₄ solution				
	(c) 0.1 M KCl solution	(d) 0.1 M MgCl ₂ solution	02-> 1600-1 2 1-1			
34.	If $\Lambda_{M}^{\infty}(K^{+}) = 73.5\Omega^{-1} \text{cm}^{2} \text{mol}^{-1}$, $\Lambda_{M}^{\infty}(Al)$ then	$\Lambda_{\rm M}^{\rm o}$ = 18912 cm ⁻ mol and $\Lambda_{\rm M}^{\rm o}$ (S	O_4^*)=16002 'cm'mol',			
	(a) $\Lambda_{\rm M}^{\infty}({\rm K_2SO_4}) = 307\Omega^{-1}{\rm cm^2mol^{-1}}$	(b) $\Lambda_{\rm M}^{\infty}({\rm K_2SO_4}) = 393.5\Omega^{-1}{\rm cm^2 m^2}$	nol ⁻¹			
	(c) $\Lambda_{\rm M}^{\infty}(Al_2(SO_4)_3) = 858\Omega^{-1} \text{cm}^2 \text{mol}^{-1}$	(d) $\Lambda_{M}^{\omega}(Potash Alum) = 165 S cm$	m ² mol ⁻¹			
35.	The unit of conductance is (are)					
	(a) Ω (b) Ω^{-1}	(c) Ω^{-1} cm ⁻¹ (d) S				
36.	The unit of conductivity is(are)					
	(a) Ω^{-1} cm ⁻¹ (b) Ω^{-1} cm ² mol ⁻¹	(c) S cm ⁻¹ (d) S cm ²	eq^{-1}			
37.	If $\Lambda_M^{\infty}(K^+) = 73.5\Omega^{-1} \text{cm}^2 \text{mol}^{-1}$ $\Lambda_M^{\infty}(\Lambda)^3$	$\Omega = 189 \Omega^{-1} \text{cm}^2 \text{mol}^{-1}$ and $\Lambda_{\text{M}}^{\infty}(\text{SO})$	O_1^{2-}) = 160 Ω^{-1} cm ² mol ⁻¹			
57.	then	and w	,			
	(a) $\Lambda_{eq}^{\infty}(K_2SO_4) = 153.5 \ \Omega^{-1} \text{cm}^2 \text{mol}^{-1}$	(b) $\Lambda_{eq}^{to}(Al_1(SO_4)_3) = 143 \ \Omega^{-1}cm$	² eq ⁻¹			
	\					
	(c) Λ_{eq}^{∞} (Potash Alum) = 519.5 Ω^{-1} cm ² eq ⁻¹	(d) Λ_{eq}^{∞} (Potash Alum) = 145.6 Ω	cm eq			
38.	For which of the following $\Lambda_M = 6\Lambda_{eq}$ relatively	ation is correct?				
	(a) Potash Alum (b) Al ₂ (SO ₄),	(c) K ₄ [Fe(CN) ₆]	J K			
39.	Choose the correct statements					
	(a) Conductance is an extensive property	~ YX\\\/				
	(b) Specific conductance is an extensive property					
	(c) Molar conductivity is an extensive prop					
40.	(d) Equivalent conductivity is an intensive On dilution, the	property	S			
40.	(a) Specific conductance decreases		1175			
	(b) Specific conductance increase					
	(c) Molar conductivity of both weak electrolyte & strong electrolyte increases					
	(d) Molar conductivity of weak electrolyte becomes more than wat a remarker of					
Num	erical Answer Type	1/FI	() \			
41.	The equivalent and molar conductance of	0.01 M solution of K2SO4 whose	specific conductance is			
	$1.26 \times 10^{3} \Omega^{\perp} \text{ cm}^{-1} \text{ are} \underline{\qquad} \Omega^{\perp} \text{cm}^{2} \text{ e}$					
42.	The conductivity of 0.1 M NaOH solution					
	is added, the conductivity decreases to 0.0					
	of which of which is equal to that of the					
	cm ¹ . The Λ_M (NaOH), Λ_M (NaCl) and	Λ _M (HCl) are,	and Ω^{-1} cm ⁻¹			
	respectively.					
43.	For the strong electrolytes NaOH, NaCl at		ances at infinite dilution			
	are 248×10^4 , 126.5×10^4 and 280×10^4	Sm' mol '. The value of x is				

Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

- The specific conductance of a saturated solution of AgCl at 25°C after subtracting the specific conductance of water is 2.28 × 10 + Sm 1. The molar ionic conductance of Ag- and Cl ions are 73.3 × 10 4 and 65 × 10 4 Sm² mol 1. The solubility of AgCl at 25°C is
- 45. The ionic conductivities at infinite dilution of O_x², K⁻ and Na⁺ are 148.2, 50.1 and 73.5 Ω⁻¹ cm² mol⁻¹ respectively. The molar and equivalent conductivities at infinite dilution of the salt KOOC. COONa Ω^{-1} cm² mol⁻¹ and Ω^{-1} cm² eq ¹ respectively.
- 46. The molar conductivity of NH₄Cl at infinite dilution is 149.7 Ω⁻¹ cm² mol⁻¹ and the ionic conductivities of OH and Cl ions are 198 and 76.3 Q' cm² mol' respectively. The molar conductivity of NH₄OH at the dilution is Ω' cm² mol '.
- 47. A conductivity cell whose cell constant is 2cm is filled with 0.1 M acetic acid solution. Its resistance is found to be 3765 Ω . The degree of dissociation and equilibrium constant of acetic acid are $\Lambda_{M}^{\infty}(H^{+}) = 349.8\Omega^{-1} \text{cm}^{2} \text{mol}^{-1}$ and respectively. $\Lambda_{\rm M}^{\infty}({\rm Ac^+}) = 40.9\Omega^{-1}{\rm cm^2mol^{-1}}$ that Given
- 48. The conductivity of a saturated solution of silver okalate is $4.5 \times 10^{-5} \Omega^{-1}$ cm⁻¹. If its $K_{40} = 1.35 \times 10^{-11}$ M^3 , the molar conductivity of the saturated solution would be _____ Ω^1 cm² mol ¹.
- 49. The molar conductivity of 0.05 M of solution of an electrolyte is $200 \Omega^{1}$ cm² mol¹. The resistance offered by a conductivity cell with cell constant (1/3 cm $^{-1}$) would be Ω .
- A conductivity cell whose cell constant is 3 cm i is filled with 0.1 M solution of weak acids. Its 50. resistance is found to be 3000 Ω . If $\Lambda_M^{\infty} = 400\Omega^{-1} \text{cm}^2 \text{mol}^{-1}$, the degree of dissociation of weak acid is

Answer Key & Solution

1. D A

3.

$$\Lambda_{\rm M} = \frac{\rm K}{\rm C}$$

Where C = concentration of electrolyte

$$C = \frac{n}{V}$$

When n = 1,
$$C = \frac{1}{V_m}$$

$$\therefore \Lambda_M = \frac{k}{(1/V_m)} = kV_m$$

$$\therefore \Lambda_{M} = \frac{k}{(1/V_{m})} = kV_{n}$$

- 4. В 9.

- D C 13.

- C 14.
- 15.

Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

$$\alpha = \frac{\Lambda_{eq}}{\Lambda_{eq}^{\infty}} = \frac{10}{200} = 0.05$$

$$HA \Rightarrow H^+ + A^-$$

$$[H^+] = C\alpha = 0.1 \times 0.05 = 5 \times 10^{-3}$$

$$pH = -\log[H^+] = 2.3$$

$$\alpha = \frac{\Lambda_{eq}}{\Lambda_{eq}^{\infty}} \Rightarrow 0.9 = \frac{\Lambda_{eq}}{425} \Rightarrow \Lambda_{eq} = 425 \times 0.9 \Omega^{-1} cm^2 eq^{-1}$$

$$\Lambda_{\text{eq}} = \frac{1000 \times k}{N}$$

$$\Rightarrow (425 \times 0.9 \Omega^{-1} \text{cm}^2 \text{eq}^{-1}) = \frac{1000 \times (3.825 \Omega^{-1} \text{cm}^{-1})}{N}$$

B,D

Because t_{III} has maximum value of transference no. as compare Hence t_{cr} will be minimum in 0.1 M HCl solution

Potash alum is K2SO4 · Al2(SO4)3 · 24H2O

On dilutions ions will be 2K+, 2Al3+ and 4SO42

$$\Lambda_{M} = \frac{1000 \times 1.26 \times 10^{-3}}{0.01} = 126 \Omega^{-1} cm^{2} mol^{-1}$$

$$\Lambda_{eq} = \frac{\Lambda_{M}}{2} \frac{126}{2} = 63\Omega^{-1} \text{cm}^{2} \text{eq}^{-1}$$

$$\Lambda_{\rm M}({\rm NaOH}) = \frac{1000 \times k}{\rm M} = \frac{1000 \times 0.0221}{0.1} = 221\Omega^{-1} {\rm cm}^2 {\rm mol}^{-1}$$

Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

$$\frac{0.1V}{2V} = 0.05$$

$$\therefore \Lambda_{M}(NaCl) = \frac{1000 \times 0.0056}{0.05} = 112\Omega^{-1}cm^{2}mol^{-1}$$

$$\frac{\Lambda_{M} \times M_{ICl}}{1000} + \frac{\Lambda_{M} \times M_{NaCl}}{1000} = 0.017$$

$$\Rightarrow \frac{\Lambda_{M} \times M_{IICl}}{1000} + \frac{\Lambda_{M} \times M_{NaCl}}{1000} = 0.017$$

$$\Rightarrow \frac{\Lambda_{M}(HCl) \times \left(\frac{0.1}{3}\right)}{1000} + \frac{102 \times \left(\frac{0.1}{3}\right)}{1000} = 0.017$$

$$\Rightarrow \Lambda_{M}(HCl) = 398\Omega^{-1}cm^{2}mol^{-1}$$

$$5.23$$

$$\Lambda_{M}^{\infty}(Ba(OH)_{2}) = \Lambda_{M}^{\infty}(BaCl_{2}) + 2\Lambda_{M}^{\infty}(NaOH) - 2\Lambda_{M}^{\infty}(NaCl) = [(280 \times 10^{-4}) + 2(126.5 \times 10^{-4})]$$

$$= 523 \times 10^{-4} \text{ S m}^{2}mol^{-1}$$

$$= (523 \times 10^{-4} \times 10^{4}) \text{S cm}^{2}mol^{-1}$$

$$= 5235cm^{2}mol^{-1} = 5.23 \times 10^{2} \text{S cm}^{2}mol^{-1}$$

$$= 5235cm^{2}mol^{-1} = 5.23 \times 10^{2} \text{S cm}^{2}mol^{-1}$$

$$= 2.28 \times 10^{-4} \text{S m}^{-1} = 2.28 \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-4} \text{S m}^{2}mol^{-1} = 0.01383 \text{ S m}^{2}mol^{-1} = 0.01333 \text{ M}^{2} \text{ Cm}^{2}mol^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.3 + 65) \times 10^{-6} \text{S cm}^{-1}$$

$$\Lambda_{M}(\Lambda gCl) = (73.$$

 $= 2.36 \times 10^{-3} \text{ g dm}^{-3}$ 45. 271.8 and 135.9

0.1 V

43.

44.

0.1 V

$$\Lambda_{M}^{\infty}(KOOC\cdot COONa) = \Lambda_{M}^{\infty}(K^{+}) + \Lambda_{M}^{\infty}(C_{2}O_{4}^{2-}) + \Lambda_{M}^{\infty}(Na^{+})$$

=
$$50.1 + 148.2 + 73.5 = 271.8\Omega^{-1} \text{cm}^2 \text{mol}^{-1}$$

$$\Lambda_{eq}^{\infty} = \frac{\Lambda_{M}^{\infty}}{2} = 135.9\Omega^{-1} \text{cm}^{2} \text{eq}^{-1}$$

$$\Lambda_{\mathrm{M}}^{\infty}(\mathrm{NH}_{4}\mathrm{OH}) = \Lambda_{\mathrm{M}}^{\infty}(\mathrm{NH}_{4}\mathrm{Cl}) - \Lambda_{\mathrm{M}}^{\infty}(\mathrm{Cl}^{-}) + \Lambda_{\mathrm{M}}^{\infty}(\mathrm{HO}^{-})$$

=
$$(149.7 - 76.3 + 198)\Omega^{-1}$$
cm²mol⁻¹

$$= 271.4 \Omega^{-1} \text{cm}^2 \text{mol}^{-1}$$

Developing Scientific Temper Among Students

IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

$$\Lambda_{M} = \frac{1000 \times 2}{3675 \times 0.1} = 5.442 \Omega^{-1} \text{cm}^{2} \text{mol}^{-1}$$

$$\alpha = \frac{\Lambda_{M}}{\Lambda_{M}^{\infty}} = \frac{5.442}{(349.8 + 40.9)} = 0.013$$

$$K = \frac{C\alpha^{2}}{(1 - \alpha)} = \frac{0.1(0.013)^{2}}{(1 - 0.013)} = 1.84 \times 10^{-5}$$

$$300$$

$$Ag_{2}C_{2}O_{4} \rightleftharpoons 2Ag^{+} + C_{2}O_{4}^{2} \qquad K_{sp} = 4s^{3}$$

$$\Rightarrow s = \left(\frac{1.35 \times 10^{-11}}{1000}\right)^{1/3} = 1.5 \times 10^{-4} \text{M}$$

$$\Rightarrow s = \left(\frac{1.35 \times 10^{-11}}{4}\right)^{1/3} = 1.5 \times 10^{-4} M$$

$$\Lambda_{M} = \frac{1000 \times 1s}{M} = \frac{1000 \times 4.5 \times 10^{-5}}{1.5 \times 10^{-4}} = 300 \Omega^{-1} \text{cm}^{2} \text{mol}^{-1}$$

49.
$$33.33$$

$$\Lambda_{M} = \frac{1000 \times x}{R \times M}$$

$$\Rightarrow 200 = \frac{1000 \times (1/3)}{R \times 0.05} \Rightarrow R = \frac{1000 \times (1/3)}{0.05 \times 200} = 33.33\Omega$$

50.
$$\Lambda_{M} = \frac{1000 \times k}{M} = \frac{1000 \times x}{R \times M}$$

48.

Where
$$x = cell constant$$

$$\begin{split} & \Lambda_{M} = \frac{1000 \times 3}{3000 \times 0.1} = 10 \Omega^{-1} cm^{2} mol^{-1} \\ & \alpha = \frac{\Lambda_{M}}{\Lambda_{M}^{eo}} = \frac{10}{400} = 0.025 \end{split}$$

