Ashoka Scientific Forum Developing Scientific Temper Among Students

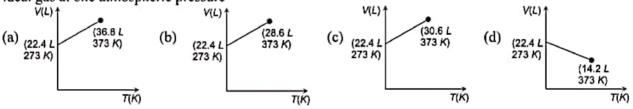
IIT-JAM | TIFR | DU | BHU | JNU | ISM | PU & All Other University M.Sc. Entrance Exam CSIR-NET | GATE | TIFR

Physical Chemistry Assignment

IIT-JAM

Gaseous State

1.	. Which one of the following statements is not correct about the three states of matter i.e. solid, liquid and gaseous			
	•	id possess least energy who	ereas those of a gas posse	ss highest energy
		d is highest whereas that of		35 Highest chergy
	· ·	possess definite volumes	guses is lowest	
		id possess vibratory motion	•	
2.		ssure at which ice, liquid v		n exist together are
	(a) 0° C,1 atm	(b) 2°C, 4.7 atm	(c) 0°C,4.7 mm	(d) -2°C,4.7 mm
3.		s true about gaseous state	(•)	()
	(a) Thermal energy =	-	(b) Thermal energy	>> Molecular attraction
	(c) Thermal energy <<			s >> Those in liquids
4.	Kinetic energy of molec		(-)	
	(a) Gases	(b) Solids	(c) Liquids	(d) Solutions
5.	Which of the following s	statement is correct	•	
	(a) In all the three state	es the molecules possess ra	ndom translational motio	n
		onverted into solids withou		
	(c) One of the commo	n property of liquids and g	ases is viscosity	
	(d) According to Boyl-	e's law V/P is constant at c	onstant T	
6.	A volume of 1 m3 is equ	al to		
	(a) 1000 cm ³	(b) 100 cm ³	(c) 10 dm ³	(d) 10 ⁶ cm ³
7.	Which one of the follow	ing is not a unit of pressure	:	
	(a) Newton	(b) Torr	(c) Pascal	(d) Bar
8.	1°C rise in temperature i	s equal to a rise of		
	(a) 1°F	(b) 9/5°F	(c) 5/9°F	(d) 33°F
9.	Which of the following i	relations for expressing vol	ume of a sample is not co	orrect
	(a) $1L = 10^3 ml$	(b) $1 dm^3 = 1 L$	(c) $1L = 10^3 m^3$	(d) $1L = 10^3 cm^3$
10.	. ,	h Celsius and Fahrenheit s	· ·	` '
10.	(a) 0°C	(b) 32° F	(c) -40°C	(d) 40°C
11.	, ,	rically equal to approxima		(d) 40 C
11.	(a) 10 ⁸ dynescm ⁻²	(b) 10 ² dynes <i>cm</i> ⁻²	(c) 10 ⁴ dynes <i>cm</i> ⁻²	(d) 10 ⁸ dynes <i>cm</i> ⁻²
	()	(b) To dynescm	(c) to dyneschi	(d) to dynescm
12.	Torr is a unit of	45.22	22.	445 *** ·
	(a) Temperature	(b) Volume	(c) Pressure	(d) Viscosity
13.	Pressure of a gas in a ves	ssel can be measured by		
			41	


(a) Barometer	(b) Manometer	(c) Stalgometer	(d) All the baove
14. A temperature of -40°C si	hall be equal to		
(a) 233 K	(b) -40°F	(c) -32°F	(d) Both (a) and (b)
15. Volume occupied by a gas	at one atmospheric pressure	and ooc is VmL. Its vo	lume at 273 K will be
(a) <i>V ml</i>	(b) V/2 ml	(c) 2 V	(d) None of these
16. Which one of the following	g statements is wrong for ga	ses	
	definite shape and volume		
• •	equal to the volume of the c	container confining the ga	as
	uniform pressure on the wall		
	not be determined by weighin		
17. If P, V, T represent pressu	, .	•	
is	,,	д,	
	PV = RT	V ∞ 1/P	PV = nRT
(a) $V \propto \frac{1}{T}$ (at constant P) (b)	V∝1/P (c) (at constan	t T) (d)
18. At constant temperature, i	n a given mass of an ideal ga	15	
(a) The ratio of pressure	and volume always remains	constant	
(b) Volume always rema	ains constant		
(c) Pressure always rem	ains constant		
(d) The product of press	ure and volume always rema	ains constant	
19. Air at sea level is dense. T	his is a practical application	of	
(a) Boyle's law	(b) Charle's law	(c) Avogadro's law	(d) Dalton's law
20. If 20 cm3 gas at 1 atm. is e	xpanded to 50 cm ³ at constar	nt T, then what is the fina	al pressure
20×-1	(b) $50 \times \frac{1}{20}$	1× 1× 50	
	` '		(d) None of these
pressure is increased to	$10^5 Pa$, keeping the temperate	ure constant, then the vol	ume of the gas becomes
(a) 10 cc	(b) 100 cc	(c) 1 cc	(d) 1000 cc
22. Which of the following sta	atement is false		
(a) The product of press	ure and volume of fixed amo	ount of a gas is independe	ent of temperature
(b) Molecules of differe	nt gases have the same K.E.	at a given temperature	
	not valid at high pressure and	-	
	molecule is known as Boltz	•	
23. Which of the following gr			
/ /		1	1
(a) P	(b) PV	(c) PV	(d) PV
()	(0)	(9)	()
V			
· — V	P		P
respective pressures is			
(a) 1:1	(b) 1:2	(c) 2:1	(d) 4:1
25. If pressure becomes doubl		-	
(a) $2L$	(b) $4L$	(c) 25 L	(d) 1 L
(a) 2 L	(U) 4 L	(C) 23 L	(d) 1 L

(a) Absolute temperature (b) Degree centigrade (c) Degree Fahrenheit (d) None 27. Which of the following expression at constant pressure represents Charle's law V oc T $V \propto d$ (b) $V \propto \frac{1}{\tau^2}$ (d) 28. Use of hot air balloons in sports and meteorological obsevations is an application of (a) Boyle's law (b) Newtonic law (c) Kelvin's law (d) Charle's law 29. A 10 g of a gas at atmospheric pressure is cooled from 273°C to 0°C keeping the volume constant, its pressure would become (a) 1/2 atm (b) 1/273 atm (c) 2 atm (d) 273 atm 30. At what temperature in the celsius scale, V (volume) of a certain mass of gas at 27°C will be doubled keeping the pressure constant (c) 427°C (a) 54°C (b) 327°C (d) 527°C 31. Volume of the air that will be expelled from a vessel of 300 cm³ when it is heated from 27°C to 37°C at the same pressure will be (a) 310 cm^3 (b) 290 cm³ (c) 10 cm³ (d) 37 cm^3 centigrade rise in temperature by definite fraction of its volume at (a) 0°C (b) Its critical temperature (c) Absolute zero (d) Its Boyle temperature 33. The following graph illustrates (b) Charle's law Temp. (a) Dalton's law (c) Boyle's law (d) Gay-Lussac's law pressure but at 273°C, its volume will be (a) 0.4 litres (b) 0.8 litres (c) 27.8 litres (d) 55.6 litres 35. 300 ml of a gas at 27°C is cooled to -3°C at constant pressure, the final volume is (a) 540 ml (b) 135 ml (c) 270 ml (d) 350 ml 36. 400 cm³ of oxygen at 27°C were cooled to -3°C without change in pressure. The contraction in volume will be (b) 30 cm³ (c) 44.4 cm³ (a) 40 cm³ (d) 360 cm³ and V_2 . When $V_1 > V_2$, the (a) Curves have the same slope and do not intersect (b) Curves must intersect at some point other than

The pressure p of a gas is plotted against its absolute temperature T for two different constant volumes, $\forall i$

T=0 (c) Curve for V_2 has a greater slope than that for V_3 (d) Curve for $\frac{1}{2}$ has a greater slope than that for $\frac{1}{2}$

Which of the following volume (V) – temperature (T) plots represents the behaviour of one mole of an ideal gas at one atmospheric pressure

39.	Two closed vessels of each other through a na				** **	
	in the other at T_2 , what		•		now maintained at	. 11 and ma
					2 <i>P</i> ₁	
	(a) $\frac{2P_1T_1}{T_1+T_2}$	(b) $2P_1T_2$	(c)	$\frac{2P_1T_2}{T_1+T_2}$	(d) $\overline{T_1 + T_2}$	
40.	"One gram molecule of a	gas at N.T.P. occup	ies 22.4 litres	"This fact was de	rived from	
	(a) Dalton's theory (b)					
41.	In a closed flask of 5 litre	s, $1.0 \text{ g of } H_2 \text{ is heat}$				ect
	(a) Pressure of the gas i		. ,	The rate of collision		
	(c) The number of mole			The energy of gas	seous molecules inc	reases
42.	Which one of the following	-	e			
	(a) Avogadro number=					
	(b) The relationship bet	V. V	10 To			3 <i>u</i>
	(c) The mean kinetic er					
	(d) The root mean squa	re velocity of the ga	s can be calcu	lated by the formu	la (3 <i>RT/M</i>) ^{1/2}	
43.	The compressibility of a g					
232.5	(a) $V_m > 22.4 \ litres$	(b) $V_m < 22.4 \ litres$	c) (c)	$V_m = 22.4 \ litres$	(d) $V_m = 44.8 Iii$	tres
44.	The number of moles of a	ny gas is given by				
	(a) n/V	(b) nN _A	(c)	NINA	(d) mnN_A	
45.	In the ideal gas equation,	the gas constant R h	as the dimens	ions of		
	(a) mole-atm K-	(b) litre mole	(c)	litre-atm K' mol	e-1 (d) erg K-1	
46.	In the equation $PV = nRT$,	which one cannot b	e the numeric	al value of R		
	(a) 8.31×10 ⁷ erg K ⁻¹ mol ⁻¹		(b)	8.31×10 ⁷ dyne cm K	¹ mol ⁻¹	
	(c) 8.31 JK ⁻¹ mol ⁻¹		(d)	8.31 atm K ⁻¹ mol ⁻¹		
47.	Which one of the following	ng indicates the valu	e of the gas c	onstant R		
	(a) 1.987 cal K-1 mol-1	(b) 8.3 cal K-1 ma	ol-1 (c) 0.0821	lit K-1 mol-1 (d)1.	987 Joules K-1 mol-	1
48.	The constant R is					
	(a) Work done per mole	ecule		(b)Work done per	degree absolute	
	(c) Work done per degr	ee per mole		(d)Work done per	mole	
49.	Select one correct stateme	ent. In the gas equat	ion, $PV = nRT$			
	(a) n is the number of n	nolecules of a gas				
	(b) V denotes volume o	f one mole of the ga	S			
	(c) n moles of the gas h	ave a volume V				
	(d) P is the pressure of	the gas when only o	ne mole of ga	s is present		
50.	The correct value of the g	as constant R is clos	se to			
	(a) 0.082 litre-atmopsh	ere K	(b)	0.082 litre-atmos	phere K ⁻¹ mol ⁻¹	
	(c) 0.082 litre-atmosphe	rē ¹ K mole⁻¹	(d)	0.082 litre ⁻¹ atmosp	here ¹ K mol	
51.	S.I. unit of gas constant R	is				
	(a) 0.0821 litre atm K-1	mole-1	(b)	2 calories K-1 mod	le-1	
	(c) 8.31 joule K-1 mole-	ř	(d)	None		
2	2637, Hudson Lane, Behind	Khalsa College, Near	G.T.B. Nagar	Metro Station Gate I	No. 3 & 4, New Delhi	- 110009

52. C	Fas equation $PV = nRT$ is of	- 100 m		
		ess (b)Only adiabatic proce		
53. F		moles per litre in terms of it		-
	(a) <i>PT/R</i>	(b) PRT	(c) <i>P/RT</i>	(d) <i>RT/P</i>
54. I	f the pressure and absolute	temperature of 2 litres of C	O2 are doubled, the volum	e of CO ₂ would become
	(a) 2 litres	(b) 4 litres	(c) 5 litres	(d) 7 litres
55. I	f two moles of an ideal gas	s at 546 K occupy a volume	of 44.8 litres, the pressure	must be
	(a) 2 atm	(b) 3 atm	(c) 4 atm	(d) 1 atm
	at 350 K and 1 atm. \	What is the volume of butane	9	
	(a) 495 cm ³	(b) 600 cm ³	(c) 900 cm ³	(d) 1700 cm ³
57. I	low many moles of He gas	s occupy 22.4 litres at 30°C	and one atmospheric press	sure
	(a) 0.90	(b) 1.11	(c) 0.11	(d) 1.0
58. V	olume of 0.5 mole of a ga	s at 1 atm. pressure and 273	K is	
	(a) 22.4 litres	(b) 11.2 litres	(c) 44.8 litres	(d) 5.6 litres
59. P	ressure of a mixture of 4 g	of O2 and 2 g of H2 confin	ed in a bulb of 1 litre at of	c is
	(a) 25.215 atm	(b) 31.205 atm	(c) 45.215 atm	(d) 15.210 atm
	temperature is increased l	by one-third of absolute tem	perature, then final volume	e of the gas will be
	(a) 80 cc	(b) 88.9 cc	(c) 66.7 cc	(d) 100 cc
61. C	Correct gas equation is			
	(a) $\frac{V_1 T_2}{P_1} = \frac{V_2 T_1}{P_2}$	(b) $\frac{P_1V_1}{P_2V_2} = \frac{T_1}{T_2}$	(c) $\frac{P_1T_2}{V_1} = \frac{P_2V_2}{T_2}$	(d) $\frac{V_1V_2}{T_1T_2} = P_1P_2$
	(a) $P_1 P_2$	(b) F_2V_2 T_2	(c) V_1 T_2	(d) T_1T_2
	that of gas B is			
	(a) 2	(b) 1/2	(c) 4	(d) 1/4
	occupied by the mixture			
	(a) 22.4 litres	(b) 33.6 <i>litres</i>	(c) 448 litres	(d) 44800 ml
g	as will be			
	(a) 34 g	(b) 340 g	(c) 282.4 g	(d) 28.24 g
2	73°C	45		***
	(a) 391.8 <i>mL</i>	(b) 380 ml	(c) 691.6 ml	(d) 750 ml
		vill one <i>litre</i> of the same gas	-	A) 000 IS
	(a) 450 K	(b) 600 K	(c) 800 K	(d) 900 K
	balloon is	(L) 20000 Italia	(-) 10000 III	(4) 10000 14
	(a) 24000 litres	(b) 20000 litres	(c) 10000 litres	(d) 12000 litres
	temperatures will its dens (a) 20°C	(b) 30°C	(a) 400 F	(d) 200 K
	1 1	operature of the gas will be	(c) 400 K	(d) 300 K
	(a) 21.6°C	(b) 240°C	(c) -33°C	(d) 89.5°C
70.		he analysis of a carbon com		
70.		rature. The mass of H ₂ is ne		recited at 700 mm Hg
	(a) 10 g	(b) 12 g	(c) 24 g	(d) 6 g
		·-/ 0	(-) 0	1-7 -0

the gases under the same	e conditions is known as (b) Charle's law	(c) Avogadro's law	(d) Dalton's law
(a) Doyle's law	(b) Charles law	(c) Avogadios iaw	(d) Dations law
statement is a direct con	sequence of		
(a) Avogađro's law	(b) Charle's law (c) Id	cal gas equation (d) Law of partial pressure
then their total pressure		Com Bus ediminant	ay 2000 or putting processing
$P = P_A + P_B + P_C$		$\sqrt{P_A + P_B + P_C}$	
(a)	(b) $P = \frac{P_A + P_B + P_C}{6}$	(c) $P = \frac{\sqrt{\lambda} \times B}{3}$	(d) None
74. Dalton's law of partial pre	ssure will not apply to which	h of the following mixture	of gases
(a) H_2 and SO_2	(b) H_2 and Cl_2	(c) H_2 and CO_2	(d) CO ₂ and Cl ₂
75. Which of the following m	ixtures of gases does not ob	ey Dalton's law of partial p	ressure
(a) O ₂ and CO ₂	(b) N_2 and O_2	(c) Cl_2 and O_2	(d) NH3 and HCl
pressure of water at 23°	c is 21 mm Hg). The partial	pressure of O2 gas in the	sample collected is
(a) 21 mm Hg	(b) 751 mm Hg	(c) 0.96 atm	(d) 1.02 atm
of the resulting mixture	(temperature remaining con	stant)	
(a) 125 mm	(b) 500 mm	(c) 1000 mm	(d) 250 mm
78. To which of the following		7.7	
(a) Ne+He+SO ₂		(c) $O_2 + N_2 + CO_2$	(· /
79. Same mass of CH ₄ and H			H ₂ is
(a) $\frac{8}{9}$	(b) $\frac{1}{9}$	(c) $\frac{1}{2}$	(4) 1
	e of the light gas in this mix	• • • • • • • • • • • • • • • • • • • •	(d) 1
(a) 0.55 atm	(b) 0.11 atm	(c) 1 atm	(d) 0.12 atm
81. Rate of diffusion of a gas	• • • • • • • • • • • • • • • • • • • •	(c) Taim	(u) 0.12 uim
(a) Directly proportiona			
(b) Directly proportiona		.1	
	l to the square root of its mo		
	al to the square root of its m		
82. Which of the following ga	_		(1) 0
(a) NH ₃	(b) N ₂	(c) CO ₂	(d) O ₂
83. Which of the following re	•		
(a) $r \propto \sqrt{1/d}$	(b) r∝√d	(c) $r = d$	(d) $f \propto d$
is given by			
(a) $(P_A/P_B)(M_A/M_B)^{1/2}$	(b) $(M_A / M_B)(P_A / P_B)^{1/2}$	(c) $(P_A/P_B)(M_B/M_A)^{1/2}$	(d) $(M_A / M_B)(P_B / P_A)^{1/2}$
(where P and M are the	pressures and molecular wei	ights of gases A and B resp	ectively)
85. The ratio of the rate of dif	50	-	
element is	_		_
(a) 2	(b) 4	(c) 8	(d) 16
86. The rate of diffusion of So	2 and 2 are in the ratio		
(a) 1:√2	(b) 1:32	(c) 1:2	(d) 1:4
	, ,	7.5	

l					
	(a) 50	(b) 25	(c)	25√2	(d) 50√2
i	dentical conditions is				
	(a) 27	(b) 72	(c)	36	(d) 48
89. 1	Molecular weight of a gas	that diffuses twice as rapidly	y as 1	the gas with molecular	weight 64 is
	(a) 16	(b) 8	(c)	64	(d) 6.4
	then that of oxygen in the	3 /	3.7		
	(a) 4	(b) 1/4	(c)	16	(d) 1/16
91. 1	1.1	5 times that of B, what will b	7.5		
	(a) 1/25	(b) 1/5		25	(d) 4
92. 5	50 ml of hydrogen diffuses	out through a small hole fro	om a	vessel in 20 minutes.	The time needed for 40 ml
I .	of oxygen to diffuse out is	•			
	(a) 12 min	(b) 64 min		8 min	(d) 32 min
93.	The densities of two gases	are in the ratio of 1:16. The	e rat	io of their rates of diffi	usion is
	(a) 16:1	(b) 4:1	(c)	1:4	(d) 1:16
		related by the expression			
	$D_{\perp} = \left[D_{\alpha}, \frac{\rho_{A}}{\rho_{A}}\right]^{1/2}$	$(b) D_A = \left[D_B \cdot \frac{\rho_B}{\rho_A} \right]^{1/2}$		$D_{i} = D_{a} \left(\frac{\rho_{A}}{\rho_{A}}\right)^{1/2}$	$D_{A} = D_{A} \left(\frac{\rho_{B}}{\rho_{B}}\right)^{1/2}$
	(a) $\rho_B \rho_B$	(b) $A = \begin{bmatrix} D_B & \overline{\rho_A} \end{bmatrix}$	(c)	$\rho_B = \rho_B \left(\frac{\rho_B}{\rho_B}\right)$	(d) $\rho_A = \rho_B \left(\rho_A \right)$
95. /	Atmolysis is a process of				
	(a) Atomising gas molec	cules	(b)	The breaking of atom	s to sub-atomic particles
	(c) Separation of gases f	rom their gaseous mixture	(d)	Changing of liquids to	o their vapour state
	simultaneously at both en	nds, the white ammonium ch	ılori	de ring first formed wi	ll be
	(a) At the centre of the tr	ube	(b)	Near the hydrogen ch	loride bottle
	(c) Near the ammonia be	ottle	(d)	Throughout the length	h of the tube
97. \	Which of the following par	irs will diffuse at the same ra	ate th	nrough a porous plug	
	(a) CO , NO_2	(b) NO ₂ , CO ₂	(c)	NH_3 , PH_3	(d) NO C ₂ H ₆
i	dentical conditions				
	(a) 16 g	(b) 1 g	(c)	1/4 g	(d) 64 g
99. /	A gas diffuse at a rate which	ch is twice that of another ga	as B.	The ratio of molecular	r weights of A to B is
	(a) 1.0	(b) 0.75	(c)	0.50	(d) 0.25
	diffuse through the same	container in the same time	unde	r similar conditions	
	(a) $0.5 g$	(b) 4 g	(c)	6 g	(d) 8 g
	molecular weight of the				
	(a) $\frac{45^2}{18^2} \times 32$	(b) $\frac{18^2}{45^2} \times 32$		$\frac{18^2}{45^2 \times 32}$	(d) $\frac{45^2}{18^2 \times 32}$
			(c)	$45^2 \times 32$	(d) $18^2 \times 32$
102.		usion of SO ₂ , O ₂ and CH ₄ is			
1-	(a) 1:√2:2	(b) 1:2:4		2:√2:1	(d) 1:2:√2
103.	The rate of diffusion of r	nethane at a given temperatu	ıre is	s twice that of X. The r	nolecular weight of X is
	(a) 64.0	(b) 32.0	(c)	40.0	(d) 80.0
		specified below under identi-			
	(a) 10 seconds : He	(b) 20 seconds : O₂	(c)	25 seconds : CO	(d) 55 seconds: CO ₂

105.	At what temperature, the	rate of effusion of N2 would	d be 1.625 times that of S	0₂ at 50°C
	(a) 110 K	(b) 173 K	(c) 373 K	(d) 273 K
106.	Given the reaction C(s)+ F	$H_2O(l) \rightarrow CO(g) + H_2(g)$ calculate	e the volume of the gases	produced at STP from 48.0
g	of carbon			
	(a) 179.2 <i>L</i>	(b) 89.6 L	(c) 44.8 L	(d) 22.4 L
107.	Postulate of kinetic theory	y is		
	(a) Atom is indivisible		(b) Gases combine in a s	•
		of gravity on the molecules	of a gas (d)None of the ab	oove
108.	According to kinetic theo	· · · · · · · · · · · · · · · · · · ·	80 2 0 0	
	(a) There are intermolect		(b) Molecules have cons	iderable volume
	(c) No intermolecular att			
		ales decreases after each col	lision	
b	ecause it is			
	(a) The average velocity			
	(b) The most probable ve	•		
		average square velocity of		
110		m in which velocity can be	used in these calculations	
110.	Kinetic energy of a gas de (a) Molecular mass	•	(a) Equivalent mass	(d) None of these
111		(b) Atomic mass es perdicts that total kinetic	(c) Equivalent mass	(d) None of these
111,	(a) Pressure of the gas	es perdicts that total kinetic	(b) Temperature of the g	
	(c) Volume of the gas		(d) Pressure, volume and	
112		ry of gases, the energy per r	1.1	remperature of the gas
112.	(a) $1.5 RT$	(b) RT	(c) 0.5 RT	(d) 2.5 RT
113.		ure of a gas per unit volume	2 7	(0) 2.5 1.7
115.	•			P = 2E
	(a) $P = \frac{2}{3}E$	(b) $P = \frac{3}{2}E$	(c) $P = \frac{1}{2}E$	(d)
114.	At what temperature will	the average speed of CH4 m	olecules have the same va	lue as O2 has at 300 K
	(a) 1200 K	(b) 150 K	(c) 600 K	(d) 300 K
115.	The translational kinetic	energy of an ideal gas depen	ds only on its	
	(a) Pressure	(b) Force	(c) Temperature	(d) Molar mass
h	elium is			
	(a) Two times that of a h	ydrogen molecule	(b) Same as that of a hyd	rogen molecule
	(c) Four times that of a h	ydrogen molecule	(d) Half that of a hydrog	en molecule
117.	Which of the following is	valid at absolute zero	7,7	
	(a) Kinetic energy of the	gas becomes zero but the m	olecular motion does not	pecome zero
	(b) Kinetic energy of the	gas becomes zero and mole	cular motion also become	s zero
	The state of the s	gas decreases but does not b		
	(d) None of the above	•		
118.	If a gas is expanded at co	nstant temperature		
	(a) The pressure increase	-		
	() The pressure mereuse	~		

	(b)The kinetic energy of the molecules remains the sa	ame			
	(c) The kinetic energy of the molecules decreases	(d) The number of molec	ules of the gas increases		
119.	The average K.E. of an ideal gas in calories per mole	is approximately equal to			
	(a) Three times the absolute temperature	(b) Absolute temperature	1		
	(c) Two times the absolute temperature	(d) 1.5 times the absolute	temperature		
120.	According to kinetic theory of gases, for a diatomic n	nolecule			
	(a) The pressure exerted by the gas is proportional to	the mean velocity of the r	nolecules		
	(b) The pressure exerted by the gas is proportional to	the root mean square velo	city of the molecules		
	(c) The root mean square velocity is inversely propor	tional to the temperature			
	(d) The mean translational kinetic energy of the mole	cules is proportional to the	e absolute temperature		
121.	121. At STP, 0.50 mol H ₂ gas and 1.0 mol He gas				
	(a) Have equal average kinetic energies	(b) Have equal molecular	r speeds		
	(c) Occupy equal volumes	(d) Have equal effusion r	rates		
	kinetic energy, $\overline{K.E.}$, of CO and N_2 molecules at the s	same temperature			
	(a) $\overline{KE}_{CO} = \overline{KE}_{N_2}$				
	(b) KEco > KE _{N2}				
	(c) KEco < KE _{N2}				
	(d) Cannot be predicted unless the volumes of the gas	sas ara givan			
122		_	1.1 atm processrs		
125.	23. Indicate the correct statement for a 1-L sample of $N_2(g)$ and $CO_2(g)$ at 298 K and 1 atm pressure				
	 (a) The average translational KE per molecule is the same in N₂ and CO₂ (b) The rms speed remains constant for both N₂ and CO₂ 				
	(c) The density of N_2 is less than that of CO_2				
	(d) The total translational KE of both N_2 and CO_2 is	the same			
124	With increase of pressure, the mean free path	the same			
124.	(a) Decreases (b) Increases	(c) Does not change	(d) Becomes zero		
125	Consider the following statements	(c) Does not change	(a) Decomes zero		
125.	The mean free path of gas molecules				
	(1) Decreases with increase in concentration				
	(2) Increases with decrease in pressure at constant ter	nnerature			
	(3) Decreases with increase in molecular size				
	(a) 1 and 2 (b) 1 and 3	(c) 2 and 3	(d) 1, 2 and 3		
126.	The ratio of root mean square velocity to average velo				
	(a) 1.086:1 (b) 1:1.086	(c) 2:1.086	(d) 1.086:2		
127.	Which is not true in case of an ideal gas				
	(a) It cannot be converted into a liquid				
	(b) There is no interaction between the molecules				
	(c) All molecules of the gas move with same speed				
	DOT II. Jan De Heal Whele College New O.T.O. No.	was Mates Station Cata No.	9.4 New Delbi 440000		
26	637, Hudson Lane, Behind Khalsa College, Near G.T.B. Na Mob. 011-47455430, 08860929430, e-mail: info	@asfinstitute.com, www.asf	institute.com		

128.	•	re, PV is proportional to the ne speeds of n_1, n_2, n_3, \dots mole	oules then the root mean	square speed is
		1/2	$(n_1C_2^2 + n_2C_2^2 + n_2C_2^2 +$	1/2
	(a) $\frac{n_1C_1^2 + n_2C_2^2 + n_3C_3^2 + \dots}{n_1 + n_2 + n_3 + \dots}$.]	(b) $\frac{(n_1C_1^2 + n_2C_2^2 + n_3C_3^2 +)^2}{n_1 + n_2 + n_3 +}$	<u></u>
			[()	2 11/2
	$\frac{(n_1C_1^2)^{1/2}}{n_1} + \frac{(n_2C_2^2)^{1/2}}{n_2} + \frac{(n_2C_2^2)^{1/2}}{n_2}$	n ₃ +	(d) $ \frac{\left[\frac{(n_1C_1 + n_2C_2 + n_3C_3 +)}{(n_1 + n_2 + n_3 +)}\right] }{(n_1 + n_2 + n_3 +)} $	<u>-</u>
120	(c) ¹⁴ ^{1/2}	shahla walaaitu maan walaai	(-)	_
129.		bable velocity, mean veloci		
	(a) 1:2:3	(b) $1:\sqrt{2}:\sqrt{3}$	(c) $\sqrt{2}:\sqrt{3}:\sqrt{8/\pi}$	(d) $\sqrt{2}:\sqrt{8}/\pi:\sqrt{3}$
V	relocity (a)	100		Vi
		(b) α:v:u::1.128:1:1.224		
131.		as maximum root mean squa		-
54.65	(a) SO ₂	(b) CO ₂	(c) O ₂	(d) H_2
132.	-	RMS velocity of SO ₂ mole		
	(a) 150 K	(b) 600 K	(c) 900 K	(d) 1200 K
133.	At 27°C, the ratio of rms	velocities of ozone to oxyge	en is	
	(a) $\sqrt{3/5}$	(b) $\sqrt{4/3}$	(c) $\sqrt{2/3}$	(d) 0.25
134.	The average kinetic energ	gy of an ideal gas per molect	ule in SI units at 25°C will	l be
	(a) $6.17 \times 10^{-21} kJ$	(b) 6.17×10 ⁻²¹ J	(c) $6.17 \times 10^{-20} J$	(d) $7.16 \times 10^{-20} J$
135	At what temperature the	RMS velocity of SO2 be sam	e as that of O2 at 303 K	
133.	(a) 273 K	(b) 606 K	(c) 303 K	(d) 403 K
136.		es which one has the lowest		` '
100.	(a) SO ₂	(b) N ₂	(c) O ₂	(d) Cl ₂
	accomplished	(-)	(-)	(-)
	(a) By heating the gas, th	e temperature is doubled		
	(b) By heating the gas, th	e pressure is quadrupled (i.e	e. made four times)	
	(c) By heating the gas, th	e temperature is quadrupled		
	(d) By heating the gas, th	e pressure is doubled		
138.	The rms velocity at NTP	of the species can be calcula	ated from the expression	
	3P	3 PV	3 RT	
	(a) $\sqrt{\frac{3P}{d}}$	(b) $\sqrt{\frac{3PV}{M}}$	(c) $\sqrt{\frac{3RT}{M}}$	(d) All the above
139.	Root mean square velocit	y of a gas molecule is propo	ortional to	
	(a) $m^{1/2}$	(b) m ⁰	(c) $m^{-1/2}$	(d) m
i	n temperature due to	5.5 ·		3.5
	(a) Increase in the averag	re molecular speed (b)Inc	reased rate of collision an	nongst molecules
	(c) Increase in molecular		ecrease in mean free path	iongs: motocates
141				ordor
141.		eeds at STP for the gases H ₂		
	(a) 112 < 142 < O2 < 1151	(b) $HBr < O_2 < N_2 < H_2$	(c) 112 < 112 = 02 < HBr	(a) noi < 02 < n2 < N2
_				

142.		he two gases at the same ter ne following expressions is c	-		are 4 and u_2 . T	heir masses are m_1 and m_2
	-				m _n	22
	(a) $\frac{m_1}{u_1^2} = \frac{m_2}{u_2^2}$	(b)	(c)	<u>''1</u> =	: m ₂	$m_1u_1^2 = m_2u_2^2$ (d)
143.	3.7	as is raised from 27°C to 92	` '			
	(a) $\sqrt{927/27}$ times the ear	rlier value	(Ъ)		Same as before
	(c) Halved		(d) I	Dou	bled	
144.	The ratio between the roo	ot mean square velocity of F	2 at 5	0 K	and that of 02 at	800 K is
	(a) 4	(b) 2	(c) 1			(d) 1/4
145.	3.6	locity of an ideal gas at cons	100		ure varies density	
	(a) d ²	(b) <i>d</i>	(c)			(d) 1/√d
146	` '	2 and 2 kept at room temp	` '		Compared to the o	
140.	molecule will hit the wal	•	Cittui		compared to the c	Aygen molecule, the
		d(b) Greater average speed	(c) (Grea	ter kinetic energy	v(d) Greater mass
	(ii) Similar average spee	a(o) cremer average speed	(0)	310.		(u) Gradier Illiano
147.	The rms speed of N2 m	olecules in a gas is u. If the	e tem	nera	ture is doubled	and the nitrogen molecules
147.	-	toms, the rms speed become		pera	adic is dodoled t	and the introgen morecules
	(a) u/2	(b) 2 <i>u</i>	(c) 4	111		(d) 14u
148		gement, where the symbols l			usual meanings	(4) 1-14
140.	(a) $\overline{u} > u_p > u_{rms}$	(b) $u_{rms} > \overline{u} > u_p$			$\overline{u} > u_{rms}$	(d) $u_p > u_{rms} > \overline{u}$
140			. ,		Ims	(d) -pms -
149.	TO 12 13 13	tion explains the behaviour of		7		(1) N
4.50	(a) Ideal gases	(b) Real gases	(c) \			(d) Non-real gases
150.		leal gas behaviour because t				
	(a) Possess negligible vo	lume				ion between them
	(c) Are polyatomic				not attracted to or	
151.		or of a gas is defined as Z=			he compressibilit	
152	(a) 0	(b) Infinity on of state for a non-ideal ga	(c) 1		a that accounts fo	(d) -1
152.	(V-b)	on of state for a non-ideal ga (RT) ⁻¹			12	i intermolecular forces
	(a)	(b)	(c)	P+	$\frac{d}{V^2}$	(d) <i>RT</i>
153.		of state is obeyed by real gas	ses. Fo	or n	moles of a real g	as, the expression will be
		(b) $\left(P + \frac{a}{V^2}\right)(V - b) = nRT$				
				`	• ((d) (V-)
154.		n deviation from ideal gas at			- 10 10 11	•
	(a) o°c and 1 atmospher				c and 2 atmosph	-
155	(c) -100°C and 5 atmosp	A			c and 1 atmosph	. 7,
155.	- ·	the second virial coefficien				
	(a) Critical temperature	(b) Euletic point	(c) I	3011	ing point	(d) Boyle's temperature

156.	When is deviation more in the behaviour of a gas fr	om tl	ne ideal gas equation PV = nRT	
	(a) At high temperature and low pressure	(b)) At low temperature and high pressure	
	(c) At high temperature and high pressure	(d)) At low temperature and low high pressure	
157.	Vander Waal's constants 'a' and 'b' are related with	respe	ctively	
	(a) Attractive force and bond energy of molecules	(b)) Volume and repulsive force of molecules	
	(c) Shape and repulsive forces of molecules	(d	Attractive force and volume of the molecules	
158.	Gas deviates from ideal gas nature because molecul	les		
	(a) Are colourless (b)Attract each other			
	(c) Contain covalent bond (d)Show Brownian m	oven	nent	
159.	The Vander Waal's equation reduces itself to the ide	eal ga	as equation at	
	(a) High pressure and low temperature	(b)) Low pressure and low temperature	
	(c) Low pressure and high temperature	(d) High pressure and high temperature	
160.	The compressibility factor for an ideal gas is			
	(a) 1.5 (b) 1.0) 2.0 (d) ∞	
161.	When an ideal gas undergoes unrestrained expansion	on, no	cooling occurs because the molecules	
	(a) Are above the inversion temperature	(b)) Exert no attractive force on each other	
	(c) Do work equal to loss in kinetic energy	(d) Collide without loss of energy	
	to behave like an ideal gas			
	(a) When the temperature is low			
	(b)When both the temperature and pressure are low			
	(c) When both the temperature and pressure are hig	gh		
	(d) When the temperature is high and pressure is lo	w		
163.	A real gas most closely approaches the behaviour of	f an i	deal gas at	
	(a) 15 atm and 200 K (b) 1 atm and 273 K	(c)	0.5 atm and 500 K (d) 15 atm and 500 K	
164.	The temperature at which real gases obey the ideal	gas la	aws over a wide range of pressure is called	
	(a) Critical temperature (b) Boyle temperature	(c)) Inversion temperature (d) Reduced temperature	
165.	At low pressure, the Vander Waal's equation is redu	iced t	lo	
	(a) $Z = \frac{\rho V_m}{RT} = 1 - \frac{a\rho}{RT}$ (b) $Z = \frac{\rho V_m}{RT} = 1 + \frac{b}{RT}\rho$		$pV_m = RT$ (d) $Z = \frac{pV_m}{RT} = 1 - \frac{a}{RT}$	
100				
	At high temperature and low pressure, the Vander V	waara	G-	
	(a) $\left(p + \frac{a}{V_m^2}\right)(V_m) = RT$ (b)	(-)	$p + \frac{1}{\sqrt{2}} (V_m - b) = RT$	
	(a) (m) (b)	(c)	(a) (-m)	
167	Which set of conditions represents easiest way to li	ianef	en e vi	
107.	(a) Low temperature and high pressure	- O.) High temperature and low pressure	
	(c) Low temperature and low pressure) High temperature and high pressure	
168.	Adiabatic demagnetisation is a technique used for	• **		
	(a) Adiabatic expansion of a gas	(b)	Production of low temperature	
	(c) Production of high temperature	(d)	None	

- 169. An ideal gas can't be liquefied because
 - (a) Its critical temperature is always above 0°C
- (b) Its molecules are relatively smaller in size
- (c) It solidifies before becoming a liquid
- (d) Forces operative between its molecules are negligible
- 170. However great the pressure, a gas cannot be liquefied above its
 - (a) Boyle temperature
- (b) Inversion temperature (c) Critical temperature (d) Room temperature
- 171. An ideal gas obeying kinetic theory of gases can be liquefied if
 - (a) Its temperature is more than critical temperature T_c
 - (b) Its pressure is more than critical pressure P_c
 - (c) Its pressure is more than P_c at a temperature less than T_c
 - (d) It cannot be liquefied at any value of P and T
- 172. The Vander Waal's parameters for gases W, X, Y and Z are

Gas	a (atm L2 mol-1)	b (L mol ⁻)
W	4.0	0.027
X	8.0	0.030
γ	6.0	0.032
Z	12.0	0.027

Which one of these gases has the highest critical temperature

(a) W

(b) X

(c) Y

(d) Z

L² atmmol⁻² respectively. The gas which can be most easily liquefied is

(a) O2

(b) N₂

- (c) NH₃
- (d) CH4

- 174. A gas can be easily liquefied
 - (a) When its inversion temperature equals the Boyle temperature
 - (b) Under adiabatic expansion
 - (c) Under pressure when it is cooled to below the critical temperature
 - (d) At low pressure and above the critical temperature
- 175. Which of the following is correct for critical temperature
 - (a) It is the highest temperature at which liquid and vapour can coexist
- (b) Beyond the critical temperature, there is no distinction between the two phases and a gas cannot be liquefied by compression
 - (c) At critical temperature (T_0) the surface tension of the system is zero
 - (d) At critical temperature the gas and the liquid phases have different critical densities
- 176. A gas has a density of 2.68 g/L at stp. Identify the gas
- (b) Kr

- (c) COS
- (d) SO₂
- 177. Who among the following scientists has not done any important work on gases
 - (a) Boyle
- (b) Charles
- (c) Avogadro
- (d) Faraday

- 178. The ratio γ for inert gases is
 - (a) 1.33
- (b) 1.66
- (c) 2.13
- (d) 1.99

- 179. The density of neon will be highest at
 - (a) S.T.P.
- (b) 0°C, 2 atm
- (c) 273°C,1 atm
- (d) 273°C, 2 atm

180.	Absolute zero is defined	as the temperature										
100.	(a) At which all molecul	1.5 T	(b) At which liquid helium boils									
	(c) At which ether boils		(d) All of the above									
t	he least volume		(11) 1111 02 1110 1110 11									
-	(a) HF	(b) HCl	(c) HBr	(d) <i>HI</i>								
	(-)	(0)	(0) 2221	(4)								
182.	Which of the following i	s most polarised among n	oble gases									
	(a) He	(b) <i>Xe</i>	(c) Kr	(d) <i>Rn</i>								
183.	Dimensions of pressure a	are the same as that of										
	(a) Energy	(b) Force (c	E)Energy per unit volume	(d) Force per unit volume								
184.	Which of the following e	xhibits the weakest intern	nolecular forces									
	(a) NH ₃	(b) HCl	(c) <i>He</i>	(d) H ₂ O								
v	vill be filled first											
	(a) N ₂	(b) O ₂	(c) H ₂	(d) <i>Ne</i>								
186.	Weight of 112 ml of oxy	gen at NTP on liquefactio	n would be									
	(a) 0.32 g	(b) 0.64 g	(c) $0.16 g$	(d) 0.96 g								
C	of B is											
	(a) 3 M	(b) √3 M	(c) M/3	(d) $M/\sqrt{3}$								
	SO ₂ at the same tempera	ture and pressure, and aga	in weighted. The weight of	oxygen will be								
		SO ₂ 1 SO ₂	SO ₂	so₂								
	(a) The same as that of		• • • • • • • • • • • • • • • • • • • •	One fourth that of								
189.			ccupied by 11.2 g of this gas									
	(a) 1 L	(b) 11.2 <i>L</i>	(c) 22.4 L	(d) 20 L								
	mass of the mixture in gr			75 =								
404	(a) 6.2	(b) 4.12	(c) 3.09	(d) 7								
191.	Volume of 4.4 g of CO ₂		(2) 2.24.7	(I) 4 40 T								
102	(a) 22.4 <i>L</i>	(b) 44.8 <i>L</i>	(c) 2.24 <i>L</i>	(d) 4.48 <i>L</i>								
192.	The energy of an ideal ga		(a) Number of males	(d) Tammanatura								
100	(a) Pressure	(b) Volume	(c) Number of moles	(d) Temperature								
	Nation of \mathcal{O}_p and \mathcal{O}_V of a N.T.P. is	gas X is 1.4. The numb	per of atoms of the gas 'X' I	present in 11.2 litres of it at								
	(a) 6.02×10^{23}	(b) 1.2×10 ²⁴	(c) 3.01×10 ²³	(d) 2.01×10 ²³								
194.	The density of air is 0.00	130 g/ml. The vapour den	sity of air will be									
	(a) 0.00065	(b) 0.65	(c) 14.4816	(d) 14.56								
	then the volume occupied	d by water molecules in 1	litre of steam at that temper	ature is								
	(a) 6 cm ³	(b) 60 cm ³	(c) 0.6 cm ³	(d) 0.06 cm ³								
		9 -	109	x 8								
	of temperature and press	ure will be										
	(a) N/2	(b) N	(c) 2N	(d) 4N								
197.	Consider the following s	tatements :										

- (1) Joule-Thomson experiment is isoenthalpic as well as adiabatic.
- (2) A negative value of μ_{JT} (Joule Thomson coefficient corresponds to warming of a gas on expansion.
- (3) The temperature at which neither cooling nor heating effect is observed is known as inversion temperature.

Which of the above statements are correct

- (a) 1 and 2
- (b) 1 and 3
- (c) 2 and 3
- (d) 1, 2 and 3
- 198. Under what conditions will a pure sample of an ideal gas not only exhibit a pressure of 1 atm but also a concentration of 1 mole litre-1

 $(R = 0.082 litre atmmol^{-1} deg^{-1})$

- (a) At STP
- (c) When T = 12 K

an ideal gas, the density is given by

- (a) RT
- (b) P

(c) $\frac{M}{V}$

200. An ideal gas will have maximum density when

- (a) P = 0.5 atm, T = 600 K
- (b) P = 2 atm, T = 150 K
- (c) P = 1 atm, T = 300 K

(b) When V = 22.4 litres

(d) Impossible under any conditions

(d) P = 1.0 atm, T = 500 K

ANSWER KEY GASEOUS STATE 200 QUESTION

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
c	C	ь	а	C	d	а	ь	С	c	а	C	b	d	а	d	С	d	а	а
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
а	a	c	a	b	8	С	d	а	ь	c	а	b	a	С	а	d	С	а	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
С	а	b	c	c	d	a	C	c	b	c	c	С	a	а	а	a	а	а	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	С	d	С	С	8	b	c	С	b	d	а	а	b	d	c	d	b	а	С
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
d	а	а	C	а	а	а	b	а	ь	а	ь	b	d	С	b	d	b	d	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120

a	а	а	ь	С	а	ď	C	В	d	b	а	а	ь	С	b	b	ь	а	d
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
а	а	a,c,d	а	d	а	c	а	d	а	ď	d	С	b	b	d	b	d	c	а
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
b	d	d	c	d	d	b	b	ь	ь	c	c	d	c	d	ь	d	b	c	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
ь	d	C	b	а	b	а	b	d	c	ď	ď	С	ь	a,b,c	c	ď	b	ь	а
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
d	d	c	С	С	С	С	b	b	а	С	d	а	d	С	С	d	С	d	b