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1 A Closer Look at Basic Feasible Solutions

Recall the definition of a basic feasible solution:
Definition 1. Let P be a polyhedron defined by linear equality and inequality constraints, and consider
x* e R".

1. The vector x* is a a basic solution if:

(a) All equality constraints are tight;

(b) Among the constraints that are tight at x*, n of them are linearly independent.
2. If x* € P is a basic solution, we say that it is a basic feasible solution.

What exactly do we mean here by linearly independent? Given an m X n matrix A, let a; denote the
it" row of A. Then we say that the constraints {a;} for i € B are linearly independent if the equations
corresponding to the tight constraints are linearly independent.

Definition 2. A basic feasible solution is non-degenerate if there are exactly n tight constraints.
Definition 3. A basic feasible solution is degenerate if there are more than n tight constraints.

We say that a linear programming problem is degenerate if it contains degenerate vertices or basic
feasible solutions. It is NP-complete to determine if a given linear program is degenerate [CKMS2].

Theorem 4. Let P = {x € R” | Ax = b, x > 0}. Let x* € P be a basic solution. The following
statements are equivalent:

1. x* is tight for n linearly independent constraints (all m constraints in Ax = b and at least n — m
tight non-negativity constraints);

2. There exist m indices B = {B(1), B(2),..., B(m)} such that the columns Ap(1), Ap(2),-- - Apm)
are linearly independent.

1.1 Procedure for Constructing a Basic Solution

To construct a basic solution x*, we can do the following:

1. Choose m linearly independent columns A (1), Ap(a),---,Ap(s)-
2. Let xf =0foralli ¢ B={B(1),B(2),...,B(m)}.

3. Solve the system of m equations Ax = b for the unknowns X*B(l), X}}(zy e ’X*B(m)'

If a basic solution constructed according to this procedure is non-negative, then it is a basic feasible
solution. Conversely, every basic (feasible) solution can be constructed using this procedure. If x* is
a basic solution, then the variables {X*B(l),x*B(Q), . ,X};(m)} are called basic variables. The remaining
variables are called non-basic variables. If x* is non-degenerate, then all basic variables are non-zero.
In a basic solution, at least n constraints are tight. Therefore, a basis corresponds to a unique solution.
However, several bases can lead to the same solution (degeneracy).



1.2 Adjacent Basic Feasible Solutions

As seen in the last lecture, each iteration of the simplex algorithm corresponds to a dictionary, which
corresponds to a basis and therefore a unique basic (feasible) solution. In each dictionary, the n tight
constraints correspond to n hyperplanes. The solution associated with this dictionary is the point that
is the intersection of these n hyperplanes. A legal pivot always moves from one basic feasible solution
to an adjacent basic feasible solution.

Definition 5. Let P = {x € R" | Ax = b, x > 0}. Suppose x1,x2 € P are basic feasible solutions.
Then x1 and X2 are adjacent if they are each tight for some set of n—1 linearly independent constraints.

Two adjacent basic feasible solutions share n — 1 indices in their bases.

2 Finding an Initial Basic Feasible Solution

Last time, when we introduced the simplex algorithm, we used the following procedure to find an initial
basic feasible solution. Given a linear program in canonical form:

max ¢'x
Ax <b
x >0, (@)

we translated it to standard form and set all original variables to zero and set the j** slack variable to
b;. Specifically, we did the following:

n
Tnyj = bj—Zajixi, j:lgjgm,
i=1
z, = 0, 1:1<¢<n.

If the b; values are all non-negative, then this initial solution is both basic and feasible. But what is
some of the b;’s are negative? Then we must find an initial basic feasible solution. The procedure to do
this is usually called Phase I of the simplex algorithm. Given an intial feasible solution, the process of
finding an optimal solution is called Phase II.

2.1 An Auxiliary Program

Let us consider the following example:

max 2xrj + x9
subject to: — 2z + x5 < —2
T — 209 < =2
T1+ a0 <7
z1, T2 > 0. (@)

If we follow the standard initialization procedure, we obtain the following basic solution:
{],‘1,%‘2,333,3?4,375} = {ana_27_2a 7}

This solution is infeasible. Moreover, it could even be the case that a given linear program is infeasible.
Then it would not be possible to find an initial basic feasible solution. How do we determine whether or
not this is the case? We will construct an auziliary linear program whose optimal objective value is zero



if and only if the original linear program. In the case of , we obtain the following linear program

min zy (= max —x)
subject to: — 2z + z2 < —2 4 x9
1 — 2209 < =24 29
T+ 20 < T+ 2
To, T1, T2 = 0. (Q1)
Now is clearly an unbounded non-empty polyhedron. To see this, just choose x to be sufficiently

large. Moreover, the optimal value of is zero if and only if the domain of (Q)) is empty. Let us
now try to solve (Q})). Here is the initial dictionary:

r3 =—24 221 —x9 + X9
Ty =—2—x1 +2x9 + 29
Ts5 =+7—x1 —x2+ X9
z= — xp. (Dy)

This dictionary is infeasible. What can we do? Take one of the most negative (i.e. most infeasible)
variables (in this case, x3 or x4) and swap with xo (zo enters basis, z3 leaves). (This is an “illegal” pivot
since it decreases the objective value. However, the resulting solution remains basic.) This causes all
variables to be non-negative, because it increases the values of all variables.

To =+2 — 271 +T2 + 73
x4 =+0 — 3x14+3x9 + 23
s =+9 — 321 + a3
z=—2+4211 —x9 — T3. (DY)

Now since we have a feasible solution, we proceed with simplex as normal. Let x; enter and z4 leave.

2z T
2o =42+ =2 —xp 4+ =2

3 3
Ty I3

= 0—7 -—
T =+ 3 +x2 + 3

x5 =+94+ x4 —3x9
224 T3

Let x5 enter and zg leave.

3 3
T 2x
T =424 —wot
T5 =+3 — x4 +3x9 — T3
z= —Zo (D3)



Now we cannot maximize anymore and we have a feasible solution for the original problem: {z,z2} =

(2,2).
rg X1 T9 X3 T4 X5 | Z
0 0 0 -2 -2 7|0
@) 2 o o 0o 0 9| -2
@) 2 o o 0 0 9| -2
@)lo 2 2 0 0 3|0

Table 1: The solutions corresponding to each dictionary when the simplex algorithm is run on .

Now we can return to the original linear program (|(J1]). Using the initial feasible solution found via

the auxiliary program, the initial dictionary is:

2%4 I3
:2 R — —_

T2 + 3 + 3
T4 21‘3
:2 e R —

T + 3 + 3
Is =3 — T4 —I3
4xy  Dxs

=6 _

z + 3 + 3
Ty Is
= 3 e _—
T3 + 3 3
Ty 2$5
=42 _ T

o 3 3
Ir3 = 3 — Ty —Is5
so11 - Sa_5%s

3 3

So the optimal solution for (4] is 11 at the point (4, 3).



3 Overview of the Simplex Algorithm

We are given the following linear program (Q) in canonical form.

n
max E CiT;
i=1

n
subject to: Zajixi < by, ji1Zi<m,
i=1

T; > 0, 1:1<1<n.

3.1 Initialization: Phase I

Initial dictionary:

n
Tnp; = bj— Y ajwi, j:l1<j<m,
i=1

n
z = Z Ci %y
i=1
1. If solution is feasible (i.e. all basic variables are non-negative), go to Phase II.

2. Otherwise use auxiliary program described in Section [2] to find an initial basic feasible solution.

(a) Create auxiliary program (Q’) and dictionary (Dj).

(b) Use “illegal” pivot to find basic feasible solution for (Q’).
(c¢) Run simplex until final dictionary (D%).

(d) If value at (D) is < 0, declare (Q) infeasible.

(e) Else form initial dictionary (Dy) for (Q) and go to Phase II.

3.2 Iteration: Phase II

Assume we have a dictionary D with basis B that corresponds to a basic feasible solution, in which
x; =0 for i ¢ B:

{Ej = Bj_zajixia VjEB,
i¢B

z = 'y—i—Z@-xi.
i¢B

1. Choice of entering variable:

(a) If & < 0 for all i ¢ B, there is no choice of entering variable. Hence, we have reached the
maximum value for z. The simplex algorithm terminates on an optimal solution with value .

(b) If there exists ¢, > 0, choose zj, as entering variable.
2. Choice of leaving variable:

(a) If all @;i’s are < 0. Then (Q) is unbounded.

(b) Otherwise, among all a;,’s > 0, choose one such that % js minimum. This is the leaving
J

ajp

variable.
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