Heat produced in calories by the combustion of one gram of carbon is called

A: Heat of combustion of carbon

B: Heat of formation of carbon

C: Calorific value of carbon

D: Heat of production of carbon

The temperature of the system decreases in an:

A: Adiabatic Compression.

B: Isothermal Compression.

C: Isothermal Expansion.

D: Adiabatic Expansion.

For the isothermal expansion of an ideal gas:

A: E and H increases.

B: E increases but H decreases.

C: H increases and E decreases.

D: E and H are unaltered.

In an isochoric process, the increased internal energy is:

A: Equal to the heat absorbed.

B: Equal to heat evolved.

C: Equal to the work done.

D: Equal to sum of heat absorbed and work done.

Internal energy is an example of:

A: Path Function

B: State Function

C: Both a and b

D: None of these

The process in which no heat enters or leaves the system is termed as:

A: Isochoric

B: Isobaric

C: Isothermal

D: Adiabatic

If in a container, neither mass nor heat exchange occurs, then it constitutes:

A: Closed System

B: Open System

C: Isolated System

D: Imaginary System

Which of the following is true for an adiabatic process:

A: $\Delta H = 0$

B: $\Delta W = 0$

C: $\Delta Q = 0$

D: $\Delta V = 0$

Among the following, intensive property is:

A: Mass

B: Volume

C: Surface Tension

D: Enthalpy

For the reaction of one mole of zinc dust with one mole of sulphuric acid in a bo mb calorimeter, DV and W correspond to:

A:
$$\Delta U < 0, W = 0$$

B:
$$\Delta U = 0, W < 0$$

C:
$$\Delta U > 0, W = 0$$

D:
$$\Delta U = 0, W > 0$$

Which of the following expressions represent the first law of thermodynamics:

A:
$$\Delta E = -q + W$$

B:
$$\Delta E = q-W$$

C:
$$\Delta E = q + W$$

D:
$$\Delta E = -q-W$$

At 270C one mole of an ideal gas is compressed isothermally and reversibly from a pressure of 2 atm to 10 atm. The value of ΔE and q are (R = 2):

A: 0, -965.84 cal

B: -965.84 cal, -865.58 cal

C: 865.58 cal, -865.58 cal

D: -865.58 cal, -865.58 cal

The heat required to raise the temperature of a body by 1K is called:

A: Specific Heat

B: Thermal Capacity

C: Water Equivalent

D: None of these

Which of the following is true for the reaction:

 H_2O (I) \rightleftharpoons H_2O at 100 0 C at one atmosphere:

A:
$$\Delta E = 0$$

B:
$$\Delta H = 0$$

C:
$$\Delta H = \Delta E$$

D:
$$\Delta H = T\Delta S$$

Identify the correct statement regarding entropy:

A: At 0°C, the entropy of a perfect ly crystalline substance is taken to be zero

At absolute zero of the temperature, the B: entropy of all perfectly crystalline substance is positive

At absolute zero of the temperature the C: entropy of all perfectly crystalline substance is taken to be zero

At absolute zero temperature, the entropy of a D: perfectly crystalline substance is taken to be zero

Maximum entropy will be in which of the following:

A: Ice

B: Liquid Water

C: Snow

D: Water Vapours

If enthalpies of formation C2H4 (g), CO2 (g) and H2O (l) at 2500C and 1 atm. pressure be 52, -394 and -286 KJ mol-1 respectively. The enthalpy of combustion of C2H4 (g) will be:

A: + 1412 KJ mol⁻¹

B: - 1412 KJ mol⁻¹

C: + 141.2 KJ mol⁻¹

D: - 141.2 KJ mol⁻¹

Heat of neutralization of strong acid and weak base is:

A: 57.1 KJ mol⁻¹

B: 13.7 KJ mol⁻¹

C: Less than 13.7 Kcal mol⁻¹

D: More than 13.7 Kcal mol⁻¹

The heat evolved in the combustion of methane is given by the following equations:

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + H_2O(1)$$

$$\Delta H = -890.3 \text{ KJ}$$

How many grams of methane would be required to produce 444.15 KJ of heat of combustion:

A: 4 g

B: 8 g

C: 12 g

D: 16 g

In a calorimeter, the temperature of the calorimeter increases by 6.12K, the heat capacity of the system is 1.23 KJ/g/deg. What is the molar heat of decomposition of NH4NO3:

A: -7.53 KJ mol⁻¹

B: -398.1 KJ mol⁻¹

C: -16.1 KJ mol⁻¹

D: -602 KJ mol⁻¹