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Abstract

In this paper we study the elementary properties of double graphs, i.e. of graphs which are the direct product of a simple graph
G with the graph obtained by the complete graph K, adding a loop to each vertex.
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1. Introduction

In [18] it was observed that the binary strings of length n + 1 without zigzags, i.e. without 010 and 101 as factors,
can be reduced to the Fibonacci strings, i.e. binary strings without two consecutive 1’s, of length n. The set of Fibonacci
strings can be endowed with a graph structure saying that two strings are adjacent when they differ exactly in one
position. The graphs obtained in this way are called Fibonacci cubes [12] and have been studied in several recent
papers. We wondered if the set of all binary strings without zigzags could be endowed with some graph structure
related in some way with Fibonacci cubes. One interesting such graph structure is the one induced by the graph
structure of Fibonacci strings, that is the one obtained defining the adjacency saying that two binary strings without
zigzags are adjacent if and only if the corresponding Fibonacci strings are adjacent as vertices of the Fibonacci cube.
The resulting graph can be build up taking two distinct copies of the Fibonacci cube I';, and joining every vertex v
in one component to every vertex w’ in the other component corresponding to a vertex w adjacent to v in the first
component. At this point it was straightforward to observe that this is a general construction which can be performed
on every simple graph. We called double graphs all the graphs which can be obtained in such a way. Since the class of
double graphs with this construction turned out to have several interesting properties, we decided to write this paper as
an elementary introduction to such graphs that perhaps deserve to be better known.
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2. Definitions

In this paper we will consider only finite simple graphs (i.e. without loops and multiple edges). As usual V(G)
and E(G) denote the set of vertices and edges of G, respectively, and adj denote the adjacency relation of G. For all
definitions not given here see [1,5,9,13,17].

The direct product of two graphs G and H is the graph G x H with V(G x H) =V (G) x V(H) and with adjacency
defined by (v1, w1) adj (v2, wy) if and only if v; adj v7 in G and wy adj wy in H.

The total graph T, on n vertices is the graph associated to the total relation (where every vertex is adjacent to every
vertex). It can be obtained from the complete graph K, by adding a loop to every vertex. In [13] it is denoted by K.

We define the double of a simple graph G as the graph Z[G] = G x T5. Since the direct product of a simple graph
with any graph is always a simple graph, it follows that the double of a simple graph is still a simple graph.

In 2[G] we have (v, h) adj(w, k) if and only if vadjw in G. Then, if V(T3) = {0, 1}, we have that Go = {(v, 0) :
v e V(G)and Gy = {(v, 1) : v € V(G)} are two subgraphs of Z[G] both isomorphic to G such that Go N G| =@
and Go U G is a spanning subgraph of Z[G]. Moreover we have an edge between (v, 0) and (w, 1) and similarly we
have an edge between (v, 1) and (w, 0) whenever vadj w in G. We will call {G¢, G} the canonical decomposition of
2]G]. See Fig. 1 for some examples.

From the above observations it follows that if G has n vertices and m edges then Z[G] has 2n vertices and 4m edges.
In particular degg[G] (v, k) =2degg; (v).

The lexicographic product (or composition) of two graphs G and H is the graph G o H with V(G) x V (H) as vertex
set and with adjacency defined by (v{, wi) adj(vz, wy) if and only if v; = vy and w; adj w, in H or vy adj v, in G. The
graph G o H can be obtained from G substituting to each vertex v of G a copy H, of H and joining every vertex of
H, with every vertex of H,, whenever v and w are adjacent in G [13, p. 185].

Lemma 1. For any graph G we have G x T,, = G o Ny, where Ny, is the graph on n vertices without edges.
Proof. For simplicity consider 7,, and N,, on the same vertex set. Then the function f : G x T, - G o N, defined
by f(v, k) = (v, k) for every (v, k) € V(G x T,), is a graph isomorphism. Indeed, since N,, has no edges, we have
that (v, h) adj (w, k) in G o N, ifand only if vadjw in G. O

From Lemma 1 it immediately follows that:
Proposition 2. For any graph G on n vertices, [G] = G o Ny and Y|G] is n-partite (Fig. 2).

We will write Z%[G] for the double of the double of G. More generally we will have the graphs FKG1=G x Thr =
G o Ny, for every k € N.

The given definition of double graph can be generalized considering the operator Z; defined by Zx[G] = G x T
for every simple graph G. For Lemma 1 it is also Z;x[G] = G o Nj for every simple graph G. Moreover the powers of

Py

IR D[Cy]

Fig. 1. (a) A path and its double, (b) a cycle and its double.
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Fig. 2. The double of a 4-cycle drawn as lexicographic product.

& are instances of these generalized operators. Specifically Z*[G] = 2. [G] for every simple graph G. Many of the
properties proved in the sequel for & can be immediately extended to Z.

3. Basic properties of double graphs
In this section we will review some elementary properties of double graphs.
Proposition 3. The double Z[G] of a graph G on n vertices contains at least 2"* subgraphs isomorphic to G itself.

Proof. Let {G¢, G1} be the canonical decomposition of Z[G]. Let Sy be any subset of V (Gg) and let S be the subset
of V(G1) corresponding to the complementary set of So. Then the graph induced by Sy U S is isomorphic to G. [

Proposition 4. For any graph G, G is bipartite if and only if [G] is bipartite.

Proof. Let {Go, G1} be the canonical decomposition of Z[G]. If G is bipartite then also Go and G are bipartite. Let
{V, W} be a bipartition of G and {Vy, Wy}, {Vi, W1} be the corresponding bipartitions of Go and G, respectively.
Every edge of Z[G] has one extreme in Vy U V; and the other in Wy U W1, and hence also Z[G] is bipartite.

Conversely, if Z[G] is bipartite then it does not contain odd cycles. Hence also the subgraph Gy >~ G does not
contain odd cycles and then it is bipartite. [J

A vertex cut of a graph G is a subset S of V(G) such that G\ S is disconnected. The connectivity k(G) of G is the
smallest size of a vertex cut of G. A point of articulation (resp. bridge) is a vertex (resp. edge) whose removal augments
the number of connected components. A block is a connected graph without articulation points.

Proposition 5. For any graph G # K the following properties hold:

. G is connected if and only if Z[G] is connected.

If G is connected then every pair of vertices of [G] belongs to a cycle.
Every edge of Z[G] belongs to a 4-cycle.

In a double graph there are neither bridges nor articulation points.

. If G is connected then 9[G] is a block.

. The connectivity of 1G] is K(Z[G]) = 2x(G).

e

Proof. Let {G(, G} be the canonical decomposition of Z[G].

1. If G is connected also Gog and G are connected. Hence, we have only to prove that any vertex (v, 0) of Gy is
connected with any vertex of G1. Let v’ be any vertex adjacent to v. Then (v, 0) is adjacent to (v/, 1). Since G
is connected there exists a path which connects (v’, 1), and hence (v, 0), to any vertex of G. Conversely, if G is
disconnected then also Z[G] is disconnected.

2. Let (v, 0) and (w, 0) be two distinct vertices in Gy. Let y, be a path connecting these two vertices and let y; be
the corresponding path connecting the vertices (v, 1) and (w, 1) in G;. Let (v, 1) be the vertex following (v, 1)
on y;, (w’, 1) be the vertex preceding (w, 1) on y; and let 7| be the sub-path of y; from (w’, 1) to (v', 1). Then
70U {(w,0), (w', D}Uy U{(', 1), (v, 0)} is a cycle containing (v, 0) and (w, 0). A similar argument holds when
we consider two distinct vertices in G or two vertices (v, 0) and (w, 1) with v # w. Finally, in the case of two
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vertices (v, 0) and (v, 1), choosing any vertex v’ adjacent to v, we have that (v, 0), (v/, 1), (v, 1), (v/, 0), (v, 0) is
a cycle containing both the vertices.

3. Every edge vw of G generates the 4-cycle (v, 0), (w, 0), (v, 1), (w, 1), (v, 0) in Z[G] and every edge of Z[G]
belongs to one such cycle.

4. An edge vw of a connected graph H is a bridge if and only if no cycle of H contains both v and w [17]. Here,
without loss of generality, we can suppose G connected. Since every edge of Z[G] belongs to a cycle it follows
that Z[G1] has no bridges. Similarly, by property 2, G has no articulation points.

5. It follows from properties 1 and 4.

6. Let S be a vertex cut of Z[G] with minimum size. The sets So = S N V(Gyp) and S; = S N V(G) are vertex cuts
of Go and G, respectively. Then |Sp|, |S1| = k(G) and hence k(Z[G]) >2x(G). Conversely, let S be a vertex cut
of G and Sy and S be the corresponding sets in G and G, respectively. Then So U Sj is a vertex cut of Z[G] and
hence k(Z[G]) <2x(G). O

A connected graph G is Eulerian if it has a closed trial containing all the edges of G. Eulerian graphs are characterized
as the even connected graphs, where an even graph is a graph in which every vertex has even degree. A graph G is
Hamiltonian if it has a spanning cycle.

Proposition 6. For any graph G # K the following traversability properties hold:

1. If G is connected then Z|G] is Eulerian.
2. If G is Hamiltonian then also [ G] is Hamiltonian.

Proof. 1. The double of a connected graph is connected and double graphs are always even.

2. Let {Go, G} be the canonical decomposition of Z[G]. Let y be a spanning cycle of G, vw be an edge of y and
7’ be the path obtained from y by removing the edge vw. Let 7} be the corresponding path in G;, for i = 0, 1. Then
70 YU {(w,0), (v, D} Uy U {(w, 1), (v, 0)} is a spanning cycle of Z[G]. [
Proposition 7. For any graph G| and G, the following properties hold:

1. 92[G1 x G2]1=G1 x 2[G2] = 2[G1] x G2,
2. 9[G10oGrl=Go09[G;].

Proof. These identities are consequence of the associative property of the direct product and of the lexicographical
product, respectively. [

From the definition of the double of a graph it follows immediately that:

Proposition 8. Let A be the adjacency matrix of G. Then the adjacency matrix of 2[G] is
A A 11
“@[A]_[A A}‘A‘X’[l 1]'

The rank r (G) of a graph G is the rank of its adjacency matrix. Then from the above proposition it follows that:
Proposition 9. For any graph G, r(Z[G]) = r(G).

In the sequel we will use the property that two graphs are isomorphic if and only if their adjacency matrices are
similar by means of a permutation matrix.

Let G| and G, be two graphs. The sum G+ G> of G| and G is the disjoint union of the two graphs. The complete

sum G1HG, of G| and G is the graph obtained from G| + G» by joining every vertex of G| to every vertex of G».
A graph is decomposable if it can be expressed as sums and complete sums of isolated vertices [17, p. 183].
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Proposition 10. For any graph G| and G, the following properties hold:

1. 21G1 + G2l =2[G1] + 2[Ga],
2. 9|G1HG,] = 2(G11B2(G,],
3. the double of a decomposable graph is decomposable.

Proof. The first two properties can be proved simultaneously as follows. Let A; and A, be the adjacency matrices
Al X
Xl A
G 1HG, when X is the matrix J all of whose entries are 1’s. Then the adjacency matrix of the double is

of G and G», respectively. Then [ ] is the adjacency matrix of G| + G when X is the null matrix O and of

rA; X A X T
X A X A
A X A X

LX Ay X Al

Interchanging first the second and the third column and then the second and the third row we obtain the matrix
rA; A X X 7
Al A X X

X X A A |’
L X X Ay A

which is the adjacency matrix of Z[G1] + Z[G2] when X = O and of Z[G]HZ[G,] when X = J. These properties
are also implied by the right-distributive laws of the lexicographic product [13, pp. 185, 186]. Finally the third property
follows from the fact that & preserves sums and complete sums and Z[K{] =N, =K + K. O

Examples. 1. If N, is the graph on n vertices without edges, then Z[N,,] = Na,,.

2. Let K., be a complete bipartite graph. Then Z[K,;, ,]1 = Z[N»BN, 1 = [Ny IBZ[N,] = NopBN2p = Ko 2.
Similarly, if K, .. m, is a complete n-partite graph we have Z[Kp,, .. m,1 = Kom,,....2m, . In particular, if K, is the
complete m-partite graph K, . ,, then Z[K,,»)] = K2n)- Since K, = K1) it follows that the double of the complete
graph K, is the hyperoctahedral graph H,, = K;,(2).

3.Forn>2,let K, be the graph obtained by the complete graph K, deleting any edge. Then K, = N>HK,,_» and
YIK, 1= 2[N2JBY[K, 2] = NsHH, >, thatis Z2[K, | = K4, 2.

4. Let G be a group and let Q be a set of generators for G such that (i) if x € Q then x~! € Q, and (ii) 1 ¢ Q. The
Cayley graph Cay(G, ) is the simple graph whose vertices are the elements of G and where x adj y if and only if
x~ 'y € Q (see [1]). Let now C be a cyclic group of order 2. Then Cay(G x Cz, Q x C;) = Z[Cay(G, Q)].

A graph G is circulant when its adjacency matrix A is circulant, i.e. when every row distinct from the first one, is
obtained from the preceding one by shifting every element one position to the right. Let C(ay, ..., a,) be the circulant

graph where (ay, ..., ay) is the first row of the adjacency matrix (for a suitable ordering of the vertices).
Proposition 11. A graph G is circulant if and only if 2[G] is circulant. Specifically
9YC(ay,...,ap)]=C(ay,...,ay,ai,...,ay).
Let Z[G] = G x K3 be the canonical double covering of G [20].

Proposition 12. & and # commutes, that is | RG] = R[Z[G]] for every graph G.

Proof. The associativity and the commutativity of the direct product implies that

DIRG=2RG]lxTh =G x Ky xTh =G x T x Kr =2[G] x Ky = Z[Z[G]]. O

Let #[G] = GKT; be the strong double of G, and let G be the complement of G.
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Proposition 13. For every graph G, |G| = Z[G].
Proof. If A is the adjacency matrix of G, the adjacency matrix of [G] is

A(£9”[G])=|: A I+A].

I+ A A

Then

— A(G) A(G) J—I—-A J—-1—-A A T+A
7, — el = —J_7J_
A(J[G])_[A(G) A(G)] |:J—I—A J—I—A} I=1 [I—FA A ]
thatis A(Z[G]) = J — I — A(¥[G]) = A(¥[G]). The proposition follows. [
4. Spectral properties of double graphs

The eigenvalues, the characteristic polynomial and the spectrum of a graph are the eigenvalues, the characteristic
polynomial and the spectrum of its adjacency matrix [5, p. 12].

Proposition 14. The characteristic polynomial of the double of a graph G on n vertices is
P(Z1G]; ) = 20" @(G; 1/2).
In particular the spectrum of 2[G]is {0, ...,0,21,...,24,} where Ay, ..., i, are the eigenvalues of G.

Proof. By Proposition 8 it follows that

AM—2A —A

@(2[G]; A) = 0 i

M—A —A | _|M-24 -A
—A M —A|T|M =24 i —-A

-
An integral graph is a graph all of whose eigenvalues are integers [5, p. 266].

Proposition 15. A graph G is integral if and only if 1G] is an integral graph.

Proof. Since the characteristic polynomial of a graph is monic with integer coefficients its rational roots are necessarily
integers. Then the claim immediately follows from Proposition 14. [

Examples. 1. Since the spectrum of K, is (=D" '(n = 1! the spectrum of H, = Z[K,] is (=2)"10"2n — 2)!
where —2 has multiplicity n — 1 and 0 has multiplicity 7.

2. The Petersen graph in an integral graph with spectrum (—2)*133!. Then also its double is an integral graph whose
spectrum is (—4)40102561.

3. Since the characteristic polynomial of the path P, is ¢ (Py,; 1) = U, (1/2), where the U, (1)’s are the Chebyshev
polynomials of the second kind, it follows that the characteristic polynomial of Z[P,] is ¢(Z[P,]; 1) = 22)" Un(1/4).

4. Let c3(G) be the number of triangles (i.e. 3-cycles) of G. If A is the adjacency matrix of G then ¢3(G) = +tr(A%) =

%(/1? +---+ }Vf’l) where 1, ..., 4, are the eigenvalues of A. Then Proposition 14 implies that c3(Z[G]) = 8 - ¢3(G).

Two graphs are cospectral when they are non-isomorphic and have the same spectrum [1, p. 12; 5, p. 156]. From
Proposition 14 and Theorem 31 we have the following property.

Proposition 16. Two graphs G| and G, are cospectral if and only if their doubles 9G] and Y[ G,] are cospectral.

Given two cospectral graphs G| and G», it is always possible to construct an infinite sequence of cospectral graphs.
Indeed % [G1] and gk [G2] are cospectral for every k € N.
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5. Strongly regular graphs

A graph G is k-regular if every vertex has degree k.
Proposition 17. A graph G is k-regular if and only if Y[G] is 2k-regular.

A simple graph G is strongly regular with parameters (n, k, /, (1) when it has n vertices, is k-regular, every adjacent
pair of vertices has 4 common neighbors and every non-adjacent pair has ¢ common neighbors. For instance the
complete graph K, is (n,n — 1, n — 2, 0)-strongly regular, the complete bipartite graph K, , is (2n, n, 0, n)-strongly
regular and the hyperoctahedral graph H,, is (2n, 2n — 2, 2n — 4, 2n — 2)-strongly regular.

Connected strongly regular graphs, distinct from the complete graph, are characterized [5, p. 103] as the connected
regular graphs with exactly three distinct eigenvalues. Hence if G is strongly regular its double is not necessarily strongly
regular. For instance the Petersen graph is a (10, 3, 0, 1)-strongly regular graph with the three distinct eigenvalues
—2, 1, 3, but its double is not strongly regular having the four distinct eigenvalues —4, 0, 2, 6. Strongly regular double
graphs can however be completely characterized, as we will do in Proposition 19. To give such a characterization we
need the following properties.

Strongly regular graphs with one zero eigenvalue are characterized as follows [5, p. 163]: a regular graph G has
eigenvalues k, 0, 43 if and only if the complement of G is the sum of 1 —k /A3 complete graphs of order — /3. Equivalently,
aregular graph has three distinct eigenvalues of which one is zero if and only if it is a multipartite graph K, (.

The only disconnected strongly regular graphs are finite sums of complete graphs of the same order [4].

Lemma 18. A complete multipartite graph K, () is a double graph if and only if n is even. In particular, the complete
graph K, is never a double graph.

We can now characterize the strongly regular double graphs.
Proposition 19. For any graph G the following characterizations hold:

1. 2[G] is a connected strongly regular graph if and only if G is a complete multipartite graph K, ).
2. 9[G] is a disconnected strongly regular graph if and only if G is a completely disconnected graph N,,.

Proof. 1.If G = K,,(») then Z[G] = K,,(2s). Conversely, suppose that Z[G] is connected and strongly regular. Since
2[G] cannot be a complete graph, it has 3 distinct eigenvalues, one of which is zero. Then it is a complete multipartite
graph K,,2,) and consequently G is the complete multipartite graph K, ().

2. If 2[G] is a disconnected strongly regular graph then it is a sum of complete graphs of the same order. Since the

complete graph 1s never a double graph, the on 0ss1b1l1ty 18 that 9 = Ny, and hence G = N,,.
plete graph i double graph, the only possibility is that Z[G] = N d h G=N, O

In general double graphs are not characterized by their spectrum. However, since this is true for complete bipartite
graphs, we have that:

Proposition 20. Strongly regular double graphs are characterized by their spectrum.
6. Complexity and Laplacian spectrum

Let ¢ (G) be the complexity of the graph G, i.e. the number of its spanning trees. It is well known [3] that
1
1(G) = — det(L + J), (1
n

where n is the number of vertices of G, L is the Laplacian matrix of G and J, as before, is the n x n matrix all of
whose entries are equal to 1.
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Theorem 21. The complexity of the double of a graph G on n vertices with degrees dy, d>, . . ., d, is

H2IG) =4""didy - dyt (G). )
Proof. Letvy, ..., v, bethe vertices of G and dy, .. ., d, their degrees. As known the Laplacian matrix L of G is equal
to D — A where D is the diagonal matrix diag(dy, ..., d,) and A is the adjacency matrix of G. Then the Laplacian
matrix of Z[G] is

] 2D O A A 2D — A —A
) — G — — _ —
ZIL1=21D] @[A]_[ (0] ZD} |:A A}_[ —A 2D—A}' )
Hence it follows that
I |12D—A+J —A+J
7, —
16D =05 —aty 2D—A+J"

Subtracting the first row to the second row and then adding the second column to the first one, we have

1
H(21G) = o)

2D —-2A+2J —-A+J
o 2D

2D—A+J —A+J‘_ 1

2D 2D | 4n?

Then

n

1 4
1(Z[G]) = — 2D —2A+2J| - 2D| = — |L + J| - |D| =4""!|D|1(G)
4n? 4n?
and the theorem follows. [J
As an immediate consequence we have the following:

Theorem 22. The complexity of the double of a k-regular graph G on n vertices is

1(2(G)) = 4" K" (G). 4)

Examples. 1. The double of the complete graph K, is the hyperoctahedral graph H,,. Since K, is (n — 1)-regular, (4)
implies that 7 (H,) =4""'(n — 1)"t(K,) = 4" '(n — 1)"n" 2.

2. Let P, be the path on n vertices, with n>2. Then 1 (Z[P,]) = 4"~12""2¢(P,) = 234,

3. Let C,, be the cycle on n vertices, with n>3. Then 1 (Z[C,]) = 4"~ 12"t(C,) = 2¥""?n.

4. Let F, = K{HP, be a fan, with n > 2. Then t (Y[ P,]) = gntlzn=2, t(Fy). Since t(F,) = f>, where the f},’s are
the Fibonacci numbers [7], it follows that 1 (Z[ F,,]) = gntlgn=2, fon.

Since any tree has only one spanning tree, the second example can be generalized as follows:

Theorem 23. Let T be a tree on n vertices with degrees dy, . .., d,. Then

HDIT) =4"""4d, - - d,. (5)

It follows that the complexity of the double of a tree depends only on the degrees of the vertices of the tree itself. For
instance, the graphs Z[T1] and Z[15] in Fig. 3 have the same number r =73 728 of spanning trees, because they are the
double of two trees 77 and 75 on seven vertices with the same distribution of degrees (3, 3,2, 1, 1, 1, 1). Since 7} and
T, are not isomorphic, Z[T1] and Z[T,] are non-isomorphic graphs too (by Theorem 31, as we shall see in Section 8).

Finally, using identity (3), the following proposition can be proved.

Proposition 24. Let G be a graph on n vertices with degrees dy, d, . ..,d, and let {1y, ..., Ay} be its Laplacian
spectrum. Then the Laplacian spectrum of 2[G] is {2d,, ..., 2d,, 221, ...,2,}. In particular, G has an integral
Laplacian spectrum if and only if the same holds for 2[G].
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D[T1] D[T3]

Fig. 3. Non-isomorphic graphs with the same complexity ¢ = 73 728.

7. Independent sets

An independent set of vertices of a graph G is a set of vertices in which no pair of vertices is adjacent. Let .7 [G] be
the set of all independent subsets of size k of G and let iy (G) be its size. The independence polynomial of G is defined

as
I(G;x):Z Z x|S|=Zik(G)xk.
k>0Ses[G] k>0

Proposition 25. Forany graph G we have I [2[G]] ~ J¢[G] x 2k where 2={0, 1}. In particular iy (21G)=2Fir(G)
and 1 (2[G]; x) = 1(G, 2x).

Proof. Let the vertices of G be linearly ordered in some way. Let S = {(vy, wy), ..., (vk, wk)} be an independent set
of Z[G]= G x T». Since T> is a total graph, it follows that 71 (S) = {vy, ..., v} is an arbitrary independent subset of
G and m»(S) is equivalent to an arbitrary binary sequence (wy, ..., wi) of length k (where the order is established by

the order of 71 (S) induced by the order of V(G)). The claim follows. [J

The (vertex) independence number o(G) of a graph G is the maximum size of the independent sets of vertices of G.
Equivalently, a(G) is the degree of the polynomial 7 (G, x). Then Proposition 25 implies the following:

Proposition 26. For any graph G we have that o(2[G]) = 2a(G).
8. Morphisms

A morphism f : G — H between two graphs G and H is a function from the vertices of G to the vertices of H which
preserves adjacency (i.e. v adj w implies f(v) adj f(w), for every v, w € V(G)) [8,10]. An isomorphism between two
graphs is an invertible morphism.

Let Hom(G, H) be the set of all morphisms from G to H and let 2VIG] pe the set of all functions from V(G) to
2={0,1}.

Lemma 27. For every graph G and H, Hom(G, Z[H)) = Hom(G, H) x 2V10],

Proof. From the universal property of the direct product (in the categorical sense [2]) we have Hom(G, G| x G3) =
Hom(G, G1) x Hom(G, G»). Since Z[G] = G x T» and Hom(G, T») = 2VI¢], the lemma follows. [

A k-walk, or a walk with k steps, in a graph G is a sequence vy, vy, .. ., vg of vertices of G such that v; adj v; 4 for
i=1,...,k—1.Ak-walkis closed when vi adj v;. Then a k-walk is a morphism y : Py — G while a closed k-walk is
a morphism y : Cy — G. Let wx(G) and wi (G) be the number of all k-walks and closed k-walks of G, respectively.
Hence wi(G) = |[Hom( Py, G)| and wi(G) = |Hom(Cy, G)|. Lemma 27 immediately implies the following:

Proposition 28. For any graph G the number of k-walks and closed k-walks on 2|G] are w (Z[G]) = 2%wi(G) and
Wk (Z[G]) = 2F Wi (G).
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To prove Theorem 31 we recall the following theorems:

Theorem 29 (Lovdsz [15,16]). Two graphs G and G are isomorphic if and only if for every graph G the number of
morphisms from G to G is equal to the number of morphisms from G to G.

Theorem 30 (Imrich and KlavZar [13, p. 190]). If GoH ~ G'oH' and |V (H)|=|V (H')|then H >~ H' and G ~ G'.
We can now prove the following:
Theorem 31. Tiwo graphs G| and G, are isomorphic if and only if their doubles 21G 1] and Y[ G,] are isomorphic.

Proof. The claim is an immediate consequence of Theorem 30. However, it is interesting to observe that it is also a
consequence of Lovasz’s theorem [10]. Indeed, if two graphs are isomorphic it is clear that their doubles are isomorphic
too. Conversely, if Z[G] and 2[G,] are isomorphic then |[Hom(G, Z[G])| = |[Hom(G, Z[G»])| for every graph G.
From Lemma 27 it follows that [Hom(G, G1)|-2!VI9=[Hom(G, G,)|-2!VIC]l thatis [Hom(G, G)|=[Hom(G, G)|,
for every graph G. Hence, by Lovasz’s theorem, G and G are isomorphic. [

We now extend & to morphisms in the following way: for any graph morphism f : G — H let Z[ f] : [G] —
[ H] be the morphism defined by Z[ f](v, k) = (f(v), k) for every (v, k) € Z[G]. In this way Z is an endofunctor
of the category of finite simple graphs and graph morphisms.

A morphism r : G — H between two graphs G and H is a retraction if there exists a morphism s : H — G such
that sr =r o s = 1. If there exists a retraction r : G — H then H is a retract of G. Since & is a functor it preserves
retractions and retracts.

Proposition 32. Every graph G is a retract of its double. More generally every retract of G is also a retract of 2[G].

Proof. Consider the morphisms 7 : Z[G] — G ands : G — Z[G] defined by r (v, k) =v for every (v, k) € V(Z[G])
and s (v) = (v, 0) for every v € V(G). Then r, which is the projection of G x T, on G, is a retraction. The second part
of the proposition follows from the fact that & is a functor and the composition of retractions is a retraction. [

Let 7 be a partition in independent classes of G. Then the quotient G/ is the graph whose vertices are the classes
of m and X adjY when there exist two vertices v € X and w € Y adjacent in G. The kernel of a graph morphism
f : G — H is the partition induced from f on the vertices of G. Clearly the kernel of a graph morphism is a partition
in independent blocks.

Proposition 33. Forevery graph G letr : 2[G] — G be the projection on G and let 7 be its kernel. Then Z[G]/n=G.
Proposition 34. For every graph G and G,, G| x G» is a retract of 2[G1] x Y[G3].

Proof. From Proposition 7 it follows that 2[G] x 2[G3y] = ,@2[61 X G3]. Then the claim is implied by
Proposition 32. [

A (proper) coloring of a graph G is a morphism ¢ : G — K,,. The chromatic number y(G) of a graph G is the
minimum number of colors needed to color the vertices of G. If there exists a morphism f : G — H then every

coloring ¢ : H — K, of H can be lifted to a coloring of G by the composition G —f> H = K,,. Hence it follows that
2(G) < y(H). In particular y(G) = x(H) whenever H is a retract of G. Then it follows:

Proposition 35. For any graph G, y(2[G]) = y(G). More generally, y(Z[G]) = y(H) whenever H is a retract
of G.

The chromatic polynomial y(G; x) of a graph G is defined as the polynomial that evaluated in any natural number
m gives the numbers of proper colorings of G with m colors, that is y(G; m) = [Hom(G, K,)|.
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We now define a hyperoctahedral coloring of G as any morphism y : G — H,, from G to any hyperoctahedral
graph. Then the number of hyperoctahedral colorings can be expressed in terms of the number of ordinary colorings.
Specifically:

Proposition 36. For any graph G on n vertices, |[Hom(G, H,;,)| =2" - y(G; m).
Proof. Lemma 27 and H,, = Z[K,,] imply that Hom(G, H,,) = Hom(G, K,,) x 2@ 0O

The cliqgue number o (G) is the size of a maximal clique contained in G. Equivalently w(G) is the maximal k such
that Hom(K, G) # . It follows that w(G) = w(H) whenever H is a retract of G. Hence:

Proposition 37. For any graph G, o(Z[G]) = w(G). More generally, o(Z[G]) = w(H) whenever H is a retract
of G.

Let now wy (G) be the number of all cliques of order k contained in G. Since every morphism from K to G is
necessarily injective, it follows that w; (G) = (1/k!)|Hom(K}, G)|. Then Lemma 27 implies the following:

Proposition 38. For every graph G, wx(Z[G) = 2Kwr (G).

A graph G is a core when no proper subgraph of G is aretract of G. A retract of G is a core of G if it is a core. Every
finite graph has a core and it is unique up to isomorphisms [8, p. 114]. A double graph is never a core but we have the
following:

Proposition 39. If H is the core of G then it is also the core of Z[G]. In particular, if G is a core then it is the core
of 2[G].

Proof. Being a retract of G, H is also a retract of Z[G]. Since H is a core and every graph has just one core, up to
isomorphisms, it follows that H is the core of Z[G]. U

A median of three vertices of a connected graph is a vertex that lies simultaneously on geodesics between any two
of them. A graph G is a median graph when every triple of (not necessarily distinct) vertices of G has a unique median
[8,13]. Median graphs are characterized as retracts of hypercubes [13, p. 76].

Proposition 40. If [G] is a median graph then also G is median.

Proof. If 2[G] is a median graph then it is a retract of a hypercube. Since G is a retract of Z[G], by Theorem 32, it
follows that it is also a retract of a hypercube. [

In general, however, if G is median it does not necessarily follow that Z[G] is median. For instance the star K 3 is
median (being a tree) while its double K7 ¢ is not median (fails the uniqueness of median vertices).

A morphism f : G — H is full when v adjw if and only if f(v)adj f(w), for every v, w € V(G). We have the
following characterization theorem:

Theorem 41. H is a double graph if and only if there exists a partition © of H in independent classes each of size 2
such that the canonical projection p : H — H /7 is a full morphism.

Proof. It immediately follows from the identity Z[G] =G o N>. O
Equivalently we have the following characterization theorem:
Theorem 42. For every graph G and H, G = Z[H] if and only if there exists a function f : G — H such that (i) f

preserves and reflects adjacency (i.e. vy adj vy in G if and only if f(vy)adj f(v2) in H, for every vy, v2 € G), (ii) f is
2-regular (i.e. every vertex of H has exactly two preimages).
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Fig. 4. A Fibonacci cube and its double.

9. An example: the double of generalized Fibonacci cubes

In this section we will consider a generalization of the motivating example mentioned in the Introduction. Let L be
a (finite) set of words of a given length over some alphabet. The Hamming graph generated by L is the graph with
vertex set L where two vertices are adjacent if and only if they have Hamming distance equal to 1, that is if and only
if they differ exactly in one position.

A k-Fibonacci string is a binary string without k consecutive ones. Let F,Ek] be the set of all k-Fibonacci strings with
length n. The generalized Fibonacci cube I ,[f] is the Hamming graph generated by the F,Ek]. In particular for k = 2 we
have the ordinary Fibonacci cube I',, (Fig. 4).

The binary strings 1010 - -- and 0101 - - - with k letters will be called zigzags of length k, or simply k-zigzags. Let
W,Ek] be the set of all binary strings of length n without k-zigzags (as factors).

Let B, be the set of all binary strings of length n. Let £ : B, +1 — B, be the function defined by (ajas - - - anan+1) =
bi1by - - - by, where b; =xor(a;, aj+1) fori =1, 2, ..., n, where xor(0, 0) =xor(1, 1) =0 and xor(0, 1) =xor(1,0) =1.

Consider now the restriction ¢ of & to W,EI:E]]. Since £(1010---)=111---and £(0101---)=111--- it follows that the

image of ¢ is the set of all binary strings of length n without k consecutive 1’s, that is the function ¢ : W,E]f:l] — F,Ek]
is well defined. This function is surjective and any element of the codomain has exactly two preimages. Now, instead

of considering the Hamming graph generated by W,E]r;”, we consider the graph #~ ,[fjll] obtained by endowing WYETE”

with the graph structure induced by I’ Lk] in order that ¢ becomes a graph morphism between %~ k41l and I Lk]. Precisely,

n+1
we define the adjacency on W,E]f:l] setting wi adj wy if and only if ¢(w1) adj (w>) in F,[f], forevery wy, wy € leril].

By Theorem 42, it immediately follows that %~ ,Ekﬁl] =9I’ Lk]].

10. Chromatic index

The chromatic index y'(G) of a graph G is the minimum number of colors needed to color the edges of G so that
adjacent edges are colored differently. By Vizing’s theorem the chromatic index of a graph G with maximum degree
A = A(G) is equal to 4 (class I graphs) or A + 1 (class 2 graphs) [6,11].

Since every bipartite graph is of class 1 (Konig’s theorem, [6, p. 25]), it follows that the double of a bipartite graph
is of class 1. This result can be generalized as follows.

Theorem 43. If G is of class I then also Z[G] is of class 1.

Proof. Let ¢ be a proper edge coloring of G using all the colors in a set C of size 4 = A(G). The coloring ¢ can be
represented by the matrix A, obtained from A by replacing every element a;; = 1 with the color ¢ (7, j) assigned to the
edge v;jv; by c. Let C’ be a new set of 4 colors such that C N C’ =@ and let ¢ : C — C’ be a bijection. We have a
new coloring ¢’ of the edges of G by assigning to the edge v;v; the color ¢/(i, j) = ¢(c(i, j)). Let A be the matrix

Ao Ay

representing ¢’. Then the matrix [ Ao A

] represents a proper coloring of the edges of Z[G] where exactly 24 colors
are used. [
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What can be said if G is a class 2 graph? The double is not necessarily of class 2. For instance the complete graph
K, is of class 2 for n >3 odd but its double H, is of class 1 [6, p. 28]. More generally, the complete h-partite graph
Kk 1s of class 2 if both 4 and k are odd and it is of class 1 otherwise [14, 6, p. 28]. Then for & and k odd K}, is of
class 2 but its double Kj2x) is of class 1. Similarly the cycle Cj, is of class 2 when 7 is odd, but its double is of class 1
[19, 6, p. 28]. All the eight connected graphs of class 2 with at most 6 vertices [6, p. 37] and the Petersen graph have
a double of class 1. All the graphs of class 2 we considered have a double of class 1. This suggests the possibility that
all double graphs are of class 1.
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