

Saturday, February 9, 2019

Steric inhibition of resonance and its influence of on acidity and basicity.

What is steric inhibition of resonance?

Resonance can occur only when all the atom involved in resonance lie in the same plane or nearly in the same plane.

Any change in structure which **prevent planarity** will diminish or inhibit resonance, this phenomenon is known as **steric inhibition** of resonance.

Few example of steric inhibition of resonance with explanation are as follows,

Why N,N dimethyl aniline couple with diazonium salt but N,N,2,6 tetramethyl does not ? N,N-dimethyl aniline and its 2,6-dialkyl derivatives the NMe2 group in N,N-dimethyl aniline and the ring is coplanar. So p-electron on N atom and pi orbitals are remain in the same plane.

For this the p-electron on N-atom can delocalized via pi orbital in the benzene ring and its result the electron availability in para position is high. So N,N dimethyl aniline couple with diazonium cation PhN_2 ⁺ to form diazonium salt.

On the other hand, in case of **N,N,2,6 tetramethyl aniline** having two bulky methyl group in ortho position of the benzene ring, the NMe2 group can not remain in the same plane.

That is why the p-electron on N-atom can not delocalized through pi orbital in para position. Thus **2,6 dimethyl derivative** does not couple with **diazonium cation** under these condition that is due to **steric inhibition of resonance**.

An interesting example of **steric inhibition of resonance** in activated **nucleophilic substitution** of **1,3 dichloro 2,5 dinitro benzene**.

When this is warmed with **methanolic sodium methoxide**, only one product **1,3 dichloro 5 methoxy 2 nitro benzene** is formed.

The two nitro group can not stabilize the carbanion leading to (I), since it is prevented from entering into resonance with the benzene ring because of the **steric effect** of the ochloro atoms.

On the other hand this steric inhibition of resonance is absent in the carbanion leading to (II). Hence the carbanion leading to (II) has a lower energy of activation energy than that leading to (I) and so only (II) is produced.

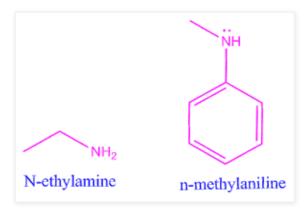
How **steric inhibition of resonance affect** the acidity and basicity of a organic compounds ?

Steric inhibition of resonance has a great **effect on acidity** and **basicity** of organic compounds as like **steric hindrance**. The influence of **steric inhibition of resonance** on acidity and basicity are discussed below.

Why cyclohexane-1,3dione is much more acidic than bicyclo[2,2,2] oct-2,6-dione? Cyclohexane1,3-dione is much more acidic than bicyclo[2,2,2] oct-2,6-dione, because the enolate ion of the cyclo hexadione stabilizes through resonance, whereas bicycle[2,2,2] oct-2,6-dione does not due to the steric inhibition of resonance.

Besides, the filled p-orbital of the enolate ion of the later compound being out of plane of the C = O groups, it can not overlap with the pi electrons of the carbonyl group.

Why 3,5 dimethyl 4-nitro aniline is a stronger base than 2,6 dimethyl 4-nitro aniloine? 3,5 dimethyl 4-nitro aniline is a stronger base than 2,6 dimethyl 4-nitro aniloine, because in 3,5 dimethyl 4-nitro aniline, amino group can not enter into resonance with the nitro group due to the steric inhibition of resonance, whereas it can 2,6-dimethyl isomer.

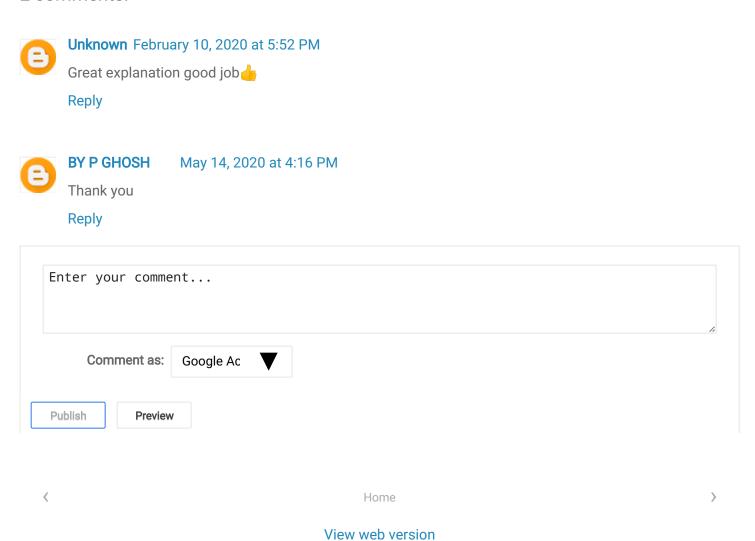

Thus in the former, the lone pair on the N-atom is more available for **protonation** and consequently, the former is more basic than the later.

$$H_3C$$
 NH_2
 H_3C
 NH_2
 NH_2

Why N-ethyl amine is stronger base than N-methyl aniline?

Since the ethyl group is larger than the methyl group .So **the steric effect** is greater for the former and hence there is greater **steric inhibition of resonance** in the former .

Thus, in the former the lone pair on N-atom is more available for protonation and consequently the **basicity of N-ethyl amine** is greater than that of **N-methyl aniline**.


Summary:

What is steric inhibition of resonance?

Why N,N dimethyl aniline couple with diazonium salt but N,N,2,6 tetramethyl does not ? Why 3,5 dimethyl 4-nitro aniline is a stronger base than 2,6 dimethyl 4-nitro aniloine? Why N-ethyl amine is stronger base than N-methyl aniline?

Click here: Dipole moment and its application.

2 comments:

Powered by Blogger.