$$\int \left(-4x\sin(x)-2\sin(x)+\cos^2(x)\right)\mathrm{d}x$$

Apply linearity:

$$= -4 \int x \sin(x) dx - 2 \int \sin(x) dx + \int \cos^2(x) dx$$

Now solving:

$$\int x \sin(x) \, \mathrm{d}x$$

Integrate by parts: $\int\!\!\mathbf{f}\mathsf{g}'=\mathbf{f}\mathsf{g}-\int\!\!\mathbf{f}'\mathsf{g}$

$$f = x$$
, $g' = \sin(x)$
 $\downarrow \underline{\text{steps}} \quad \downarrow \underline{\text{steps}}$

$$f'=1$$
, $g=-\cos(x)$:

$$=-x\cos(x)-\int-\cos(x)\,\mathrm{d}x$$

Now solving:

$$\int -\cos(x)\,\mathrm{d}x$$

Apply linearity:

$$=-\int\cos(x)\,\mathrm{d}x$$

Now solving:

$$\int \cos(x) \, \mathrm{d}x$$

This is a standard integral:

$$=\sin(x)$$

Plug in solved integrals:

$$-\int \cos(x) \, \mathrm{d}x$$
$$= -\sin(x)$$

Plug in solved integrals:

$$-x\cos(x) - \int -\cos(x) dx$$
$$= \sin(x) - x\cos(x)$$

Now solving:

$$\int \sin(x) \, \mathrm{d}x$$

This is a standard integral:

$$=-\cos(x)$$

Now solving:

$$\int \cos^2(x) \, \mathrm{d}x$$

Apply reduction formula:

$$\int \cos^{\mathbf{n}}(x) \, \mathrm{d}x = \frac{\mathbf{n} - 1}{\mathbf{n}} \int \cos^{\mathbf{n} - 2}(x) \, \mathrm{d}x + \frac{\cos^{\mathbf{n} - 1}(x) \sin(x)}{\mathbf{n}}$$
with $\mathbf{n} = 2$:
$$= \frac{\cos(x) \sin(x)}{2} + \frac{1}{2} \int 1 \, \mathrm{d}x$$

... or choose an alternative:

Apply product-to-sum formulas

Now solving:

$$\int 1 \, \mathrm{d}x$$

Apply constant rule:

$$= x$$

Plug in solved integrals:

$$\frac{\cos(x)\sin(x)}{2} + \frac{1}{2}\int 1 dx$$
$$= \frac{\cos(x)\sin(x)}{2} + \frac{x}{2}$$

Plug in solved integrals:

$$-4\int x\sin(x)\,\mathrm{d}x - 2\int \sin(x)\,\mathrm{d}x + \int \cos^2(x)\,\mathrm{d}x$$

$$= \frac{\cos(x)\sin(x)}{2} - 4\sin(x) + 4x\cos(x) + 2\cos(x)$$

The problem is solved:

$$\int \left(-4x\sin(x) - 2\sin(x) + \cos^2(x)\right) \mathrm{d}x$$

$$= \frac{\cos(x)\sin(x)}{2} - 4\sin(x) + 4x\cos(x) + 2\cos(x)$$
Rewrite/simplify:
$$= \frac{(\cos(x) - 8)\sin(x) + (8x + 4)\cos(x) + x}{2} + C$$

ANTIDERIVATIVE COMPUTED BY MAXIMA:

$$\int f(x) \, \mathrm{d}x = F(x) =$$

$$\frac{\frac{\sin(2x)}{2} + x}{2} - 4\sin(x) + (4x + 2)\cos(x) + C$$

31

3/

Simplify/rewrite:

$$rac{(\cos(x)-8)\sin(x)+(8x+4)\cos(x)+x}{2}+C^{2}$$

DEFINITE INTEGRAL:

$$\int\limits_0^{2\pi} f(x) \,\mathrm{d}x =$$

 9π

No further simplification found!

Approximation:

28.27433388230814