
TOPIC 6

Infinite series 1: Geometric and telescoping series

Main ideas.

• Convergence and divergence: general definitions and intuitions

• Geometric series:
P1

k=0 r
k

• Telescoping series
P1

k=⇤
1

quadratic

Exercises.

Exercise 6.1. For each of the series below, please

• Write out the first few partial sums S1, S2, S3

• Write out a general formula for S
n

• Determine if the series converges. If the series is convergent, to what does it

converge? In either case, explain your reasoning.
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The general formula for S
n

is
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As n ! large we have
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! 0 and thus the series is convergent,
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S0 = 1

S1 = 1 +
5

4

S2 = 1 +
5

4
+

25

16
In general we have
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gets large as n gets large, the series does not converge.
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The general formula for the partial sums is
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Since
�
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gets small as n gets large we see that the series converges

and
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(5) We first do a partial fraction decomposition, writing
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Thus the partial sum S
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Many terms, and we see that
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Thus the partial sums are
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There are 8 terms which do not cancel and thus
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We can see that the sequence of partial sums converges and hence
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Clearly a factor of k cancels and the series is equivalent to
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We look at the partial sums and use the same grouping as in class:
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In particular, we notice that S2k�1 ends with · · ·+ 1
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and therefore
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Since 1
2k grows without bound, we see that the sequence of partial sums

grows without bound and the series diverges.

Note: There are more problems on the next page!
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Exercise 6.2. Write each of the following series in terms “standard” geometric series.

Then determine whether it converges or not.

Example: Suppose we are given the series
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Next we define a new counter l = k � 2. Notice that when k = 2 our new
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The series does not converge because the ratio 4
3 is greater than 1.
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Solution:

(1) We write the series as
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Already we see that the series converges, as the geometric ratio 3
4 is less

than 1.

We now re-index, setting k = n� 2 and obtaining
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Optional: At this point we can easily determine the precise value that

the series converges to; we find
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Optional: At this point we can easily determine the precise value that

the series converges to; we find
1X

n=3

(�1)n
2

3n
= 2

✓
�1

3

◆2 1

1 + 1
3

=
2

3
·

3

4
=

1

2
.

(3)
1X

n=�1

5n�3

62n�1
We write the sum as

1X

n=�1

5n�3

62n�1
=

5�3

6�1

1X

n=�1

✓
5

36

◆
n

from which we see that the series converges.

Re-indexing with k = n+ 1 we find
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Exercise 6.3. (Challenge) Recall that the geometric sum formula gives us a nice

expression for the quantity

1 + x+ x

2 + · · ·+ x

n

.

Use this to find a nice formula for the quantity
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Use your formula to analyze the convergence of the series
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